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ON REPRESENTATION FORMULAS FOR
INTERMEDIATE DERIVATIVES

HENRY KALLIONIEMI

1. Introduction.
In a paper of Domar [2], he studies complex-valued functions ¢ on R, n—1

times absolutely continuous and satisfying |¢p™(x)|< 4, |¢(x)|<B, x € R. For
0O<m<n, a representation formula

0] ™ (0) = L o™(=x) d\’1()€)+JR @(—=x)dv,(x) ,

is deduced, where v, and v, are bounded regular Borel measures with v,
absolutely continuous, such that equality can be obtained in the resulting
inequality

(i) le™(0) = Af IdV1|+BJ ldv,| .
R R

In this paper, we study real-valued functions ¢ on an interval I on R, finite or
infinite, and assume for a given quadruple of positive numbers (4, B, C, D) that

-B=¢"x)s4 -D=sox)=C xel.

Then we can deduce a representation formula (i) such that equality can be
obtained in the inequality

(ii)) @™ (0) = Af dvl(x)*+BI dvl(x)‘+Cf dvz(x)++DI dv,(x)” .
1 1 1 I

In fact we obtain this as a special case of a more general representation formula
where derivation is exchanged to certain operations of convolution type. This
formula is proved by methods adopted from Domar [2].

For I=R we give explicit expressions for v, and v,, and the optimal ¢, and
@,, and discuss the properties of these functions. In particular we prove that
the measures have compact support if and only if n<3.

This paper is an abbreviated version of some non-published results in [4].
The remaining results in [4] are contained in [5].
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2. A general approach.

In this section we shall give a generalization of a theorem by Domar [2]. We
are going to use methods and notations adopted from [2]. A difference is that
we are only dealing with real spaces.

We denote by M (R) the Banach space of real bounded Borel measures on R
and by AC (R) the subspace of M(R) consisting of all measures which are
absolutely continuous with respect to the Lebesgue measure.

+ The Fourier-Stieltjes transform ji of a measure p in M (R) is defined by the
relation

A() = j e " du(x)
R

for every t on the dual R. Convolution of elements in M (R) is defined in the
usual way so that it corresponds to pointwise multiplication of the Fourier—
Stieltjes transforms.

Let 1, and u, be given elements in M(R) and g, a third given element with
the property that there exist elements v, and v, in M(R) so that

1) Ho = Uy *vitp*v, .

We assume that there exist a real number « and measures o, and g, in AC (R)
such that the three relations

@ @ £ 0
€) (1) = 5, (8)6,(0)
@ Ao(®) = f1,(t)Go (1)

all hold if |t]=a.

H denotes the set of pairs of bounded Borel measures (v,,v,) which satisfy
(1). Ldenotes the set of all pairs of bounded Borel measures (v,,v,) such that
) Hy*vyi+ppav; = 0.

We ﬁnally“ form the class K of all pairs of real functions (¢, ¢,) in L*(R) such
that
6) P1*vi+ v, = 0

holds for every (vy,v,) in L with v; in AC(R), i=1,2.
We are now able to establish our first theorem which is a refinement of a
theorem in [2].
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THEOREM 2.1. 1°. If (v4,v,) belongs to H or L then v, belongs to AC (R).

2°. There exists a pair (v,,v,) in H with v, in AC (R).

3°. If (¢, 9,) € K then ¢, is_continuous after a change in a set of Lebesgue
measure 0.

4°. We form for any (vy,v,) € H and any (¢,, 9,) € K with ¢, continuous the
functional

@) F(@5,03,v1,v5) = J.R @1 (—xvy Oc)dx_i_,[k @2(—x)dv,(x) .

