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ON SPECTRAL SYNTHESIS FOR CURVES IN R3?

YNGVE DOMAR

1.

A(R") and PM(R") denote the Banach spaces of Fourier transforms of
functions in L!(R") and L™ (R"), respectively. Thus PM (R") is the dual of A(R").
The elements in PM(R") are defined in distribution sense and are called
pseudomeasures. For every closed E = R", PM(E) denotes the (weakly* closed)
subspace of PM (R") consisting of all pseudomeasures with support in E, and
M(E) is the subspace of PM(E) consisting of all bounded regular Borel
measures with support in E. E is said to be of sequential spectral synthesis if
PM(E) is the sequential weak* closure of M (E).

The image of an injective C* mapping y:[a,b] — R", where k=1 and
—o00<a<b<oo, with Y non-vanishing, is called a simple C* curve in R". The
results in [3] imply that a simple C? curve in R?, with non-vanishing curvature,
is a set of sequential spectral synthesis. We shall now prove:

THEOREM. A simple C3® curve in R3, with non-vanishing torsion, is a set of
sequential spectral synthesis.

It should be pointed out that the method in [3] can be adopted to give
rather general results on an extended notion of sequential spectral synthesis
for (n—1)-dimensional smooth manifolds in R”, n=3 (see [4]), but that the
corresponding method fails in general if the codimension of the manifold is = 2
(R. Gustavsson [5] has shown this for curves in R3). Thus a new idea has been
necessary in the proof of our theorem. It is to be expected that the same
approach can be used to prove corresponding results for curves in R", n24.

2.
- B(R") denotes the Banach space of Fourier-Stieltjes transforms of elements
in M(R". Let EcR" be closed and f € C(E). We put

"f"ls(s) = inf{||F|lgy: F € BR")N C!(R"),Flg = f}.
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If the set to the right is empty, we put | f|| y=00. The novelty in the new
method, in comparison with the method in [3], consists in a refined technique
to estimate | f| 11;(5), for a special family of functions f on a family of curves E
=RZ? The main tools in the estimating are the following two elementary
lemmas.

LeMMA 1. There is a constant C such that every f e C'(I), where IR is a
compact interval of length |I|, satisfies

21 1A 1y £ CULS N+ (VTS Moo S i) -

ProoF orF LEMMA 1. Since the norm in B(R) is invariant under affine
mappings of R, we can assume I =[0, 1]. Then we can extend f to a function
F € B(R)N C'(R), periodic with period 2n, and such that

IFleg = 20 leagy 1Flee S 1 e -

Then we obtain (2.1) by estimating || F | zs), using for instance Carlson’s lemma
(Carlson [2]).

LemMA 2. Let EcR? be closed, and let (x,), n € Z, be a strictly increasing
sequence in R, satisfying

8 S (Xpur—=X)(Xp=Xp-y) ' S 671, neZ,
for some 6>0. Put
E,=EN{(xy)eR?: Xpp_2SXZXsms1} MeZ.
Then there exists a constant C°, only depending on 8, such that, for every

fe C(E),

Iflbe < C° % 1flbe, -

Proor oF Lemma 2. It is possible to define functions ¢, € C!(R), me Z,
satisfying

supp (¢m) < [me—z’x2m+ l] ’

05 @ux) =1, xeR,
(Pm(X) = 1, X € [x2m—l9x2n:] ’
0 = g(x) = 2(x2m—1_x2m—2).—1’ X € [X2m-2sX2m-1] »

(Pm+1(X) = 1—(P,,,(X), X € [x2m’ x2m+l] .
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Then

22) § onx) =1, xeR.

‘We observe that supp (¢,) is included in an interval of length less than
(Xym—X2m—-1): (14+2671), and that

"‘Pm“m(n_) =1, "(P;m"l)"’(ll) = (xlm——me—l)‘lza—l .

It follows from this, using for instance a variant of Carlson’s lemma (Beurling
[1, p. 349]), that there exists a constant C° such that

lomlawy = C°, meZ.

