ON REPRESENTATION FORMULAS FOR INTERMEDIATE DERIVATIVES

HENRY KALLIONIEMI

1. Introduction.

In a paper of Domar [2], he studies complex-valued functions φ on R, n-1 times absolutely continuous and satisfying $|\varphi^{(n)}(x)| \le A$, $|\varphi(x)| \le B$, $x \in \mathbb{R}$. For 0 < m < n, a representation formula

(i)
$$\varphi^{(m)}(0) = \int_{\mathbb{R}} \varphi^{(n)}(-x) dv_1(x) + \int_{\mathbb{R}} \varphi(-x) dv_2(x) ,$$

is deduced, where v_1 and v_2 are bounded regular Borel measures with v_1 absolutely continuous, such that equality can be obtained in the resulting inequality

(ii)
$$|\varphi^{(m)}(0)| \leq A \int_{\mathbb{R}} |dv_1| + B \int_{\mathbb{R}} |dv_2|$$
.

In this paper, we study real-valued functions φ on an interval I on \mathbb{R} , finite or infinite, and assume for a given quadruple of positive numbers (A, B, C, D) that

$$-B \leq \varphi^{(n)}(x) \leq A, \quad -D \leq \varphi(x) \leq C, \quad x \in I.$$

Then we can deduce a representation formula (i) such that equality can be obtained in the inequality

(iii)
$$\varphi^{(m)}(0) \leq A \int_{I} dv_{1}(x)^{+} + B \int_{I} dv_{1}(x)^{-} + C \int_{I} dv_{2}(x)^{+} + D \int_{I} dv_{2}(x)^{-}$$
.

In fact we obtain this as a special case of a more general representation formula where derivation is exchanged to certain operations of convolution type. This formula is proved by methods adopted from Domar [2].

For I = R we give explicit expressions for v_1 and v_2 , and the optimal φ_1 and φ_2 , and discuss the properties of these functions. In particular we prove that the measures have compact support if and only if $n \le 3$.

This paper is an abbreviated version of some non-published results in [4]. The remaining results in [4] are contained in [5].

ACKNOWLEDGEMENT. I wish to acknowledge my deep gratitude to professor Yngve Domar for his valuable support during the preparation of this work.

2. A general approach.

In this section we shall give a generalization of a theorem by Domar [2]. We are going to use methods and notations adopted from [2]. A difference is that we are only dealing with real spaces.

We denote by M(R) the Banach space of real bounded Borel measures on R and by AC(R) the subspace of M(R) consisting of all measures which are absolutely continuous with respect to the Lebesgue measure.

The Fourier-Stieltjes transform $\hat{\mu}$ of a measure μ in M (R) is defined by the relation

$$\hat{\mu}(t) = \int_{\mathbb{R}} e^{-itx} d\mu(x)$$

for every t on the dual R. Convolution of elements in M(R) is defined in the usual way so that it corresponds to pointwise multiplication of the Fourier-Stieltjes transforms.

Let μ_1 and μ_2 be given elements in M(R) and μ_0 a third given element with the property that there exist elements ν_1 and ν_2 in M(R) so that

(1)
$$\mu_0 = \mu_1 * \nu_1 + \mu_2 * \nu_2.$$

We assume that there exist a real number α and measures σ_0 and σ_2 in AC (R) such that the three relations

$$\hat{\mu}_1(t) \neq 0$$

(3)
$$\hat{\mu}_2(t) = \hat{\mu}_1(t)\hat{\sigma}_2(t)$$

$$\hat{\mu}_0(t) = \hat{\mu}_1(t)\hat{\sigma}_0(t)$$

all hold if $|t| \ge \alpha$.

H denotes the set of pairs of bounded Borel measures (v_1, v_2) which satisfy (1). L denotes the set of all pairs of bounded Borel measures (v_1, v_2) such that

(5)
$$\mu_1 * \nu_1 + \mu_2 * \nu_2 = 0.$$

We finally form the class K of all pairs of real functions (φ_1, φ_2) in $L^{\infty}(\mathbb{R})$ such that

$$\varphi_1 * v_1 + \varphi_2 * v_2 = 0$$

holds for every (v_1, v_2) in L with v_i in AC (R), i = 1, 2.

We are now able to establish our first theorem which is a refinement of a theorem in [2].