The value of the functional (7) does not depend on the choice of (vy,v,) in H.
5°. Let A, B, C and D be fixed positive numbers and let K(A, B, C, D) denote

the subset of all (¢,,,) € K such that —B<¢, <A and —D=¢,<C almost

everywhere. Then there exists a pair (Y,¥,) in K(A4, B,C, D) such that

F((Pl"Pz,"l’Vz) é F('/’v'/’z:"xa vZ)

Jor every (¢y,9,) in K(4,B,C,D).
6°. There exists a pair (v,,v,) in H such that

©® F(y,¥3,v1,v)) = AJ vi(x)* dx+BI Vi(x)” dx+
R R

+CJ dvz(x)++DJ dv,(x)”,
R R

where

- -—————‘vi|+v‘ and v, o= |_v‘|;v5

v; 3 ; 5 for i=1,2.

Proor. The proofs of 1°, 3° and 4° can be found in [2].

ProOF OF 2°. Let (vs,v,) be in H. Then we have by (1) that

©) flo = P3fiy +Vaflz .
Choose a measure p in AC (R) such that

(10) @) =1 for [t|Sa.
Define v, and v, by the formulas

(11) vy = Op—Oo*h+Vi*l
and

(12) V2 = Varp.
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Since u € AC (R) we have v, € AC{R). Thus it remains to prove that the pair
(v, v,) defined by (11) and (12) belongs to H.
By (9) we get
AV +fpV, = 460+ Ao — 1,6,) -
Hence we get for |t|<a by (10) and for |t|=a by (4) that
Aidy+ .9, = fo
and thus (1) is satisfied and (v,v,) belongs to H.

ProoF ofF 5°. We form the space X of all pairs (v,,v,) where v, € AC (R) and
v, € M (R). Define

p(vl’v2) = AJ‘

vix)* dx+Bj v’l(x)‘dx+CJ dvz(x)++DJ dv,(x)” .
R R R R

Then p(v,, v,) is a non-negative, positively homogeneous subadditiv;: function
on the space X. L is a subspace of X and H is a hyperplane parallel to L. Let d
denote the “distance” between H and L, i.e.,

(13) d = inf p(v,v,).
(vy,v)eH

Obviously we have for every (¢,, 9,) € K(4, B, C, D) and for every (v,,v,) € H
that

(14) F(@1,92,v1,v2) < p(vy,v2) .

The left-hand side in (14) is according to 4° independent of the choice of
(v4,v,) in H. Thus we have

F((Pl, P2, V1,V2) .é d

for (¢,,¢,) € K(4,B,C,D) and (v,v,) € H.

From the Hahn-Banach theorem (see [6, pp. 135, 143 and 149-1507) we get
that there exists a linear functional G on X, vanishing on L and taking the
value d on H, such that for every (v,,v,) in X we have

(13) =p(=vy, —v2) £ G(vy,v3) = p(vy,v3) .

The inequality (15) holds in particular on the closed subspace of X consisting
of the pairs (v,,v,) where both v, and v, belong to AC (R). The dual of this
space is well known and we obtain from this that there exist bounded
measurable functions y, and ¥, such that
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G(vy,v,) = J wn(—x)vi(x)dx+J Y2 (= x5 (x)dx
R R :

for v, e AC(R), i=1,2. Obviously —B<y,; <A and —D=Zy,=<C ae.

Since G vanishes on L the definition of K shows that (¥,¥,) € K(4, B, C, D).
In particular we can assume ¥, to be continuous.

Let us now for any (v,,v,) in H form the functional

G*(v,v,) = JR W:(‘x)vi(x)dx+JR Ya(=x)dvy(x) = F(Y1,¥3,v1,v2) -

According to 1° and 2° there exists a pair (v,,v,) in H such that v; e AC(R),
i=1,2. For that special pair we have G*(v,v,)=G(v,,v,)=d. By 4° G* is
constant on H. Hence G*(v,,v,)=d for every (v,,v,) in H. Thus the inequality

F(@y,05,v1,v3)Sd F(Y,¥3,v1,v,)

holds for every (v;,v,) in H and every (¢, ¢,) in K(4,B,C,D). Hence 5° is
proved.

The proof of 6° can be made analogously to the proof of Theorem 1,
statement 5° in [2] and is thus omitted.

3. Intermediate derivatives.

From now on we restrict ourselves to the case where the measures p,, 4, and
U, are given explicitly by the relations

(16) fa(e) = e (ity"
17 fa(t) = 7
(18) fo(t) = e~ (it)"

where m and n are integers 0 <m<n.

