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ON BOUNDS FOR
THE DERIVATIVES OF
A COMPLEX-VALUED FUNCTION
ON A COMPACT INTERVAL

HENRY KALLIONIEMI

1. Introduction.

We are here concerned with real or complex-valued functions on a compact
interval I. If f is a function of this kind we denote by ||f| the essential
supremum of f on I. If the nth derivative f* is mentioned, then we assume that
f®~Y is absolutely continuous on I and that ||f™| is finite. Let m,n be
arbitrary integers, 0<m<n, and let ¢ be arbitrary in I. Our aim is to find
bounds for |f™(&)] when bounds for the norms of f and f™, are given.

The corresponding problem for I =R was solved completely by Kolmogorov
in 1938 (see [5]), and the case where =R, was solved by Schoenberg and
Cavaretta in 1970 (see [9]). When I is finite the optimal bounds are not yet
known, but various estimates have been given. The estimates for the norm of
f™ given by H. Cartan [1] in 1940, are the best known to the author. In the
thesis [4] by the author in 1970, upper bounds for | f™(&)| are given where ¢ is
the midpoint of I and n—m is even and in the case where ¢ is an endpoint of I
and which are more precise than the bounds given by Cartan.

In this article we obtain bounds for f™(£) which include those in [4].
Moreover our results give, as special cases, refinements of corresponding
estimates by Gusev [3] and by Duffin & Schaeffer [2] for polynomials. Our
method is based on a representation formula

)4
(2) f™eE =Y af (xs)+f SO OK () dt

i=1 I
which holds for suitably chosen points x; in I, i= 1,2,.. :,p. The weights q,,
i=1,2,...,p and the kernel K are given in terms of the points x;, i=1,2,...,p.

From (a) we obtain the inequality

(®) SO S My S ark M, f} K (1) dt
i=1

———
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where My=sup|f(x)l, i=1,2,...,p,and M,=| f™|.. From (b) we get bounds
of the form

(C) |f('n)(é)| é MOan,m(é)"'Mnbn,m(é) .

The values a, (£, b, (&) are given in terms of Cebysev and Zolotarev
polynomials and are such that there can be equality in (c) for suitable M, and
M,. Our method to find suitable values of the points x;, to calculate the
weights g; and to estimate the sum and the integral in (b) is based on ideas used
in [3], [4] and [9].

Section 2.1 contains the representation formula (a) and some basic lemmas
concerning the sign of the numbers a;, i=1,2,...,p and the sign of the kernel
K. Section 2.2 contains two lemmas by Markoff and two theorems by Gusev.
Sections 2.3 and 2.4 contain more precise information of the numbers a;,
i=1,2,...,p and of the kernel K in the cases where p=n and p=n— 1. Section
3 contains our main theorems, including general estimates of the form (c)
and refinements of the theorems by Gusev. Section 4, finally, contains some
results from [4] which are now established as special cases of our theorems in
section 3.

These results in [4] were obtained by similar methods using more general
representation formulas but similar to (a). A paper on these representation
formulas is published separately in this volume.

2. Preliminaries, requisities and basic lemmas.
2.1. A representation formula.

To simplify our formulas we comsider the interval [0, 1]. This restriction is
not essential since every compact interval can be transformed to [0,1] by a
linear transformation.

Let f be n—1 times continuously differentiable in I and be such that /@
exists a.e. and is bounded on I. Here I =[0, 1]. Let £ be an arbitrary point in I
and let O<m<n.

We give as a lemma a special case of a theorem by Peano [8].

Lemma 2.1.1. Let ¢ belong to I and let x;, i=1,2,...,p be in I,
0=x;£x,=...£x,51. Let L be the linear functional defined by

14

(1) L(f) = f™©@)— Y af(x).
i=1

If the numbers a,, i=1,2,...,p are such that

@ L(P) =
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Jor every polynomial P of degree less than n, we have

)] L(f) = I SOOK(b)de
1

where

KO = Kel) = o L= 0]

and

(=03t = (x=0""Y,  x2t
x—9v1 =0 . x<t.

The notation L, means that the functional is applied to (x —t)",”! considered as a
Sfunction of x.