For every m, &, denotes the function on R? defined by @,(x,y)=0,(x),
(x,y) € R2. Then &, € B(R?) and

(23) "‘pm"za(m = "‘Pm"A(a) £C°.
Choosing  f, e‘B(RZ)ﬂ C'(R?) as extensions of f|z, we obtain
Z £, @, € BR)NC!(R?), and by (2.2)
z fm(x’y)q)m(x’y) = Z f(x9y)¢m(xs y) = f(xay)’ (x’y) € R2 .
Thus Z f,,®,, is an extension of f, and since by (2.3)

I1X fo®Pmlswy S X 1 fullswsPullsws = C° X N fullsws »

a minimization of | f,llpss yields the lemma.

In Section 4 we shall prove the theorem using the following lemma. The
proof of the lemma is given in Section 3.

LEmMMA 3. Let e>0,0<h<1,t € R. ¢, f and g are real-valued functions on R

with the following properties:
¢ is a non-negative function in P (R) with supp (¢)<[0,1] and satisfying
frpl0)do=1.

2.4) feCl(—1,1], e< f's) <e™!, se[-1,1],
and either

2.5) geC[-1,1], e< g’ <etY, se[-11],
or .

(2.6) geC[-1,1], e<|g”BG) <&t se[-11].
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Then the function G on the curve I'y: {(f(s),g(s)): s € [0, 11} with values

1

2.7) G(f(s)8(s) = K(s) = J exp {itg(s—ah)}p(0)do ,
o

satisfies

(2.8) 1Gll3ry £ Co s

Jfor some constant C,, depending on ¢ and ¢, but not depending on h, t, f and g.
<

3

Proor oF LeMMa 3. Ift=0, (2.7) takes the value 1, i.e. the left-hand member
of (2.8) is 1. Thus we can in the following disregard that case and assume that

t+0.

It is of course no restriction to assume that f and g are.defined on R, and
that the conditions (2.4) and (2.5) or (2.6) hold with [—1,1] exchanged to R.
Then we can enlarge the set I, to the set

r:{(f(s),g@): seR},

and G and K can be extended to I" and R, respectively, by the formula (2.7).
Obviously (2.8) holds if we can prove

IG5 = Co -
For every compact interval I =R, we define
ra = {(f6),80): sel}.

“We shall base the proof of Lemma 3 on three different upper estimates of
IGll3rqy- Using Lemma 2 we shall then obtain an estimate of ||G||j by means
of a suitably chosen covering of I" by curves I'(I).

In the following we shall use the letter C to denote any finite positive
constant, which may depend on ¢ and ¢, but not on h, ¢, f and g, and not on I.

1°. The first estimate is obtained by considering extensions of G on I'(I)
such that they only depend on the first variable. Since the norm in B(R?) of
such a function equals the norm in B(R) of the corresponding function of the
first variable, we have by Lemma 1 an upper estimate

C(IH =y + (S DN H =gy 1 H =) »
where Hof=K, s € R. The inequalities (2.4) imply that we obtain the estimate

3.1 1G3cwy < CUK =+ U1 IK = IK li=o)?) -
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By (2.7) and the assumptions on ¢ we have
(32) : 1Ky S 1.

Futhermore, using a change of variable, we obtain from (2.7)

1

K'(s) = h! L exp {itg(s—aoh)}¢'(0)ds, seR,
and hence
IK =gy < Ch™1 .

Thus (3.1) gives the estimate
(3.3) IGbray £ CA+ (IR

2°. The second and third estimates depend on the fact that

Gl zla(rm) = |Gy Hzla(r(l» ,
for every bounded continuous character y on R% Taking
x(x,y) = exp{—ity}, (x,y)eR?,

we can thus as well estimate the norm of extensions to B(R*)N C!(R?) of the
function on I'(I) which for the point corresponding to the parameter value s
takes the value

(B4 G(f(s).g(s) exp{—itg(s)} L(IS)

= L exp {it(g(s—oh)—g(s))}e(0)do .
By the same arguments as those ledding to (3.1) we now get
(3.5) I1Gl5ray S CULNL=w+ (I I LI Z ll=)?) -

Differentiating (3.4) we obtain

1 T
(36) L) = ith f EEZTDZED eup figs—oh - gD} p(o)do

which gives
) IL'($) < Ithl 8" lims+r-nop -
Since (3.2) and (3.4) give

3.7 L@ = 1,

we obtain from (3.5)

(3.8 IGH5way S C+ (1 Ithl 18" o r-non)?) -
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3° In the third estimate we have to assume that g’ does not vanish in I+
[—h,0]. Then, for s € I, we can integrate (3.4) partially, obtaining