According to [2], K then consists of all pairs of bounded functions of the
form (o™, ) where ¢ is absolutely continuous together with its n—1 first
derivatives and the functional F(¢™,@,v;,v;)=¢"™(0). Hence we get by
Theorem 2.1 that for every quadruple (4, B, C, D) of positive numbers there is a
representation formula

o™ (0) = j ¢ (=xp1(x) dX+L @(—x)dv;(x)
R

such that equality can be attained in the resulting inequality
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19) e™(©0) < 4 J v}(x)*dx+BJ vi(x)” dx+CJ‘ dv,(x)*
R R R

+DI dv,(x)”
R -

where —B<¢™<A and —DS¢=<C ae.

In this particular case the value of (8) and the extremal functions are known.
According to Hérmander [3, p. 45] the extremal functions can be found among
the pairs (Y,,¥,) with Y, =y¢{ and

(20) Y2 (x) = a”"h,(a(x+7); B,4)+B ,

where

B+A [ A 4
h,(x;B,A) = m<3n+1(x+m)—3"+l<x—M)) ’

Here B, is the periodically continued restriction to [0,1] of the Bernoulli
polynomial B, of degree n. The numbers a and # are so defined that the
infimum and supremum of y, are —D and C respectively. This extremal
character is not proved in [3] but as Hérmander indicates, the proof given by
Bang [1] of Kolmogorov’s inequality [7] can easily be applied in this more
general case too.

The pair (v,,v,) in H giving equality in (19) is uniquely determined. More
precisely we have the following theorem.

THEoMThere exists in H a pair (v,,v;) such that signv;(x)=

sign Y, (—x) while v, is a discrete measure composed of non-negative point
masses at the points where ,(—x) has its local maxima and non-positive point
masses at the points where Y ,(—x) has its local minima.

The pair (v,,v,) is uniquely determined by the condition that v} (x) and Y, (—x)
changes sign at the same points and the condition that v,(x) has its support at the
points where y,(— x) has its local extrema.

Proor: Let us study the function

8a(x) = a”"h,(ax; B, A)+p,

where h,, « and B are defined by (20). Let y be the real number, closest to zero,
for which g™ takes its maximum.
Then the functions

¥1(x) = a"tho(x(x+7); B, A)
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and

i Y2(x) = a”"hy(a(x+7y); B, )+

will constitute an extremal pair in the sense of Theorem 2.1, statement 5°. The
function y, has jumps at the points +b+ka™' —y where b= A(2(4+ B)a) ™!
and k € Z. (Cf. [3])

Let (vy,v,) be an optimal pair in the sense of Theorem 2.1,6°. Obviously it
has to satisfy the conditions on the signs of v} and v,. Thus it remains to prove
the uniqueness.

From our formulas (1) and (16)-(18) we get
@1 () = (@)= 9,) .
Let us first consider the case when n—m> 1. Then we have #, € L!(R) and we
can thus suppose v; to be continuous. The sign variations of v} imply
vi(+b+y+ka ) =0, keZ. )
Define
Fie) = 5, ("0 j=1,2.

Then f, € L'(R) and is thus the Fourier transform, in the L'-sense, of the
function v (x — ((—1)b +7)). The periodic function

Y ft+k2me), j=1,2,
k= —o00
which locally belongs to L' has its Fourier coefficients determined by the
values v} ((—1Yb+7+ka™?) in such a way that they must vanish too. Hence
we have ‘

00
(22) Y fit+kh) =0 ae, j=1,2,
k= —o00
where h=2na.

Define o, and «, as the real numbers closest to zero for which g, has
maximum and minimum, respectively. Then ¥, has extreme values at the
points a;—y+ka ™' for j=1,2 and k € Z.