The kernel K in Lemma 2.1.1 can be expressed more precisely as

1 [ —— S W L

P
n=D!| (i=1=m)! ) ]

Since L is linear the condition (2) in Lemma 2.1.1 is equivalent to the system
L(x*)=0, k=0,1,2,...,n—1. That is,

@ K@) =

axt =0 k=0,1,2,...,m—1

) Kl

(k—m)!
For all x; and a;, i=1,2,...,p such that (5) is satisfied we thus obtain a
representation formula

M~ EM‘

d gm k=mm+1,...,n—1.

-
]
-

p

©) ™=y

i=1

a.f (x,-)+_f fOOK (1) dt
1

where K is given by (4). From (6) we immediately obtain
P

0 vagmzmwmjmwm
i=1 1

where M, and M, are naturally defined.

Our aim is now to find suitable values of x;, and to calculate the sum and the
integral in (7). We start with an example.
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EXAMPLE 1. n=2, m=1, p=2.
Take x; =0, x,=1 and let £ be arbitrary in I. Our system (5) now gives a, =
—1, a,=1. The kernel K is easily found. We have

Kt)y=t , t<¢
K@) =t—1, t=¢.

Then we get that
L IK@ldt = 3+ (1-97) = =D +1,

and thus
If Ol = 2My+M,((E—2)*+3),

where M, is the maximum of the absolute values of f(0) and f(1) and where
M, is the norm of f” on I.

In this example the kernel K changed sign once in I. This is a special case of
the following lemma.

LeMMA 2.1.2. Let K, be given by (4) and (5). Then K, changes sign at most
p—n+1 times in I for £ in the interior of I and at most p—n times when & is
an endpoint of I.

Proor. Let h(t) and g(t) denote the two terms in the right-hand side of (4)
that is K(t)=h(t)+g(t). Then h is n—2—m times continuously differentiable
while h"~™~1D has a discontinuity at ¢, and g is n—2 times continuously
differentiable with g~ piecewise linear.

From the definition of K, we get that

KP1) =0, r=01,2,...,n-2
and the system (5) is equivalent to
KP©O =0, r=012,...,n-2.

Suppose now that there are g points in I where K, changes sign. Let us first
consider the case where 0<¢ <1 and 1 <m<n—1. Since K, isdifferentiable in
I we get that

¢=0 at at least g—1 interior points in I and since K} is zero at the
endpoints of I we get that K has at least g+ 1 zeros in I.

Repeating the argument we get that K¢ ™™~ has at least q+n—m zeros in I,
say p zeros in [0,£] and v zeros in ¢, 1].
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By the above argument we get that the same holds for K¢ ™" and for
K{~™. Hence K¢~™ has at least g+ n—m zeros in I.
From now on we have no trouble with the point ¢ and we get that

K2 has at least g+n—2 zeros in I..

If £ is zero we get by the same argument that K{~™ has at least g+n—m
zeros in ]0, 1], but since K§' ™™ (0)=0 we get at least g+n—m+1 zeros in I and
finally that K{'~2 has at least g+n—1 zeros in I.

The case £=1 can be handled similarly and we get that K{"~? has at least
g+n—1 zeros in I.

But K{"~? is piecewise linear and continuous. Hence K¢~ has at most one
zero in every interval [x;, x;,,], i=1,2,...,p—1, and this happens only if the
numbers a;, i=1,2,...,p have alternating signs, or more precisely if and only
if the numbers

14
Z ai(xi-xk)’ k=1325"~7p—15

i=k

have alternating signs. Then K{"~? has at most p— 1 zeros in I and we get that

p—1 2= g+n=2 if ¢ is in the interior of I and

p—1=qg+n—-1 ifé=0o0rifé=1,

from which the statement in the lemma immediately follows.
The cases m=1, m=n—1 and the case where K, or some derivative thereof

vanishes on an interval can be handled similarly.
By the arguments above we also get as a corollary.

COROLLARY TO LEMMA 2.1.2. If the numbers a;, i=1,2,...,p do not have
alternating signs the number of points where K, changes sign is at most p—n

when 0<&<1, and at most p—n—1 for £=0or {=1.

When studying the sign of the numbers a;, i = 1,2,...,p more closely we shall
need some lemmas by V. A. Markov.