_ L[ 20 hog o)
H “i‘tﬁjo <g’(s—ah)+ (g s—ah)? )“"{"(g“'“h"g“’)}d"’

which gives

1| |hg”
e
In the same way we change (3.6), obtaining
N g'(s—ah)—g’(S)_tp(a)g’(S)g"(s—oh)) ‘
L) = J 0 <¢ (o) hg'(s—ah) (g'(s—oh))?
exp {it(g(s—oh)—g(s))} do ,

(3.9 1Ll < Clehl™*

’

L2 +[-h,0))

which gives

, lg" ()| [g’(u)g”(v)|>
©-10) 1l = Cu,vef‘fF—h,01<|g’(v)|+| €y |/

(3.5) and (3.7) give
Gl 3ray S CILIEq 1+ UL =)?) -

Assuming that

£C,

LU+[-h0)

’

1
(3.11) 18"l ot 4 -n,0p "

for some constant C, we obtain thus from (3.9) and (3.10)
(3.12) Gk < C| Ith) ™1 (1+“K )T
. sy = Lo +[~h,0)) g \l=a+r-nop

ES
[+l ]
8 ||lL=a+[-h0)

This is our third estimate. We stress that we have to assume that (3.11) holds,
for some constant C.

1
gl
8

1"

We are now prepared to prove the lemma. We shall first f:onsider the case
when (2.5) holds. In this case, the method in [3] can be applied, but we prefer
to use an approach analogous to the one needed in the second case. .

By (2.5), which we assume true for s € R, g’ has a zero a. The representation

1
0

g(s) = (s—a)j g'(a+(s—at)dt, seR,



288 YNGVE DOMAR

shows that
(3.13) Cls—al < |g() = C ' s—al, seR,
for some C.
We introduce, for a number d> 0 to be fixed later, the set of points a+d2",

n € N, on R. This set satisfies the conditions of Lemma 2 with §=1. Thus, for
some absolute constant C,

IGlsn = € X IGlsray >

where
I, = [a—2d,a+2d],
I, = [a+2*""2d,a+2*"*'d], neZ,,

1_,= 2a-1, neZ, .

Thus it suffices to prove that d can be chosen so that for some C

(3.14) i IGll3ray < C-
For the term with index 0 we use the estimates 1° and 2°. (3.3) gives

(3.19) IG5y < CL+@R™YY),
and (3.8) and (2.5) give )
(3.16) IGl3ray < C(L+ (dith)?) .
Hence
@3.17) IG5 < C >
if we choose, say,

d= Max(Sh,L).

[¢h|

For the remaining intervals this choice guarantees, by (3.13), that (3.11) holds,
for some C, independent of n, for all the intervals I,, n+0. Thus we can use
(3.12). Observing that '

"
g_’ < C,
8 jlLog,+[-h0)

L
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we obtain
(3.18) IGl5ray < C(th|-d2?"~% < c27",
for n£0, and then (3.14) follows from (3.17) amd (3.18).

Next we consider the case when (2.6) holds and g’ has at least one zero on R.
Since g has a constant sign, we have exactly two zeros which may coincide.
We denote them a and b, where a<b. The formulas

0

1 1
g'(s) = (s—a)(s—b)J‘ J g"(a+ (b—a)t + (s—b)tu)t dt du
0

and

1
g'(s) = (S—a)‘lg’(8)+(s—a)j g"(a+ (s—ay)tdt

0

show that

(3.19) Cls—a)(s—b)l £ 1g'G) £ C M (s—a)(s—b)|

and

(3.20) lg”(s) £ C™(Is—al+|s—b)) .

Also in this case we introduce points on R, starting with a basic length d.
When d<b—a it is convenient to assume that

(b—a)

'2—2M ,
12

(3.21) d =

for some M e N.