THEOREM 2.1. 1°. If (v_1, v_2) belongs to H or L then v_1 belongs to AC(R).

- 2°. There exists a pair (v_1, v_2) in H with v_2 in AC (R).
- 3°. If $(\varphi_1, \varphi_2) \in K$ then φ_2 is continuous after a change in a set of Lebesgue measure 0.
- 4°. We form for any $(v_1, v_2) \in H$ and any $(\varphi_1, \varphi_2) \in K$ with φ_2 continuous the functional

(7)
$$F(\varphi_1, \varphi_2, \nu_1, \nu_2) = \int_{\mathbb{R}} \varphi_1(-x) \nu_1'(x) dx + \int_{\mathbb{R}} \varphi_2(-x) d\nu_2(x) .$$

The value of the functional (7) does not depend on the choice of (v_1, v_2) in H.

5°. Let A, B, C and D be fixed positive numbers and let K(A, B, C, D) denote the subset of all $(\varphi_1, \varphi_2) \in K$ such that $-B \leq \varphi_1 \leq A$ and $-D \leq \varphi_2 \leq C$ almost everywhere. Then there exists a pair (ψ_1, ψ_2) in K(A, B, C, D) such that

$$F(\varphi_1, \varphi_2, \nu_1, \nu_2) \leq F(\psi_1, \psi_2, \nu_1, \nu_2)$$

for every (φ_1, φ_2) in K(A, B, C, D).

6°. There exists a pair (v_1, v_2) in H such that

(8)
$$F(\psi_1, \psi_2, \nu_1, \nu_2) = A \int_{\mathbb{R}} \nu_1'(x)^+ dx + B \int_{\mathbb{R}} \nu_1'(x)^- dx + C \int_{\mathbb{R}} d\nu_2(x)^+ + D \int_{\mathbb{R}} d\nu_2(x)^-,$$

where

$$v_i^+ = \frac{|v_i| + v_i}{2}$$
 and $v_i^- = \frac{|v_i| - v_i}{2}$ for $i = 1, 2$.

PROOF. The proofs of 1°, 3° and 4° can be found in [2].

PROOF OF 2°. Let (v_3, v_4) be in H. Then we have by (1) that

$$\hat{\mu}_0 = \hat{v}_3 \hat{\mu}_1 + \hat{v}_4 \hat{\mu}_2 \ .$$

Choose a measure μ in AC(R) such that

(10)
$$\hat{\mu}(t) = 1 \quad \text{for } |t| \leq \alpha.$$

Define v_1 and v_2 by the formulas

(11)
$$v_1 = \sigma_0 - \sigma_0 * \mu + v_3 * \mu$$

and

$$v_2 = v_4 * \mu.$$

Since $\mu \in AC(R)$ we have $v_2 \in AC(R)$. Thus it remains to prove that the pair (v_1, v_2) defined by (11) and (12) belongs to H.

By (9) we get

$$\hat{\mu}_1 \hat{v}_1 + \hat{\mu}_2 \hat{v}_2 = \hat{\mu}_1 \hat{\sigma}_0 + \hat{\mu} (\hat{\mu}_0 - \hat{\mu}_1 \hat{\sigma}_0) .$$

Hence we get for $|t| \le \alpha$ by (10) and for $|t| \ge \alpha$ by (4) that

$$\hat{\mu}_1 \hat{\nu}_1 + \hat{\mu}_2 \hat{\nu}_2 = \hat{\mu}_0$$

and thus (1) is satisfied and (v_1, v_2) belongs to H.

PROOF OF 5°. We form the space X of all pairs (v_1, v_2) where $v_1 \in AC(R)$ and $v_2 \in M(R)$. Define

$$p(v_1, v_2) = A \int_{\mathbb{R}} v_1'(x)^+ dx + B \int_{\mathbb{R}} v_1'(x)^- dx + C \int_{\mathbb{R}} dv_2(x)^+ + D \int_{\mathbb{R}} dv_2(x)^-.$$

Then $p(v_1, v_2)$ is a non-negative, positively homogeneous subadditive function on the space X. L is a subspace of X and H is a hyperplane parallel to L. Let d denote the "distance" between H and L, i.e.,

(13)
$$d = \inf_{(v_1, v_2) \in H} p(v_1, v_2) .$$

Obviously we have for every $(\varphi_1, \varphi_2) \in K(A, B, C, D)$ and for every $(v_1, v_2) \in H$ that

(14)
$$F(\varphi_1, \varphi_2, \nu_1, \nu_2) \leq p(\nu_1, \nu_2).$$

The left-hand side in (14) is according to 4° independent of the choice of (v_1, v_2) in H. Thus we have

$$F(\varphi_1, \varphi_2, \nu_1, \nu_2) \leq d$$

for $(\varphi_1, \varphi_2) \in K(A, B, C, D)$ and $(v_1, v_2) \in H$.