2.2. Requisities.
In this section we cite some lemmas and theorems needed in the future.

Lemma 2.2.1 (V. A. Markov). Let

60 = [] (x-x) (ukxpi$)
j=1
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and let
G(x)
(x—x;)’
Then if G™(2)=0, all the numbers
G"(2), G§(2),...,G™(2) and G™*V(z)

Gi(x) =

i=1,2,...,s.

have the same sign.
LemMma 2.2.2 (V. A. Markov). Let
G(x) =A[] x—a), H(x)=B]] (x-b) (4>0,B>0)
i=1 i=1

and b;<a,<b,<a,<...<b,<a,
If G™(2)=0, then

H™(z)
m > 0.

CoroLLARY 1 TO LEMMA 2.2.2 (V. A Markov). It follows immediately that the
zeros of G™ and H™ are interlaced. This is also true when the degrees of G and
H differ by unity and the zeros of G and H separate each other.

COROLLARY 2 TO LEMMA 2.2.2. Lemma 2.2.2 and Corollary 1 are still true
when there are equalities among the inequalities in Lemma 2.2.2 but at least one
of the inequalities is strict.

Since we will use notation and arguments from Gusev [3], we prefer to cite
some of the results in [3].

We say that a polynomial Q, of degree less than or equal to n is extremal at
the point ¢ for given m if |Q,(x)|<1 in I and

12l z [P

for every polynomial P, of degree less than or equal to n with |P,(x)|<1 in I.
Let T,(x)=cos (narccos x).

TueoreM 2.2.1 (Gusev). On the interval I there are n—m+1 intervals, called
Cebysev intervals,
[em, B™]  (m=1,2,...,n;i=12,...;n—m+1)

at whose points the polynomial T, is extremal. The endpoints of the intervals are
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the zeros o, . . ,af,"",,,ﬂ of D and o™ =0, and the zeros B{™,. . ., ™, of B™
and B2, .1 =

Here (p](x) (X_Tj)_an+1(x)a J=0> 1,2" - n Where Rn+1(x)=].—1?=0 (X-T;)
is the resolvent of T,(x) and 1,,i=0,1,2,...,n are its consecutive nodes, that is,
its points of maximum deviation from zero in I.

We denote by E7™ the union of the Cebysev intervals.

THEOREM 2.2.2 (Gusev). Between the Cebysev intervals there are open
intervals 1B, (", [, called Zolotarev intervals, (m=1,2,...,n—1; i=1,2,. ..
n—m) at whose points polynomials of passport [n,n,0] (denoted by Q,(x,0)) are
extremal and only these, and indeed each one at that point ¢ of each interval
where RI™(&)=0.

Here R, (x)=TT-, (x—o0) is the resolvent of Q,(x,0). (6¥)! is its distribution
and 6 is the variable leading coefficient of Q,.

We denote by E%™ the union of the Zolotarev intervals.

A polynomial Q,in I is said to be of passport {n,n,0] if it is of degree n
taking the maximum of its modulus in I at n points o;, i=1,2,...,n with
successive changes of sign.

The sequence (g))} is said to be the distribution of Q,.

For more details about polynomials of passport [n,n,0] we refer to Gusev
[3] and Voronovskaya [11].

23. p=n.
When p=n the system (5) takes the form
Y apt = 0 k=0,1,2,...,m~1
®) -
i; ax; (k m)'ék m  k=mm+1,...,n—1.

The lemmas in section 2.1 can now be formulated more precisely.

LeEmMMA 2.3.1. The system (8) has the solution

2P0y,

= , j= ..n,
4= o)

where

¢ (x) ; n (x xl)
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Moreover the numbers a;, j=1,2,...,n have alternating signs if and only if ¢
belongs to [y, B;], i=1,2,...,n—m, where a;=0 and «;, i=2,3,...,n—m are
the consecutive zeros of ™ and B,_,,=1and B, i=1,2,...,n—m—1 are the
consecutive zeros of ®™.

LeEMMA 2.3.2. Let the numbers a;, i=1,2,...,n, be the solution of the system
(8). Then the corresponding kernel K defined by (4) has at most one sign variation
inI when £ €la, B, i=1,2,...,n—m, and no sign variation when & € [a;, B;+1],
i=1,2,n..,n—m—1, or when £=0 or {=1. -

Here a; and B;, i=1,2,...,n—m are defined in Lemma 2.3.1.

Proor oF LEMma 2.3.1. The determinant of the system (8) is a Vander-
monde determinant and thus (8) has a unique solution.

