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INFINITESIMAL CHARACTERIZATION
OF ANALYTIC VECTORS
FOR REPRESENTATIONS OF REAL LIE GROUPS
ON LOCALLY CONVEX SPACES

BJARNE SELAND
Introduction.

Let G be a real and connected Lie group and let g — n(g) be a locally
equicontinuous representation of G on a complete Hausdorff locally convex
vector space E over C. We give an infinitesimal characterization of the analytic
vectors for n. In the last part of section 2 we define the notion of entire vectors
for m. To illustrate the theory we construct representations =, of the
Heisenberg group of dimension 2d + 1 on the space of distributions on R% For
A € C\{0} =, has a dense subspace of entire vectors.

1. Notations.

Let M be a differentiable manifold of dimension d and E a complete
Hausdorff locally convex vector space over the field C. We denote the space of
smooth functions from M to E by C®(M,E). C®(M,E) is the subspace of
C*™(M, E) consisting of the functions with compact support.

Let N be the set of all d-tuples a={a;,. . .,®,} of non-negative integers. For
all & e NY, we set |of =a;+ ... +0gand al=a,! ... ol If o, B € N we define
a+f=(0,+p,,...,00+p,) and (§=a!/B!(x—p)!. The notation fSa means
B;sa; for all j=1,...,d.

We put
j=1....d,

p <l
I oxy

and D*=D% ... D%. If x=(xy,...,X,) € R% we define

|x| = max {|x : i=1,...,d}.
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2. Characterization of analytic vectors.

Let G be a real connected Lie group with Lie algebra g and let g — n(g)bea
locally equicontinuous representation of G on a complete Hausdorff locally
convex vector space E over C. A vector v € E is called a C*-vector for-the
representation = if the mapping g — #(g)=n(g)v is smooth from G to E. The
subspace of C®-vectors for n will”be denoted by E*(n). We have a
representation dn of g on E*(rn) given by

1 (X = %n(exth)v , Xeg, veE®m).

The representation dn extends uniquely to a representation of the universal
enveloping algebra U(g(C)) of the complexification g(C) of g, which we also
denote by on.

Let p be any continuous seminorm on E and n a non-negative integer. For
v € E*(n) we define

2 pav) = Y p@n(X;, ... X, W), n=12,...,
155 Jnsd
Po(v) = p(v)

where {X,...,X,} is a fixed basis for g. The vectors 1®X,,...,1®X,form a
basis for g(C), and if X=¢,(1®X )+ ... +&,(1®X,) we define

|X| = max {|&]: k=1,...,d}.
Then for v € E®(n) we have

©)] Pa(OR(X™)0) < |XI"Ppsm(V) -

Let X denote the left invariant differential operator corresponding to X € g.
For any v € E*(n) we have

) X, ...X,0@ = n(@in(X;,...X;)p, geG

for all ne N and 15j,,. . .,j,=d. [6, page 258].

Since 7 is a locally equicontinuous representation we obtain from (4) that
the topology on E®(n) described by the family of seminorms {p,} coinsides
with the standard topology induced from C® (G, E), which is complete [6, page
253].

A vector v € E is an analytic vector for = if the function §(g)=n(g)v is a real
analytic function from G to E. Denoting the subspace of analytic vectors for ©
by E®(n), we have the inclusion E®(n)< E®(n).

THEOREM 1. A4 vector v € E®(x) is analytic if and only if there exists a positive
constant t such that
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00 n

L ~Pa(0) < 00

n=0

Jor all 0<s<t and all continuous seminorms ponE.

To prove Theorem 1 we need some results. For each 0<p<1, let ¢, denote
the map defined by

Pe(X1-- X)) = (@—x;— ... —x)7t.
One calculates easily that
®) Dop,(x) = Jo! (¢, (x))*!
(6) D*(@p™)(x) 2 D*(p)(x), n=0,1,2,...

for all « € N? and 'x € R? with |x,|+ ... +|x/<1—p.
Let (¥, U) be an analytic chart at the identity e of G with ¥(e)=(0,...,0).
Then
d

X, =Y a;0D, i=1,..d

j=1

where a;;(x) are analytic maps defined in 2=y /(U). Using (5) we can find ¢ =g,
so small that

™) ID%a;(0)] = D*,(0), 1s5i,j<d

for all « € N We set p=g,,.