Suppose now that v, has the mass a,; at the point — (aj—y+ka"), j=12.
Then

o0 )
A i —y+ka—1 it@y, —y+ka—1)
h,00) = Y aye ™! + Y gt .
k= —0o0 k= —o00

For every integer ¢ we have then

(23) Sy(t+qh) = D, + A(p)e ™ (@it — gohe)

Math. Scand. 39 — 21
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where

00
A(t) = Z akzeit(az—y+ka—1) .
k= —o00
If we insert (21) and (23) into (22) for j=1,2 we get two equations from which
we can eliminate A(t) and then get V,(¢) uniquely. By our formula (21) we then
get ¥, uniquely.

The case when n—m=1 must be treated differently. Suppose there are two
optimal pairs (v,,v,) and (vs,v,). Then both v| and v} are continuous on R
except for jumps of size 1 at zero. Hence their difference v; — v} is continuous
on R. We can then apply the above method to conclude that v} —v3=0. Thus
we have uniqueness in this case too.

4. On the supports of the optimal measures (v,,v,).

In this section we shall study the optimal pair (v,,v,) more closely. We begin
by formulating our main result.

THEOREM 4.1. The optimal pair of measures (v,,v,) in the sense of Theorem
2.1.6° have compact support if and only if n<3.

Proor. Our method to prove the uniqueness of the optimal pair (v,v,) in
section 3 gave explicit expressions for ¥, and v,. Since the formulas are not very
convenient in the general case we will restrict ourselves to the case when A= B,
that is the case studied by Domar [2]. This restriction is not essential in
what concernes the compactness of the supports. The details in [2] are not
sufficient for our purpose. Let us return to our formulas in section 3 and insert
A=B. We then get b= (4a) L. If we let p=4na we get that v; has zeros at the
points (2k+1)mp~ ' +y, k € Z.

Define
J) = 9, ()i .

If n—m>1 we have

) S 7e+kp) = 0.

k=—o00

The function y, has extreme values at the points «, +2gnp ! —7, g € Z. Hence
we can write

00
h() = Y agtertiewth,
g=-o0
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For every integer k we then get
(25) (¢ +kp) = V,(t)e™P® 7",
From (21), (24) and (25) we get

e —o (— 1)"(i(t + kp))"'—"eihpy
T o (= DF(ilt + kp) ~"eP

Gz ® =

If we put ko

N
A () = lim — 1) ,
N-oo k=Z—N (=D t—kp

we can write

(—i)"(n—1)! A, (5o~
(n—m—1)! 4, ()"~

(26) V(1) =

We have (cf. [7])

0 if n—m is even
27 =
@ v {n:/p if n—m is odd
and
0 if n is even
28) % = {n/p if nis odd .

Moreover we have the well known relations

(29) Ao(t) = m/pcosecnt/p
and
(30) Ay,(t) = m/pcotnt/p .

Our formulas (27)-(30) show that the right-hand side in (26) contains
derivatives of cot of even order and derivatives of cosec of odd order. By
induction on k we can prove the formulas

P, _(sin?x)

(2k—1) -
(31) cosec (x) = cosx sin ™
and
Q41 (sin® x)
(2k) = —3Tr
(32) cot®®(x) = cosx (sinx)?* 1

where P,_, and Q,_, are polynomials of degree k—1.
It can be proved that the formulas (26)-(30) will determine the optimal

measure v, also in the’ case when n—m=1.
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With the aid of our formulas (26)-(32) we can now see that if n>3 there
exists at least one complex zero of the denominator in the right-hand side of
(26) which is not a zero of the numerator. Hence 7, is not an entire function
and thus v, cannot have compact support if n>3.

If n<3 we have the following three cases.

n=2, m=1: V,(t) = ip/nsinnt/p
n=3, m=1: V,(t) = ip/nsinnt/p
n=3, m=2: ¥,(t) = —(p/n)?sin®nt/p,

where p is appropriately defined. Hence v, has compact support if and only if
n<3. By (21) the same holds for v,.

5. Generalizations to compact intervals.

From Section 4 we get that there are pairs (v, v,) in H such that v, and v,
have compact support. At least this is the case if n<3.

More generally, we can choose v, as a discrete measure with support on the
arbitrary interval I and then choose the masses so that v,(t)= (it)"+O(t") in a
neighbourhood of zero. If we define v, by (21) we get that v, has its support on
I. Hence to every interval I there is a pair (v,,v,) € H with suppv,cl,i=1,2.