Let
R,(x) = JT (x—x)
i=1.
and
1 ;
¢l(x) = (7::-x—j)R"(x), j=1,2,...,n.

Since @; is a polynomial of degree n—1 we can write
n—1
®(x) = Y bx* for some by, k=0,1,2,...,n—1.
k=0

Hence we get by (8)

n—-1 k! ) n—-1 " n-1 o
Q) = T b€ "= L b L oaxt = ¥ b Y axd
k=m . k=m i=1 k=0 i=1

n-1 n

= -21 Z xf =Y a®,(x) = a;9,(x)) .

i=1
Thus the formula

Lo

9 = a;(f) = dij(x,) j=12,...,n
is proved.

From (9) we get that the numbers a;, j=1,2,...,n have alternating signs if
and only if the values ¢§”"(¢), j=1,2,...,n have the same sign for given ¢.

Let g,,4;,. . .,4,-m be the succesive zeros of R{™ and let z; ; be the successive
zeros of ™, i=1,2,...,n—m—1; j=1,2,...,n. Repeated use of Lemma 2.2.2
and its corollary 2 gives the following relation
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0<g <z1p<Zyyo1 < 00 <211 <G <23, < ... <23y < (3
<Z3n< o < w1 < Zpem-1,0 < oo < Zyemoq < Gu-m < 1.

Let zy,;, =0 and z,_,, ,=1. Then in each interval [zi1,2i41,0), i=0,1,2,.. .,
n—m—1, there is a single zero of R{™ and each of the derivatives &{",. . ., @™
preserves its sign. Applying Lemma 2.2.1 we reach the conclusion that all the
numbers ®{"(q,),...,®™(q;) have the same sign. Thus it follows that if
¢ €[2;1,2i41,4] all the numbers @™ (&), j=1,2,...,n, have the same sign.
Denoting o;=z; ; and f;=z; ,,i=1,2,...,n—m, we get Lemma 2.3.1.

Proor oF Lemma 2.3.2. When & e Jo, B, i=1,2,...,n—m, the numbers
a;(%), j=1,2,...,n, have alternating signs and hence it follows from Lemma
2.1.2 that K, has at most one sign variation in 1.

When ¢ € 1B, ;4 4[ it follows from Lemma 2.3.1 and from the corollary
of Lemma 2.1.2 that K, has no sign variation in I.

Since we have a,(«;)=0 and q,(8;)=0, i=1,2,...,n—m we can drop the
point x, from the system (8) when ¢ =a;,i=1,2,...,n—m, and we can drop the
point x, when ¢=8,,i=1,2,...,n—m. Then it follows from Lemma 2.1.2 with
p as n—1 that K, has no sign variation in [ when {=o; or {=§;,i=1,2,.. .,
n—m. Thus Lemma 2.3.2 is proved.

24. p=n—1.
If we take p=n—1 in the system (5) we get the system

n—1
Y axt=0 k=0,1,2,...,m—1
i=1

" ot = K _sem k—mme 1

xk = m =mm+1,...,n—

& G h=m®

which is not always solvable.
If we drop the equation in (10) corresponding to k=n—1, we get a system
with the unique solution

(m)
(11) a; = %—la(%), j=12,...,n—1
where
(12) &;(x) = ! "ﬁl (x—x) = —L—Rn-l(x), j=12,...,n—-1.
(x=x;) =1 (x=x))

By the arguments used in the proof of formula (10) in section 2.3 it follows that
the equation
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"o n-— p— (n-_l)! n—m-—
,.Zl axi™! = —m—11° l

is equivalent to the equation
Rf."1’1(€) =0.

Hence we can state the following lemma.

LeEMMA 2.4.1. The system (10) has the unique solution (11) if and only if the
values x;, i=1,2,...,n—1, are so determined that R™  (£)=0, where R,_, is
defined by (12). Moreover the numbers a;,j=1,2,...,n—1 have alternating signs
and the corresponding kernel K, has constant sign in I.

The last statement follows immediately from Lemma 2.2.1 and Lemma 2.1.2.