From the Hahn-Banach theorem (see [6, pp. 135, 143 and 149–150]) we get that there exists a linear functional G on X, vanishing on L and taking the value d on H, such that for every (v_1, v_2) in X we have

(15)
$$-p(-\nu_1, -\nu_2) \leq G(\nu_1, \nu_2) \leq p(\nu_1, \nu_2).$$

The inequality (15) holds in particular on the closed subspace of X consisting of the pairs (v_1, v_2) where both v_1 and v_2 belong to AC (R). The dual of this space is well known and we obtain from this that there exist bounded measurable functions ψ_1 and ψ_2 such that

$$G(v_1, v_2) = \int_{\mathbb{R}} \psi_1(-x)v_1'(x) dx + \int_{\mathbb{R}} \psi_2(-x)v_2'(x) dx$$

for $v_i \in AC(R)$, i=1,2. Obviously $-B \le \psi_1 \le A$ and $-D \le \psi_2 \le C$ a.e.

Since G vanishes on L the definition of K shows that $(\psi_1, \psi_2) \in K(A, B, C, D)$. In particular we can assume ψ_2 to be continuous.

Let us now for any (v_1, v_2) in H form the functional

$$G^*(v_1, v_2) = \int_{\mathbb{R}} \psi_1(-x)v_1'(x) dx + \int_{\mathbb{R}} \psi_2(-x) dv_2(x) = F(\psi_1, \psi_2, v_1, v_2).$$

According to 1° and 2° there exists a pair (v_1, v_2) in H such that $v_i \in AC(R)$, i=1,2. For that special pair we have $G^*(v_1, v_2) = G(v_1, v_2) = d$. By 4° G^* is constant on H. Hence $G^*(v_1, v_2) = d$ for every (v_1, v_2) in H. Thus the inequality

$$F(\varphi_1, \varphi_2, v_1, v_2) \le d = F(\psi_1, \psi_2, v_1, v_2)$$

holds for every (v_1, v_2) in H and every (φ_1, φ_2) in K(A, B, C, D). Hence 5° is proved.

The proof of 6° can be made analogously to the proof of Theorem 1, statement 5° in [2] and is thus omitted.

3. Intermediate derivatives.

From now on we restrict ourselves to the case where the measures μ_0 , μ_1 and μ_2 are given explicitly by the relations

$$\hat{\mu}_1(t) = e^{-t^2} (it)^n$$

$$\hat{\mu}_2(t) = e^{-t^2}$$

(18)
$$\hat{\mu}_0(t) = e^{-t^2} (it)^m ,$$

where m and n are integers 0 < m < n.

According to [2], K then consists of all pairs of bounded functions of the form $(\varphi^{(n)}, \varphi)$ where φ is absolutely continuous together with its n-1 first derivatives and the functional $F(\varphi^{(n)}, \varphi, v_1, v_2) = \varphi^{(m)}(0)$. Hence we get by Theorem 2.1 that for every quadruple (A, B, C, D) of positive numbers there is a representation formula

$$\varphi^{(m)}(0) = \int_{\mathbb{R}} \varphi^{(n)}(-x)v_1'(x) dx + \int_{\mathbb{R}} \varphi(-x) dv_2(x)$$

such that equality can be attained in the resulting inequality

(19)
$$\varphi^{(m)}(0) \leq A \int_{\mathbb{R}} v_1'(x)^+ dx + B \int_{\mathbb{R}} v_1'(x)^- dx + C \int_{\mathbb{R}} dv_2(x)^+ + D \int_{\mathbb{R}} dv_2(x)^-$$

where $-B \le \varphi^{(n)} \le A$ and $-D \le \varphi \le C$ a.e.