Let D(Q, E) denote the algebra generated by all differential operators in
C*(Q, E). Following Nelson [5, page 573] we define a semialgebra of absolute
operators. If A is an element of D(Q, E) we define the absolute operator |A4| of 4
to be the set consisting of 4 alone. Let D (£, E)| be the free abelian semigroup
with the set of all |A| as generators, 4 € D(Q, E). That is, a typical element of
|D(£, E)| is a finite formal sum. If @ € C*(&, R) is a positive function we ident-
ify a with |al|, where I is the identify operator in C®(£, E). The product of v=
|4,|+ ... +]|A4,] and t=|B,|+ ... +|B,| is given by

m
v =)y
i=1

Next, we define a preordering < in [D(Q, E)| by putting v<<7 in case

|4;B/ .
1

j:

p(A,fO)+ ... +p(4nf(0) < p(Bf(O)+...+p(B,f(0)

for all f e C*(RQ, E) and all continuous seminorms p on E. With each « € N4 we
associate a linear operator D* in |D (£, E)| defined by
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Y a,(x)D?

D,,<
yeN

where 3, .n¢a,(x)D? € D(Q, E).

)¥ Y Y (@Dfa,(x)D*"*DY|

yeN? g<a

LEmMMA 2. For n=1,2,... we have

- . 1
DX, ... X,| < D“(n! @dde? ¥ —!|DV|>
1=hisn
for all x e N* and 1<j,,. . .,j,<d.

Proor. We prove the claim by induction on n. Forx e NYand i=1,...,d wé

have
d
D“( Y ai,‘D,‘>

k=1

d
Y 2 (DPayD**D,

k=1 gSa

|DaX | =

Because of (7) and (6) |DPa;, (0)| < D?@?(0) for all B € N? and 1 <i, k<d. Hence
we get

d
IDX| < 3 Y (PIDPo’D*"'Dy
k=1 pSa

1
= D*(|¢*D,y|+ ... +|¢?D,) < D°‘<4d<p2 Z ~—’|DV|).
l=1"%"
Next suppose the claim is true for some n=1. For o € N and i=1,...,d we
have

d
ID“X{le...Xj.I = 'D"(Zl aika)le... Xjn
k=

d

Y Y @DaD'D,X, - X,

]

k=1 pSa
d
< Y Y (D*ID*’D,X; ... X,
k=1 fSa
d - 1
< Z 2 (;)D"(pD"‘ "D,,(n!(4d<p2)" z ——'|DV|)
k=1 f3a 1shisn ©

1
=Y (;)Dﬂrpm-ﬂ(n!n(4d<p2)"‘18d2<p3 X SID+
BSa 1hisn

+n! (4d(p2)" Z }T(IDlD’l +... +|D,D7I)) .
1shisn 1 :
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Since D?p™(0)< Do™*1(0) for all f € N? and m=1,2,. .., we obtain

XX, ... X< Y (;)D"(pD““"<(n+1)!(4d)"“(p2"+1 ¥ i,wvl)
psa 1shisn+t ¥°

=D"((n+1)!(4d(p2)"“ Y i,u)n).

IShlsn+1 77

ProoF oF THEOREM 1. Suppose v € E®(n), and let p be any continuous
seminorm on E. Since f =iy ~! is analytic at the origin, there exists a constant
to>0 independent of p and a constant M >0 such that

1
QP(D’f O)f' < M

for all y e N“ Using the identity (4) and setting a= (0,...,0) in Lemma 2 we
get

p.v) = Y p(Xj...X,i)
1<)y, jnSd

dmn!(4de? Q) Y i,p(D’f 0)

1shlgn’’

n!(4d290—2)n Z Mto—m
1shizn

for n=1,2,.... Then it follows that

A

IIA

00

1
Y ;—!p,,(v)s" < 00

n=0
for all 0<s<4d™?g% -min {1,t,}.
Conversely, suppose there exists a constant t>0 such that

[e 4}

1
®) Y ] pa(v)s" < 00

n=0
for all 0<s<t and all continuous seminorms p on E. Since the mapping
x — e(x) = exp (x;Xy)...exp (x;X,)

is an analytic diffeomorphism from an open neighbourhood £ of 0 in RYto an
open neighbourhood of e in G, it is sufficient to prove that F (x)=mn(e(x) is
analytic at the origin.

For any x € © and « € N? one has the formula [1, page 62]

© D*F(x) = n(e(®)0n(Z, () ... 0n(Z,_, (X))~ 10m(X )4
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where

CZj(x) = Ad (exp (Xj4+1Xj4y) - . - €Xp (x,X ) 71X

7

G=1,...,d—1.