3. Main theorems. General estimates.
3.1. p=n, x;, i=1,2,...,n, equal to the nodes of T,_,.
We are now able to establish our first theorems. This is done with the aid of
our representation formula (6) and special choices of the points x;,i=1,2,...,p.
Let ¢t;, i=0,1,2,...,n—1 be the consecutive points of maximum deviation
from zero for T,_, in I, that is,

13 = sin2—" j= Cn—1.
(13) t; = sin 30=1)’ i=0,1,2,...,n—1
Moreover let .

n—1
(14) R,(x) = [] (x—1)

i=0
and

1
15 ) = — j= .n—1.
( ) ¢j('x) (x—t_’) Rn(x)a J 03 1)29 )N 1
Let
' (&)

16 a6 = 1—=1 j=0,1,2,...,n—1
(16) 0 =

and

1 —1)! "t
(17) mm=m_m{‘"’ @—Mﬂ”—xwmmﬂw}.

(n—m—1)! P
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Let ;=0 and a;, i=2,3,...,n—m be the consecutive zeros of oy and let
Bn-m=1and B, i=1,2,...,n—m—1 be the consecutive zeros of om
With these notations we can now establish our first theorem.

Tueorem 3.1.1. For every & e[0,1] and every Sunction f satisfying
[f@N=M,, i=0,1,...n—1 and | f™(x)|< M, ae. in [0,1] we have

n—1 1
(18) If™E) £ M, .Zo la; ()l + M, L IK,(0)ldt .
Moreover we have
n—1
(19 2 e = 1T, (o)
i=0
for £ e [a,B], i=1,2,...,n—m, that is £ € E¥ '™, and
! 1
(20) J IK ()l dt = FIRL""(é)I
0 !
for £=0,¢=10r E€[B,0;y,],i=1,2,...,n—m~—1.

Proor. Our representation formula ,(6) now has the form

n-1

@y T = Y a©®f (t;)+J SOOK (D) dt

1
i=0 0
from which (18) immediately follows.
Inserting f=T,_, in formula (21) we get /™ =0 and then (19) follows from
Lemma 2.3.1.
Inserting f=R, in (21) we get f(¢)=0, i=0,1,2,...,n—1 and then (20) -
follows from Lemma 2.3.2. -

If we take f as a polynomial of degree less then n in formula (18) we get a
refinement of Theorem 2.2.1 by Gusev, analogous to a theorem by Duffin and
Schaeffer [2].

TueoREM 3.1.2. For every polynomial P, of degree =n, satisfying |P,(t)| <1,
i=0,1,...,n we have

[P @) £ T, for &€ ER™.

Here 1;,i=0,1,2,...,n are the points of maximum deviation from zero for T, in

[0,1].

Formula (18) is especially simple in the cases where {=o; or {=§,
i=1,...,n—m. For further use we write this special case as a corollary.

e o

Math. Scand. 39 — 20
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COROLLARY TO THEOREM 3.1.1. With the assumptions made in Theorem 3.1.1
we have
My
n

Q@ = Mol T2 (1 +-FIRI()

for E=a; 0or E=8,i=1,2,...,n—m.
By differentiating the relation
2223 (n=1R,(x) = x(x=1)T,_,(x)

m times, the numbers R™(¢) can be written in terms of derivatives of T,_,.
Because of the sign variation for K, when ¢ € Jo;, f;[ we have no simple
general estimates of the integral in (18). But we can at least give an example.

EXAMPLE 2. n=m—1.
If m=n—1 we have E3™=[0, 1] and with the notations from Lemma 2.3.2

we have [a,,f,]1=[0,1]. The kernel K, has one sign variation in [0, 1]. Using
the symmetry of the sum in the formula

n—1

1
K@) = E=-0%-Y m(t.‘—t)"fl

i=0

and the sign variation of Ky we can sketch the graph of K,. If n is even and
greater than two we have the situation of fig. 1.

Ar /I/ -
/
Ve ‘ ¢
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We get

1 2 _E2
L Koo s SFCZT egpy,

Since Ty=;"(§)=2%""3(n—1)!, for every ¢ we get by (18) and (19)
FODO £ M2 P (n— 1)1+ M, (¢ -4 +3)

for every function f satisfying the conditions in Theorem 3.1.1, with m=n—1.
Hence example 1 is a special case of example 2.

32 p=n,i=1,2,...,n, equal to first n nodes of T,.
T, has n+1 points of maximum deviation from zero in [0,1]. Let t,,
i=0,1, 2,...,n be the consecutive nodes of T,, that is

(22) T, = sinzg, i=0,1,2,...,n.