In this particular case the value of (8) and the extremal functions are known. According to Hörmander [3, p. 45] the extremal functions can be found among the pairs (ψ_1, ψ_2) with $\psi_1 = \psi_2^{(n)}$ and

(20)
$$\psi_2(x) = \alpha^{-n}h_n(\alpha(x+\gamma); B, A) + \beta,$$

where

$$h_n(x; B, A) = \frac{B+A}{(n+1)!} \left(\overline{B}_{n+1} \left(x + \frac{A}{2(A+B)} \right) - \overline{B}_{n+1} \left(x - \frac{A}{2(A+B)} \right) \right).$$

Here \bar{B}_n is the periodically continued restriction to [0,1] of the Bernoulli polynomial B_n of degree n. The numbers α and β are so defined that the infimum and supremum of ψ_2 are -D and C respectively. This extremal character is not proved in [3] but as Hörmander indicates, the proof given by Bang [1] of Kolmogorov's inequality [7] can easily be applied in this more general case too.

The pair (v_1, v_2) in H giving equality in (19) is uniquely determined. More precisely we have the following theorem.

THEOREM 3.1. There exists in H a pair (v_a, v_2) such that sign $v'_1(x) = \text{sign } \psi_1(-x)$ while v_2 is a discrete measure composed of non-negative point masses at the points where $\psi_2(-x)$ has its local maxima and non-positive point masses at the points where $\psi_2(-x)$ has its local minima.

The pair (v_1, v_2) is uniquely determined by the condition that $v_1'(x)$ and $\psi_1(-x)$ changes sign at the same points and the condition that $v_2(x)$ has its support at the points where $\psi_2(-x)$ has its local extrema.

PROOF. Let us study the function

$$g_n(x) = \alpha^{-n}h_n(\alpha x; B, A) + \beta,$$

where h_n , α and β are defined by (20). Let γ be the real number, closest to zero, for which $g_n^{(m)}$ takes its maximum.

Then the functions

$$\psi_1(x) = \alpha^{-1}h_0(\alpha(x+\gamma); B, A)$$

and

$$\psi_2(x) = \alpha^{-n}h_n(\alpha(x+\gamma); B, A) + \beta$$

will constitute an extremal pair in the sense of Theorem 2.1, statement 5°. The function ψ_1 has jumps at the points $\pm b + k\alpha^{-1} - \gamma$ where $b = A(2(A+B)\alpha)^{-1}$ and $k \in \mathbb{Z}$. (Cf. [3].)

Let (v_1, v_2) be an optimal pair in the sense of Theorem 2.1,6°. Obviously it has to satisfy the conditions on the signs of v_1 and v_2 . Thus it remains to prove the uniqueness.

From our formulas (1) and (16)-(18) we get

(21)
$$\hat{v}_1(t) = (it)^{-n} ((it)^m - \hat{v}_2(t)).$$

Let us first consider the case when n-m>1. Then we have $\hat{v}_1 \in L^1(\mathbb{R})$ and we can thus suppose v_1' to be continuous. The sign variations of v_1' imply

$$v_1'(\pm b + \gamma + k\alpha^{-1}) = 0, \quad k \in \mathbf{Z}.$$

Define

$$\hat{f}_i(t) = \hat{v}_1(t)e^{it((-1)jb+\gamma)}, \quad j=1,2.$$

Then $\hat{f}_j \in L^1(\mathbb{R})$ and is thus the Fourier transform, in the L^1 -sense, of the function $v_1'(x-((-1)^jb+\gamma))$. The periodic function

$$\sum_{k=-\infty}^{\infty} \hat{f}_j(t+k2\pi\alpha), \quad j=1,2,$$

which locally belongs to L^1 has its Fourier coefficients determined by the values $v_1'((-1)^lb+\gamma+k\alpha^{-1})$ in such a way that they must vanish too. Hence we have

(22)
$$\sum_{k=-\infty}^{\infty} \hat{f}_j(t+kh) = 0 \text{ a.e., } j=1,2,$$

where $h = 2\pi\alpha$.

Define α_1 and α_2 as the real numbers closest to zero for which g_n has maximum and minimum, respectively. Then ψ_2 has extreme values at the points $\alpha_i - \gamma + k\alpha^{-1}$ for j = 1, 2 and $k \in \mathbb{Z}$.