We choose >0 such that {x € R?: |x|<¢e} =Q, and let ¢ be any continuous
linear functional on E. Since = is locally equicontinuous there exists a
continuous seminorm p on E such that

(10) KDF(x), 0> < p(0n(Z, (X)) . .. On(Z4-  (x))*-10n(X %))

for all |x| <& and « € N° The mappings x —~Z ;(x) are continuous from Q to g.
Hence there exists a constant M, such that |Z;(x)| M, for all |x|<e, j=1,...,
d—1. Combining, (10) and (3) we obtain that

[KD*F (x), 0> < MPp,(v)

for all |x|<e and « € N“. From (8) it follows that F is ¢(E, E')-analytic at the
origin. Hence analytic by Lemma 3 of [4, Chapter 6].

A vector v € E®(n) is called an entire vector for the representation = if

® 1

Y —=p,)s" < 0

n=0 n!

for all s>0 and all continuous seminorms p on E. Let E%(n) denote the
subspace of E consisting of entire vectors for n. We give EZ (n) the topology
described by the family of seminorms

o] n

P, ,0) = ¥ 2ip(0), s>0,ped
) n=0 n!
where A is the set of all continuous seminorms on E. The inclusion i: EZ (n)
— E*®(n) is continuous, and it is easy to show that EZ (m) is complete
Let v € E2 (%) and X € g(C). Then the series

[ 1 .
ngo ;,—'an(X )v
converges absolutely in E*(n) and we define
Expon(X)p = Y, ;11—'67r(X”)v.
n=0 Tt:

Because of (3) E2(n) is invariant under Expdzn(X) and Expon(X) is a
continuous linear map. Furthermore, for each ve E%(m) the function
X — Expdn(X)v, X € g(C), is continuous.

Let G° be the connected and simply connected Lie group whose Lie algebra
is g{C). Fix £>0 such that X — exp X is bijective from {X € g(C) : |X|<¢} to
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U &G¢. Then for g=exp X with |X|<e we define
n°(glv = Expon(X), ve E2(m)

n® is a local representation of G on E® () [1, Proposition 2.3].
There exists a neighbourhood V of the origin in g [2, page 95] such that

n(exp X)v = Expon(X)

for all X € V and v € E (). Hence the closure of E® (n) in E is invariant under
m, so that if E3, () # (0) and = is topologically irreducible, E2 (r) must be dense
in E.

ExaMPLE. Let g be the real Heisenberg algebra of dimension 2d+1. We
choose a basis {X,,...,X,,4,} for g with commutation relations [ X, X, ]
=X,441,i=1,...4d, [X,,X,] 0for 1=5i,j<d, [X;,X;]=0for d+1Zi,j<2d
and [ X, X 2‘,H] 0 for i=1,...,2d. The Heisenberg group G of dimension
2d +1 is the connected and smply connected Lie Group which corresponds to
g. For each 1 € C we may realize a representation ¥, of G on C,(R% C) with

[Vilexp (61 X1+ .. +EXD) 1) = fxi =8 x4— &)
[Vilexp (6, X gs1+ - - +EX2)f1(x) = exp (A x,+ . .. + AEx) f (%)
 [Vilexp (€X 344 ) f1(x) = exp (AO)f(x) .
We denote the s;;ace pf distributions on R? by E. For each A € C we have a
representation 7n; of G on E defined by
m,(@)T(p) = (T,Vi(g"")¢>, geG, TeE and ¢ € C*(R%,C)

7, is locally equicontinuous. Evidently, n,(X ;)= D;, dn,(X ;) =multiplication
by Ax;, i=1,m .,d, and 07,(X544+4)= multlphcatlon by A. We claim that f(x)
=1 is an entire vector for =,.

Let B be any bounded subset of C®(R?, C). We choose a constant K >0 such
that the support of ¢ is contained in {x € R?: |x|< K} for all ¢ € B. Setting
M=max {1,]2], K} we get

(11) on(Xj, ... Xp)f () S Cm—1)2m=3)... M
(12) on(Xj, ... X ) ) £ Cm)(2m=2). .. 2MAm+t
for all x with |x|<K and all 1<jy,. .., jome1 S2d+1, m=1,2,.... Using the

estimates (11) and (12) we obtain

HIT Z sup {|€om,(X;, ... X;) 9>l ¢ € B}s" < o0
n=0 I 1gj,. . j,S2d+1

for all s>0.
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Lemma 6 and Theorem 4 of [3] imply that =, is topologically irreducible if
A#0. Hence E¢ (n;) must be dense in E when A40.
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