Let R,, K;, a;and ®;,j=0,1,2,...,n—1, be defined by the formulas (14)-(17),
corresponding to the points 7, i=0,1,2,...,n—1. Then K, has its support on
[0,7,_,] and our representation formula is of the form

n—1

(23) ™ =Y

i=0

-1
a;(O)f () + j FOOK, () dt .
0
Thus we get
THEOREM 3.2.1. For every ¢ in [0,7,.,] and every function f satisfying

If(t)£M,, i=0,1,2,...n—1 and |[f"(x)| <M, ae. on [0,1,-,] we have

»

(24) F™@) < Mo 2: a8l +M, f " Kol
Moreover we have

25) 'S 160 = Hr=mTPO T )
and i

(26) J 0 Ke(0)dt = %lk‘;"’(é)l

for £=0, ¢=1, or & € [By%41), i=1,2,...,n—m—1. ‘
Here a;,i=2,3,...,n—m are the consecutive zeros of &y and B;,i=1,2,...,

n—m—1 are the consecutive zeros of PT;.
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ProoF. Formula (24) immediately follows from (23). Formula (26) follows
from (23) by inserting f=R, and using the corollary of Lemma 2.1.2. Thus it

remains to prove (25).
If we insert f=T, in (23) we get for ¢ in [a, 8], i=1,2,...,n—m—1

@ Y 10l = | 1@ -2 1n J " K
i=0 0
and if we insert f=R, we get
28) n!Jm_lKAOdt= R™(E) .
0
Using the relation
227 14R (x) = xT'(x)
we get
(29 22" IpRM(E) = ETHD(E)+mTM ()

From (27)-(29) now (25) follows.

We will later in section 4 use Theorem 3.2.1 in the special cases {=0 and
¢=14 to get precise estimates at the endpoint and at the midpoint of an arbi-
trary compact interval.

33. p=n—-1,¢(e Ey ™
Let ¢ belong to E% '™ and let Q,_,,R,_; and the numbers o;, i=1,2,.. .,
n—1 be given according to Theorem 2.2.2. Then it follows from Lemma 2.4.1

and from Theorem 2.2.2 that we have a representation formula
' '

n—-1 1
(30) Q) = ¥ a@f )+ f JOOK O
where

e _
(31) a;(§) = m, 1,2,...,n-1
and

1 n—-1)! —ty e -
(32 K0 = (n_l),{(n_m_l)!(c—t)a D=3 a0 *}.
Herc '
P,(x) = 1 R,_;(x), i=12,...,n-1.

(x—0)
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According to Lemma 2.4.1 and Theorem 2.2.2 the numbers a;(),i=1,2,...,
n—1 have alternating signs and we get by (30) with f=Q,_, that

n-1
(33) Y la(@) = 108, (@)l .
i=1
If we take f(x)=xR,_(x) in (30) and if we use the relation R(™, (£)=0 we get

n! Jl K () dt = mR™9(9)

0

and since K, has no sign variation in [0, 1] we get

1
(34) f IK(t)dt = —IR"" (1
0

We now establish a theorem which in some sense is complementary to
Theorem 3.1.1.

THeoreM 3.3.1. Let E5 ™ Q,_, and R,_, be given according to Theorem
2.2.2. Then we have for every & in E} '™ and for every function f satisfying
If(@)ISM,, i=1,2,...,n—1 and |f™(x)| €M, ae. in [0,1]

(35) ™ = Mol@, (Ol + M3 IR"" (P

If we take f as a polynomial of degree less than n in (35) we get a refinement
of Theorem 2.2.2 analogous to Theorem 3.1.2.

THEOREM 3.3.2. For every polynomial P, of degree =n, satisfying |P,(c)|<1,
i=1,2,...,n we have

[P = 108 (E,0)l, for & € EZ™.
Here Q,(x,0) and 6, i=1,2,...,n are defined in Theorem 2.2.2.

Formula (35) is more precise than formula (18)for ¢ in E3~ '™, which easily
follows from (18) by inserting f=0Q,_,.

We might use polynomials of passport [n,n,0] and drop the largest node to
get theorems similar to those in section 3.2 but since the method is already
familiar and since we are not going to make any further conclusions we omit
these details.
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4. Estimates of intermediate derivatives at the endpoints and at the midpoints of
an arbitrary interval.