Suppose now that v_2 has the mass a_{kj} at the point $-(\alpha_j - \gamma + k\alpha^{-1})$, j = 1, 2. Then

$$\hat{v}_{2}(t) = \sum_{k=-\infty}^{\infty} a_{k1} e^{it(\alpha_{1} - \gamma + k\alpha^{-1})} + \sum_{k=-\infty}^{\infty} a_{k2} e^{it(\alpha_{2} - \gamma + k\alpha^{-1})}.$$

For every integer q we have then

$$\hat{\mathbf{v}}_2(t+qh) = \hat{\mathbf{v}}_2(t)e^{iqh(\alpha_1-\gamma)} + A(t)e^{-iqh\gamma}(e^{iqh\alpha_2} - e^{iqh\alpha_1})$$

where

$$A(t) = \sum_{k=-\infty}^{\infty} a_{k2} e^{it(\alpha_2 - \gamma + k\alpha^{-1})}.$$

If we insert (21) and (23) into (22) for j=1,2 we get two equations from which we can eliminate A(t) and then get $\hat{v}_2(t)$ uniquely. By our formula (21) we then get \hat{v}_1 uniquely.

The case when n-m=1 must be treated differently. Suppose there are two optimal pairs (v_1, v_2) and (v_3, v_4) . Then both v_1' and v_3' are continuous on R except for jumps of size 1 at zero. Hence their difference $v_1' - v_3'$ is continuous on R. We can then apply the above method to conclude that $v_1' - v_3' = 0$. Thus we have uniqueness in this case too.

4. On the supports of the optimal measures (v_1, v_2) .

In this section we shall study the optimal pair (v_1, v_2) more closely. We begin by formulating our main result.

THEOREM 4.1. The optimal pair of measures (v_1, v_2) in the sense of Theorem 2.1.6° have compact support if and only if $n \le 3$.

PROOF. Our method to prove the uniqueness of the optimal pair (ν_1, ν_2) in section 3 gave explicit expressions for $\hat{\nu}_1$ and $\hat{\nu}_2$. Since the formulas are not very convenient in the general case we will restrict ourselves to the case when A = B, that is the case studied by Domar [2]. This restriction is not essential in what concernes the compactness of the supports. The details in [2] are not sufficient for our purpose. Let us return to our formulas in section 3 and insert A = B. We then get $b = (4\alpha)^{-1}$. If we let $p = 4\pi\alpha$ we get that ν'_1 has zeros at the points $(2k+1)\pi p^{-1} + \gamma$, $k \in \mathbb{Z}$.

Define

$$\hat{f}(t) = \hat{v}_1(t)e^{it(\pi/p+\gamma)}.$$

If n-m>1 we have

(24)
$$\sum_{k=-\infty}^{\infty} \hat{f}(t+kp) = 0.$$

The function ψ_2 has extreme values at the points $\alpha_1 + 2q\pi p^{-1} - \gamma$, $q \in \mathbb{Z}$. Hence we can write

$$\hat{v}_2(t) = \sum_{q=-\infty}^{\infty} a_q e^{it(\alpha_1 - \gamma + 2q\pi p^{-1})}.$$

For every integer k we then get

(25)
$$\hat{v}_2(t+kp) = \hat{v}_2(t)e^{ikp(\alpha_1-\gamma)}.$$

From (21), (24) and (25) we get

$$\hat{v}_2(t) = \frac{\sum_{k=-\infty}^{\infty} (-1)^k (i(t+kp))^{m-n} e^{ikpy}}{\sum_{k=-\infty}^{\infty} (-1)^k (i(t+kp))^{-n} e^{ikp\alpha_1}}.$$

If we put

$$A_s(t) = \lim_{N \to \infty} \sum_{k=-N}^{N} (-1)^k \frac{e^{ikps}}{t - kp},$$

we can write

(26)
$$\hat{v}_2(t) = \frac{(-i)^m (n-1)! A_{\gamma}(t)^{(n-m-1)}}{(n-m-1)! A_{\gamma}(t)^{(n-1)}}.$$

We have (cf. [7])

(27)
$$\gamma = \begin{cases} 0 & \text{if } n-m \text{ is even} \\ \pi/p & \text{if } n-m \text{ is odd} \end{cases}$$

and

(28)
$$\alpha_1 = \begin{cases} 0 & \text{if } n \text{ is even} \\ \pi/p & \text{if } n \text{ is odd} \end{cases}$$