In the case when d=b—a we take the set of points of the form b+ d2" or
a—d2", n € N. In the case when d<b—a we add to this set all points a+d2"
and b—d2", where n € N, n<2M +2, M defined by (3.21). In both cases we
obtain sets which fulfill the assumptions of Lemma 2 with 6 =4. Thus it suffices
to prove that, for some C,

(3.22) IZQ 1Gl5ray < C»

where Q in case d=b—a is the family of intervals [a—2d, b+ 2d], [b+22""2d,

b+22*14) [a—22"*'d,a—2?""%d], n€e Z,, in case d<b—a is the family

of intervals [b—2d,b+2d], [b+2*""2d,b+2*""'d], neZ,, [b—2"""'d,

b—22"-270], 1<n<M+1, and their images when reflecting in s=4(b+a).
When estimating, we have now to single out the interval [a—2d,b+2d] in

the first case and the intervals [b—2d, b#2d] and [a—2d,a+2d] in the second

Math. Scand. 39 — 19
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case. Exactly as before we can apply (3.3) which gives, with I as any of these
intervals,

(323) IGl3rmy = C(1+(@dh™ 1)

(cf. 3.15) and (3.8) which, using (3.20), gives

(3:24) 1Gl5ray £ C(1+ (thld(d+h+ (b—a)?)
(cf. 3.16).

Choosing d,=Max (3h,5), where 6 >0 satisfies

o(6+(b—a) = |th™1,

we can easily find a constant C such that the construction, including the
condition (3.21), can be performed for some d with

Cdy, <d < Cd,.

By (3.23) and (3.24) we find that the contribution to (3.22) of the considered
terms is then dominated by some constant C.

For the remaining intervals (3.11) is evident by (3.19). Thus (3.12) can be
applied, and using (3.19) and (3.20) we obtain for those intervals which are
situated at distance 22"~ 24 from the nearest of the points a and b

1 R\
G 1 < -1 -
" "B(I‘(I)) = C[lthl 22nd(b —a +22nd) <1 +d22n):| *

+
-(1+<d22"-d212n> ) <c2m.

All these estimates prove (3.22).

It remains to discuss the case when (2.6) holds but g’ does not vanish on R.
We assume that |g| attains its minimum for s=a, and define the real-valued
function g, such that the relation

go(s) = g'(s)—g'(a),

holds for s € R. Then g, is a function for which the previous discussion is
applicable. Following the estimating procedure for g, but inserting g instead,
we find that the obtained estimates hold as well. Hence the lemma holds in
this case, too.

4.
PRrOOF OF THE THEOREM. Let y be an injective C3 niapping from [a,b] to R>.
We put y(s)= (x(s), ¥(s), z(s)), s € [a,b] and assume that
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xX'(s) x"(s) s (s)
@4.1) y) y'(s) y'(s)| £0,
Z(s) 2"(s) 2 (s) |

s € [a,b]. We have to prove that I'={(x(s), y(s),z(s)) : s € [a,b]} is a set of
sequential spectral synthesis. '

We regard R® as an euclidean space with the xyz-coordinates as
orthonormal coordinates. Take any s, € [a, b], and introduce new orthornor-
mal coordinates &, 5, { such that the £-axis has the direction of the tangent
vector (x'(So), J'(So), 2'(,)) at the point (x(so), ¥(So), 2(So). Then the curve gets
the equation

¢ = ¢(8) = ayx(s)+a,y(s)+asz(s) +ao
4.2) n = n(s) = bix(s)+b,y(s)+bsz(s)+b,
€ =100) = eix(9)+c,y()+caz(s)+¢o

where (ay,a,,a;3), (by,b,,bs) and (cy,c,,c3) are orthogonal unit vectors. It
follows from the construction and (4.1) that n'(s;)=0 and that |'(s,)| and
" (so)l +1n"" (so)| have a positive lower bound which does not depend on the
choice of the n and { coordinate axis. Due to the assumed continuity we can
conclude the following:

There is an ¢> 0 such that for every orthonormal change of coordinates into
coordinates such that the é-axis forms an angle <e¢ with at least one of the
vectors

(X’ (S), y, (S)’ Z (S)), SE [SO —§& 59 + 8] )

the corresponding functions, defined by (4.2), satisfy

4.3) e< &) <e™t, selso—&So+e]l,
and either

(4.4) e< () <&, selso—&so+e],
or,

(4.5) e<|n(s) <&, selso—esote].