4.1. The endpoints.
If we take £=0 in the formulas (24)-(26) and (29) we get

(36) ™) < %T‘:"’(O){(n—m)Mﬁ—r—n——M}

n!22n—1 n

for every function f satisfying the conditions in Theorem 3.2.1.

Let [0, a] be an arbitrary interval and let t;,i=0,1,2,...,n—1 be defined by
(22). If we make a change of scale so that the interval [0,a] is mapped to
[0, 7,_,] we get by (36) estimates which essentially improve those by H. Cartan
[1]. We formulate these estimates in a theorem.

THEOREM 4.1. Let
T = sinzﬂ, i=0,1,2,...,n—1.
2n

For every function f on [0,a] satisfying

(o)

<M, i=0,12...,n-1

and

/G £ M, ae. on [0,d]
we have
(37) F™O) < OO

G I G

The corresponding estimates by H. Cartan are

m) ™ —m nem IS
e < ITSO){a™ ™ f ]l +a T(
where the norms are taken over [0,a]. ]
It is of no use to extend the interval [0, a] beyond the interval [0, @], where a
is the value of a giving minimum of the right-hand side in (37) that is
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M 1/n
(38) a= t,,_1<M—:—22"“n!> .

We formulate the estimates for the special case a=a as a corollary.

CoROLLARY TO THEOREM 4.1. For every function f satisfying

)
Tn-1

<M, i=0,12,...,n-1

and

If™(x)) £ M, ae. on [0,d]
we have
(39) ™ O S C,nM§""M"
where

Cpm = ITI(O)|(n1 22" )7,

The values in the right hand side of (39) are the same as the bounds found by
Matorin [7] for a half line. See also Stechkin [10].

4.2, =1 n—m even.

We know that T®(1)=0 if n—k is odd.
Using the notations from section 3.2 we get by the relation

n22" "1y (x) = T,(x)
that

(40) &ML =0 ifn—miseven.

Hence the formulas (24)-(26) hold for ¢=4%, n—m even. Thus we have
1 mM,
@41) TR ;m'"’(%n{(n—m)MwW}

for every function f satisfying the conditions in Theorem 3.2.1.
Moreover we have a,(3)=0 and hence K, has its support on [7,,7,_,] and

thus (41) is satisfied if
If@) < My, i=12,...,n—1
and

lf(")(x)l é Mn a.c. on [letu—l] .
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The interval [7,,7,_,] is symmetric around the point 4+ and hence every
interval [ —a,a] can be linearly mapped to [t,,7,_,] so that 0 is mapped to .
Then we get by (41) estimates for an arbitrary interval [ —a, a].

THEOREM 4.2.1. Let

in .
x; =cos—, i=1,2,...,n—1.
n

Then for every function f on [ —a,a] satisfying
Xi
=3)

If®(x) £ M, ae on[—aad]

<M, i=12,...n-1

and

we have when n—m is even

@ IOl s TP

2a \™" m 20\ )
{(n_m)<cosn/n) M°+n!22"“<cosn/n) M"}'

The estimates (42) essentially improve the corresponding estimates by
H. Cartan.

We compare our estimates with those by Cartan in the special case where a
is the value giving minimum of the right-hand side of (42).

Let a' be the value of a giving minimum in the right-hand side of (42), that is

n(M Ln
43 ' — lid 0 ! n—1
43) a cosn(M n!2 )

n

Then we get that the minimum of the right-hand side of (42) can be written
ComMb ="M

where

Co = z-2~|T<m>(l)|<3>m’"
nm 1o 2 n! .

Using the inequality |T™3)| < (2n)™ and the formula

nt = c,.l/;e)n
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< ()

The values c,|/n, n=3,4,... are increasing and hence we get

e m
C =) .
- < (2>

We write these results as a corollary to Theorem 4.2.

we get

CoroLLARY TO THEOREM 4.2. For every function f satisfying

<M, i=12,...,n—-1

and
If™(x) < M, ae. on[0,a],

where d' is given by (43) and x;=cosin/n,i=1,2,...,n—1, we have when n—m is
even

(@) o) < (g)mMé-"'"M:'/".

The estimates by Cartan [1] were of the form (44) with the factor (e/2)™
replaced by 2e™. The best possible bounds when the interval is the whole axis
are found by Kolmogorov [5] and are of the form (44) with the factor (e/2)"
replaced by the absolute constant m/2.
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