Moreover we have the well known relations

(29)
$$A_0(t) = \pi/p \csc \pi t/p$$

and

$$A_{\pi/p}(t) = \pi/p \cot \pi t/p.$$

Our formulas (27)–(30) show that the right-hand side in (26) contains derivatives of cot of even order and derivatives of cosec of odd order. By induction on k we can prove the formulas

(31)
$$\csc^{(2k-1)}(x) = \cos x \frac{P_{k-1}(\sin^2 x)}{(\sin x)^{2k}}$$

and

(32)
$$\cot^{(2k)}(x) = \cos x \frac{Q_{k-1}(\sin^2 x)}{(\sin x)^{2k+1}},$$

where P_{k-1} and Q_{k-1} are polynomials of degree k-1.

It can be proved that the formulas (26)-(30) will determine the optimal measure v_2 also in the case when n-m=1.

With the aid of our formulas (26)-(32) we can now see that if n>3 there exists at least one complex zero of the denominator in the right-hand side of (26) which is not a zero of the numerator. Hence \hat{v}_2 is not an entire function and thus v_2 cannot have compact support if n>3.

If $n \le 3$ we have the following three cases.

$$n=2, m=1:$$
 $\hat{v}_2(t) = ip/\pi \sin \pi t/p$
 $n=3, m=1:$ $\hat{v}_2(t) = ip/\pi \sin \pi t/p$
 $n=3, m=2:$ $\hat{v}_2(t) = -(p/\pi)^2 \sin^2 \pi t/p$

where p is appropriately defined. Hence v_2 has compact support if and only if $n \le 3$. By (21) the same holds for v_1 .

5. Generalizations to compact intervals.

From Section 4 we get that there are pairs (v_1, v_2) in H such that v_1 and v_2 have compact support. At least this is the case if $n \le 3$.

More generally, we can choose v_2 as a discrete measure with support on the arbitrary interval I and then choose the masses so that $\hat{v}_2(t) = (it)^m + O(t^n)$ in a neighbourhood of zero. If we define v_1 by (21) we get that v_1 has its support on I. Hence to every interval I there is a pair $(v_1, v_2) \in H$ with supp $v_i \subseteq I$, i = 1, 2.

Let I be an arbitrary interval on R. Let H(I) denote the subset of H consisting of the pairs (v_1, v_2) in H with supp $v_i \subseteq I$, i = 1, 2. Moreover let -I denote the set $(x \mid -x \in I)$.

Let us once again regard our representation formula

(33)
$$\varphi^{(m)}(0) = \int_{\mathbb{R}} \varphi^{(n)}(-x) v_1'(x) dx + \int_{\mathbb{R}} \varphi(-x) dv_2(x) .$$

If we have $|\varphi^{(n)}(x)| \leq M_n$ and $|\varphi(x)| \leq M_0$ a.e. on I we get

(34)
$$|\varphi^{(m)}(0)| \leq M_n \int_{-I} |v_1'(x)| \, dx + M_0 \int_{-I} |dv_2(x)|$$

for every (v_1, v_2) in H(-I).

Our next question will then be to ask whether there can be equality in (34). The answer is affirmative which we formulate in a theorem.

THEOREM 5.1. Let I be an arbitrary interval on R with $0 \in I$ and let (M_0, M_n) be an arbitrary pair of positive numbers. Moreover let φ be a real valued function absolutely continuous together with its n-1 first derivatives on I and satisfying, $|\varphi^{(k)}(x)| \leq M_k$ on I, k=0,n. Then for 0 < m < n there is a representation formula

(35)
$$\varphi^{(m)}(0) = \int_{-1}^{1} \varphi^{(n)}(-x)v_1'(x) dx + \int_{-1}^{1} \varphi(-x) dv_2(x)$$

where v_1 and v_2 are bounded Borel measures on I with v_1 absolutely continuous, such that equality can be obtained in the resulting inequality

(36)
$$|\varphi^{(m)}(0)| \leq M_n \int_{-I} |v_1'(x)| \, dx + M_0 \int_{-I} |dv_2(x)| \, .$$

PROOF. The ideas and methods used in [2] and in our section 2 are enough also in this more general case. A detailed proof is given in [4] but is omitted in this paper.