Let I be an arbitrary interval on R. Let H(I) denote the subset of H
consisting of the pairs (v,,v,) in H with suppv;c1, i=1,2. Moreover let —1I
denote the set (x| —x € I).

Let us once again regard our representation formula

(33 ™(0) = L.;P‘"’(*x)"’l (x) dx+L P(—x)dvy ().

If we have o™ (x)| <M, and |p(x)|SM, a.e. on I we get

(34) ™) < M, f vy (x| dx+MoJ v, (x)|
-1 -1

for every (vy,v,) in H(-1I).
Our next question will then be to ask whether there can be equality in (34).
The answer is affirmative which we formulate in a theorem.

THEOREM 5.1. Let I be an arbitrary interval on R with 0 € I and let (Mo, M,)
be an arbitrary pair of positive numbers. Moreover let ¢ be a real valued function
absolutely continuous together with its n— 1 first derivatives on I and satisfying,
le®(x)}| S M, on I, k=0,n. Then for 0<m<n there is a representation formula

(35) ™ (0) = I @™ (—x)vy (x) dx + f @ (=x)dv,(x)
1
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where v, and v, are bounded Borel measures on I with v, absolutely continuous,
such that equality can be obtained in the resulting inequality

(36) le™ ) = M,.f vy ()] dx+MoJ ldv, (x)] -
-1 1

Proor. The ideas and methods used in [2] and in our section 2 are enough
also in this more general case. A detailed proof is given in [4] but is omitted in
this paper.

The functions giving equality in (36) are not explicitly known. It follows
from (35) and (36) that the extremal function ¢ and the corresponding optimal
pair (v;,v,) have to be connected by the relation

¢"(—x) = M,signv,(x)
and by the condition that the support of v, is a part of the set
x| lo(=x)=M,) .

Hence the extremal function has to be a polynomial spline function of degree n,
where the number and the location of the knots are given by the changes of
sign of the optimal measure v;. See also Tihomirov [8].

Any choice of pair (v,,v,) in H(—1I) in formula (36) gives an upper bound for
intermediate derivatives. Hence to get upper bounds we have to look for pairs
(v4,v,) in H(—1I) such that the total variations of v; and v, can be calculated.
This idea and a more direct approach to a formula similar to (35) (by use of a
theorem by Peano) is used in [5] to get upper bounds for intermediate
derivatives on finite intervals.

Theorem 5.1 can be generalized in the direction of formula (19).

From Theorem 5.1 the following corollary immediately follows.

COROLLARY. Let I be an arbitrary interval on R and let M, and M, be
arbitrarily given positive numbers. Let C, ,, .(I) be the least possible numbers

satisfying
(37) ™) S Cpm, =)

for every function f with | f®(x)|SM, on I, k=0,n.
Then for every n,m,x and I there is a function f giving equality in (37).

Let C, ,,(I)=sup,c; C,. m x(I). From our theorems 4.1 and 5.1 the following
result follows.
THEOREM 5.2. For every n>3 and every interval I+ R we have

(38) ComD) > Cp m(R).
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Proor. Suppose on the contrary that there are integers m,n and an interval
I+R with

Cpml) = C, m(R).

Let ¢ be an extremal function corresponding to R. Then ¢ must be extremal
with respect to I. We may suppose that 0 € I and ¢™(0)=C, ,,(I). According
to Theorem 5.1 there is then a corresponding optimal pair (v,,v,) in H(—1I).
Hence we have

o™(0) = M, L vi(x) dx + M, J; ldv, (x)|

= M.,f |V'1(x)|dx+Mof ldv (X)) -
R R

Hence the pair (v,,v,) is optimal corresponding to R. But, according to
Theorem 3.1 this pair is uniquely determined and according to Theorem 4.1
the measures v, and v, cannot have compact support if n> 3. Since v, is either
odd or even its support cannot be a half-line. Thus a contradiction is achieved
and the theorem is proved.
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