Furthermore, for every ¢, a<c<b, we can obviously find intervals [s,—¢,,
s,+e,], n=1,...,N, of [a,b] such that

N
[e,bl = U Jswoutedl
1

and such that (4.1), (4.2) and,(4.3) hold if s, and ¢ are changed to s, and ¢,
respectively.
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We have to prove that a pseudomeasure on I’ lies in the sequential weak*
closure of M(I'). Any pseudomeasure on I' can be written as the sum of a
pseudomeasure with support in I'y, ;, and a pseudomeasure with support in
Iy if a<c<d<b. Here

Iy = {(x(s),y(s),2(s)) : sel}

for every I<[a,b]. Of course it is enough to discuss a pseudomeasure with
support in some I', ,, a<c<b. By a further partitioning we find that it is
enough to study pseudomeasures with support in one of the sets I'y, ..., as
defined above. Changing affinely the parameter, if necessary, we can describe

0 _
r - F[Sn_sn,sn"'fin]

as the set of values of a C* function with values y(s)= (x(s), y(s),z(s)), s €
[—1,1], where (4.1) holds for s € [ —1, 1]. Then, for some ¢>0, whenever new
coordinates (&,7,{) are introduced by an orthonormal transformation, such
that the &-axis forms an angle <e¢ with at least some of the vectors
(x'(s),y'(s),Z'(s)), s e [—1,1], then the corresponding functions (4.2) satisfy
(4.3) and either (4.4) or (4.5). We have reduced the problem to prove sequential
spectral synthesis for a psedomeasure y, supported by I'y 4.

We refer to [3] and [4, Theorem 2.9] for the details of the following
discussion. The paper [2] concerns just R?, but many of the arguments hold in
any R", n=2.

4 can be considered as a bounded linear functional on C!(R3), whose value
when applied to a function F does only depend on the restriction of F to I'ly 4.
Given ¢ and h as in Lemma 3, we define on I'° a measure u, with a smooth
density function with respect to the parameter s. For the parameter value s, the
density function is defined as (H,,u), where H is any function in C'(R%),
such that

So—2

Hso(x(s),y(s))=%<p( ; ) se[0.1].

We shall prove that u, — u weakly*, as h — +0. The only difficult part is to
prove that there exists a constant C such that for every bounded continuous
character y on R® and independently of h, the function on I'fy ;; with value

J 1(x(s—ah),y(s—oh),z(s— ch))p(0)da ,
R

at (x(s), y(s),z(s)), s € [0,1], can be extended to a function in B(R*)NC!(R?)
with its norm in B(R®) bounded above by C.
To prove this, let us first consider a character y which is constant in a plane
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which forms an angle <e¢ with some tangent of I'°. Then we change
coordinates orthonormally to (&,#,{), taking the new ¢ and { coordinate axis
parallell to the plane with the £-axis forming an angle <e¢ with some tangent
to I'°. Due to the properties (4.3), (4.4), (4.5) of the corresponding
representation (4.2) it is natural to restrict to extensions which are independent
of {, and use Lemma 3 which gives immediately the desired uniform bound.

It remains to discuss the case when the angle between the tangents of I'° and
the planes where x is constant are all >¢ Then we introduce a new
orthonormal system (&, #, (), with the n-axis normal to these planes, Then, for
some C >0, independent of y, n € C3[—1,1] and

(4.6) C<lfGs) <C' sel[-1,1]
4.7) ’ ")) < C7Y, sel[-1,1].

The function to be extended takes the value
J exp {itn(s—oh)} ¢ (o) do
R

at (£(s),n(s),{(s)), s € [0,1]. As in the deduction of the estimates 2° and 3° in
the proof of Lemma 3 we multiply by the conjugate of x, and are left with the
problem of estimating || F |, ), Where F is defined on I fo.17 by

1
48)  F(l(s)n(s),((s) = L(s) = J exp {it(n(s—oh)—n(s)}e(o)do,
0

if y takes the values exp (itn) at (£,n,(). We consider extensions of F which do
only depend on the variable 7. Due to (4.6) and Lemma 1, it suffices to find a
constant C, such that

(4.8) IL | g0,y + UL xgo 1L N S €
A partial integration of (4.8) (cf. (3.9)) shows by (4.6) and (4.7) that

L« £ —,
” IIL 1] = Ithl

for some constant C, and obviously
L)ooy £ 1
Differentiation of (4.8) (cf. (3.6)) shows by (4.6) and (4.7) that
| IL o S Clehl,

for some constant C. From these relations we obtain (4.8), and the theorem is
proved.
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