The functions giving equality in (36) are not explicitly known. It follows from (35) and (36) that the extremal function φ and the corresponding optimal pair (v_1, v_2) have to be connected by the relation

$$\varphi^{(n)}(-x) = M_n \operatorname{sign} v_1'(x)$$

and by the condition that the support of v_2 is a part of the set

$$(x \mid |\varphi(-x)| = M_0)$$
.

Hence the extremal function has to be a polynomial spline function of degree n, where the number and the location of the knots are given by the changes of sign of the optimal measure v'_1 . See also Tihomirov [8].

Any choice of pair (v_1, v_2) in H(-I) in formula (36) gives an upper bound for intermediate derivatives. Hence to get upper bounds we have to lock for pairs (v_1, v_2) in H(-I) such that the total variations of v_1 and v_2 can be calculated. This idea and a more direct approach to a formula similar to (35) (by use of a theorem by Peano) is used in [5] to get upper bounds for intermediate derivatives on finite intervals.

Theorem 5.1 can be generalized in the direction of formula (19).

From Theorem 5.1 the following corollary immediately follows.

COROLLARY. Let I be an arbitrary interval on R and let M_0 and M_n be arbitrarily given positive numbers. Let $C_{n,m,x}(I)$ be the least possible numbers satisfying

$$|f^{(m)}(x)| \le C_{n,m,x}(I)$$

for every function f with $|f^{(k)}(x)| \leq M_k$ on I, k = 0, n.

Then for every n, m, x and I there is a function f giving equality in (37).

Let $C_{n,m}(I) = \sup_{x \in I} C_{n,m,x}(I)$. From our theorems 4.1 and 5.1 the following result follows.

THEOREM 5.2. For every n>3 and every interval $I \neq R$ we have

(38)
$$C_{n,m}(I) > C_{n,m}(R)$$
.

PROOF. Suppose on the contrary that there are integers m, n and an interval $I \neq R$ with

$$C_{n,m}(I) = C_{n,m}(R) .$$

Let φ be an extremal function corresponding to R. Then φ must be extremal with respect to I. We may suppose that $0 \in I$ and $\varphi^{(m)}(0) = C_{n,m}(I)$. According to Theorem 5.1 there is then a corresponding optimal pair (v_1, v_2) in H(-I). Hence we have

$$\varphi^{(m)}(0) = M_n \int_I |v_1'(x)| \, dx + M_0 \int_I |dv_2(x)|$$

$$= M_n \int_R |v_1'(x)| \, dx + M_0 \int_R |dv_2(x)| \, .$$

Hence the pair (v_1, v_2) is optimal corresponding to R. But, according to Theorem 3.1 this pair is uniquely determined and according to Theorem 4.1 the measures v_1 and v_2 cannot have compact support if n > 3. Since v_2 is either odd or even its support cannot be a half-line. Thus a contradiction is achieved and the theorem is proved.

REFERENCES

- T. Bang, Une inegalité de Kolmogoroff et les fonctions presqueperiodiques, Danske Vid. Selsk. Mat.-Fys. Medd. 19,4 (1941).
- Y. Domar, An extremal problem related to Kolmogoroff's inequality for bounded functions, Ark. Mat. 7 (1968), 433

 –441.
- 3. L. Hörmander, A new proof and a generalization of an inequality of Bohr, Math. Scand. 2 (1954), 44-45.
- 4. H. Kallioniemi, On inequalities between the uniform bounds of the derivatives of a complex-valued function of a real variable, Inaugural dissertation, Uppsala Univ. (Sweden), 1970.
- H. Kallioniemi, On bounds for the derivatives of a complex-valued function of a real variable on a compact interval, Math. Scand. 39 (1976), 295-314.
- L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces (International Series
 of Monographs on Pure and Applied Mathematics 46), Pergamon Press, London, 1964.
- A. N. Kolmogorov, On inequalities between upper bounds of succesive derivatives of an arbitrary function defined on an infinite interval, Amer. Math. Soc. Transl. Ser. 1, Vol. 2 (1962), 233– 243. The original appeared in Russian in 1939.
- V. M. Tihomirov, Some problems on approximation theory, Soviet Math. Dokl. 6:1 (1965), 202– 206.

TEKNISKA HÖGSKÓLAN LULEÅ SWEDEN