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OPERATORS WITH THIN SPECTRAL SETS

RUDOLF A. HIRSCHFELD

Let T be a bounded linear operator in a complex Hilbert space H and A<=C
a compact set containing the spectrum ¢(T) of T. Denote by R(A) the algebra
of those rational functions on C that have their poles off A, endowed with the
sup-norm

lull, = max {j(d)]: AeA}.

For every u € R(A) the map u(T) is safely defined by a mere substitution and it
represents a bounded linear operator in H. Using von Neumann’s terminology
(see [3, §§ 154, 155]) in a slightly modified way, we shall say that A is a spectral
set for T if

M = sup{|u(T)| : ue R(4) and [jull,<1}

is a finite number. The original definition of von Neumann’s corresponds to
M=1.

The intersection of all spectral sets (with M =1) for T equals the spectrum of
T, but this does by no means imlies that ¢(T) is a spectral set. If T is normal,
however, then o(T) is readily seen to be a spectral set. In 1, p. 933] it is stated
that, conversely, if 6(T) is a spectral set, then T is a normal operator. This is
erroneous (unless dim H<oo, see [3, p. 440]). We shall give two simple
counterexamples that, in conjunction, will suggest a correct statement.

First, if T is similar to a normal operator N, the similarity being
implemented by a boundedly invertible operator S, then T=SNS~! need not
by normal, but o(T) (=0(N)) is a spectral set for T (with M<|S|-|S|),
because u(T)=Su(N)S ! for u € R(A). On the other hand, the unilateral shift,
with spectrum the closed unit disc, does admit its spectrum as a spectral set
(with M =1) by virtue of the von Neumann inequality for contractions. But
this shift is similar to no normal operator. Explanation: the spectrum of this
shift is too big. Looking into the opposite direction, a compact set A< C will be
called thin if the above algebra R(A) is dense in the familiar Banach algebra
C(A). The characterization of thin sets still is a major open problem in the
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theory of rational approximation, [4]. Suffice it to state that sets of planar
measure zero are thin.
The present note aims to establish the following result.

THEOREM. Let T be a bounded-linear operator in a complex Hilbert space H,
possessing a spectral set A which is thin. Then T is similar to a normal operator.

RemaRrk. For the application we have in mind (to appear elsewhere) A often
has the property that the polynomials p constitute a dense set P(A) of C(A). If
that happens it is important to notice that the theorem remains valid if we
replace the assumption that the thin set A be a spectral set by 6(T)c A and

sup {Ip(D)ll : p e P(4) aftd |p,s1} < oo.

2,

We start with the case that ¢(T)=A. The following lemma is no more than
an elementary fact about spectral operators, although in a disguised form.
Since it appears in [2, p. 2222, Ex. 2] as an exercise, we shall present a short
proof here.

LemMA. Let T be an operator for which the set 6(T) is both spectral and thin.
Then T is similar to a normal operator.

Proor. The operator T affords the representation u — u(T) of the algebra
R(a(T)) into the Hilbert space H. The set o(T) being spectral by assumption,
there is a constant M such that

(I = Mluloqy ueR(e(T),

showing that this representation is continuous (for the sup-norm on R(a(T))
and the operator norm). Since the set 4(7T) is thin, this representation is
immediately extended by continuity to a continuous representation of the
entire Banach algebra C(o(T)) into H. The fundamental theorem [2, XVII, 2.5]
asserts that this representation comes from a unique strongly o-additive
spectral Borel measure E on o¢(T) via

(M = jmf(i)dE(l) feCla(T).

In other words, T is a spectral operator of scalar type in the sense of
N. Dunford. The values E(5), § a Borel set in A, are bounded projections on H,
but possibly skew ones. At any rate, H can be renormed in such a manner as to
turn all E(d) into orthogonal projections simultaneously. In fact, by virtue of
[2, XV, 6.4.] there is a bounded selfadjoint operator S, with a bounded inverse
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on H, such that N=S"!TS is normal. It follows that T is similar to the normal
operator N.

3

Whereas 6(T)= A in the Lemma, the theorem deals with the more general
case that a(T)<A. The set A being spectral by hypothesis, we do know that
|u(T)|| remains bounded for ||ul|,<1, but we have no control whatsoever of
|u(T)|| on the unit ball of R(s(T)). We shall reduce, however, the general
situation to that of Lemma by “doubling” the Hilbert space H to its direct turn
H@H. But this trick will only work if dim H =00 and, in order to cover the
important ‘case that dim H <oo, we shall use an auxiliar separable complex
Hilbert space K and rather work in # =H®K.

Let A be a thin spectral set for T. Take a bounded normal operator N in K
with g(N)=A. (For instance, let {1,) be a dense sequence in A, (e,) an
orthonormal base for K and put Ne,=A,e,. This diagonal operator is clearly
normal, |N|| £max{|4| : A € A4} and o(N) equals the closure 4 of {1,: n € N}.)

Consider the diagonal operator

- (:3)

in #. The operator J — 1 has a bounded inverse on J if and only if both
diagonal entries T—AI and N—AI have that property (on H and K,
respéctively). Hence, 6(7) = A. We next check that A is a spectral set for 7. For

u(T) O )

“wj=<0um

we have ||u(J)|2 = |u(T)|2+ |u(N)||2. Let M be the constant pertaining to the
spectral set A of T, that is ||u(T)|| < M]|ul, on R(X). For the normal operator
N the spectrum A is a spectral set with M =1. Hence

lu@) £ M>+1D)*ul,  ueRA),

showing that A is a spectral set for 7, indeed.
We infer from the Lemma that J is a scalar operator on . Let & be the
corresponding resolution of the identity, i.e.

*) f7) = J f)déed) feCA).
A

For each Borel set 6 in A the operator £(8) can be represented by a matrix

_ (E0,(0) Epy®)
’@‘Gm&%@)

Math. Scand. 39 — 24



370 RUDOLF A. HIRSCHFELD

where E,,(d) is a bounded operator mapping H into H. In matrix form (*)

reads
(f(T) o ) _ wad(Eu(/l) Elz(l)> _ (IAf(l)dEu(l) *)
0 f(N) 4 E; (1) Ez (%) * *
Comparing the entries, we obtain E,,(d)=E,, (6)=0 for every Borel set d = A.

But this implies that both E,, and E,, are projection-valued measures and for
the north-west corners we get

f() = j SAAE,(A) feCA).

Hence, T is of scalar type and the theorem is proved by another appeal to [2,
XV, 64.].
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