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ADDENDUM TO:
A FOLIATION OF TEICHMULLER SPACE
BY TWIST INVARIANT DISKS

ALBERT MARDEN and HOWARD MASUR*

The purpose of this note is to fill a lacuna in our development of the foliation
[2] and, at the same time, to exhibit some additional structure of the
Teichmiiller space T, with respect to the boundary space 0,T,. We will show
(Theorem 3.1) that T, is a trivial principal fibre bundle with base space 9,T;
and fibre D={z : |z| <1} which will also be interpreted as a nonabelian group.
We will rely extensively on the results and notation of [2].

1. The stabilizer .of the boundary space.

L.1. Let (X,g) € 8,T,. The surface X has one or two components and two
punctures on X are distinguished, these resulting from the pinching of y.
Associated with these two punctures is a uniquely determined (up to positive
multiple) degenerate differential J.(X)dg? on X which can be used to represent
X as two once punctured disks

D(1) = {0<[{|<1} and D) = {I<||<oo}

with certain identifications involving the unit circle. From this representation
of X a Teichmiiller disk D[J] can be constructed in T, uniquely determined by
(X, g), which is “tangent” to 0, T, at (X, g). We will recall further details of this
construction in section 1.3 below.

1.2. There is a subgroup Stabd,T, of the Teichmiiller modular group of T,
that fixes the boundary space 0, T,. Let Fix 0, T, denote the normal subgroup of
Stab d,T, that fixes 0,T, pointwise. The infinite cyclic group {T[y]} generated
by the Dehn twist T[y] about y is a normal subgroup of finite index in Fix 0,T,.
In only a few situations does Fix 0,T; differ from {T[y]}. One such example is
the case that one of the components of X is a once punctured torus. For details
concerning these matters we refer to [1].
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Given (X, g) € 0,T, let I'* denote the subgroup of Stab 4, T, that fixes (X, g).
Each t* e I'* corresponds to an element m(t*) of the mapping class group of
So» (So,id.) here taken as the origin of T,. The element m(c*) induces an
automorphism (modulo inner automorphisms) of x,(X) which in turn
uniquely determines m(t*) up to Dehn twists about y<=§,. In particular an
induced automorphism of =#,(X) is inner if and only if m(z*) is a Dehn twist
about y. That t* keeps (X, g) fixed means that the action of m(t*) on =, (X) is
induced by a conformal automorphism of X. Thus each t* € I'* determines (i)
a conformal automorphism 7 of X which differs from the identity if and only if
©* ¢ {T[y]}, and (i) an automorphism 7 of the boundary space 0,T, which
differs from the identity if and only if t* ¢ Fix0,T,.

Because of the uniqueness of J, the action of 7 on X induces a conformal
automorphism of the pair (D(1), D(1)). Either t produces a rotation of each
factor or it first interchanges and then rotates the factors.

The action of I'* on the boundary space 0,T, generates a finite group I
isomorphic to I'*/Fix 0,T,.

Let I'} denote the (finite) subgroup of I'* that keeps D[J] pointwise fixed.

1.3. LemMmA 1.1. The subgroup I'* of Stabd,T, preserves D[J] and its
restriction there generates an infinite cyclic group isomorphic to I'*/T"§. Its pull-
back to D generates a cyclic group of parabolic transformations with fixed point
z=1.

Proor. Represent the unit disk D as the right half plane {w : Rew> —1} by
means of w=2z/(1 —z). For each w=u+iv the point of D[J] corresponding to
w or z is obtained as follows (see [2, § 5.3]). The image of the annulus

{(R'"™)~¥<|l|<1} = D)
under the map
H,: {— e°R™“, ¢ = vlogR
is glued to the outer contour of the annulus
{1<l<(R'**} < D(Y
without further rotation to obtain the annulus
4, = {1<[f/<R**%} .

Thus via J,(X), for each w, a specific presentation of =, (X) determines a closed
Riemann surface together with a presentation of its fundamental group which
is uniquely determined up to a power of a Dehn twist about the loop
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corresponding to the loop in A, separating 0A4,. The twist is effected through
the construction by the parabolic transformation w — w+ 2mi/log R.

Given an element of I'* assume first the conformal automorphism t of X
that it determines fixes each distinguished puncture. (The group of such 7 is
either finite cyclic or a direct product of two such, depending upon whether X
has one component or two.) Denote by ¥,¥’, —a< ¥, ¥’ <m, the angles of
rotation determined by 7 acting in D(1), D(1) respectively (in each case taken
about the origin {=0). Since 7 has finite order, these angles are rational
multiples of 2#. If T+id., it determines a new presentation of 7, (X). The effect
on the resulting closed surface of first applying t and then the construction for
given w is the same as first performing the construction for w and then twisting
A, by the angle ¥ — ¥'. Thus 7 determines an automorphism of D{J] which in
view of its particular action on the fundamental group of the surfaces is the
restriction of an element of I'*. Because every element t* € I'* which
determines 7 corresponds to the same element of the mapping class group of S,
up to Dehn twists about y, every such t* preserves D[J]. The pull-back to
{Rew> —1} of such a t* is given by a translation

w — w+2nim/nlog R + 2nik/log R

where n is the order of t and ¥ — ¥ =2mm n.

Now suppose 7 interchanges the two distinguished punctures of X so that t
interchanges D(1) and D(1) followed by rotations of angles ¥, ¥'. The effect in
A, is a conformal automorphism { +— R!**/{ followed by a twist of angle
¥ — ¥ It is only the twist that has an effect on the points of D[J].

We conclude that the pull-back to {Rew> —1} of the restriction of I'* to
D[J] is the group generated by a parabolic transformation

w = w+2mi nlogR

where 2z/n is the smallest positive value of ¥ —¥' coming from the
automorphisms t of X determined by elements of I'*.

ReMARK. We have shown that the elements of Fix d,T, preserve every disk
D[J] arising from 0,T,.

1.4. Note that if ¥'=¥ (mod 2r) there is an extension t* € I'* of t which
keeps D[J] pointwise fixed. Such will be the case if, for example, © has order
two in each component of X.’

For instance consider the case that g=2 and that y is a dividing cycle. Then
X has two components, each a once-punctured torus. Let t;, i=1,2, be the
conformal automorphism of X that keeps one of the components of X
pointwise fixed, and on the other is the involution that keeps the puncture
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fixed. Each ; has order two and so does o =1,t,. The surfaces corresponding
to each point on J,T, have such conformal automorphisms.

Lemma 1.1 shows that corresponding to each 7; is an element t* € Fix9,T,
which fixes every disk D[J] and satisfies (1*)?= T[y]. On the other hand ¢ has
no such property. This is due to the fact that what should be an extension of ¢
to T, (from the point of view of its action on the fundamental group) is actually
the hyperelliptic involution which is possessed by all surfaces of genus 2. This
does not act effectively on T,

In what follows we will use the notation I'*/I'¥ to mdlcate the effective
action of I'* on D[J].

2. Local cross sections.

2.1. Given (X,g) € 0,T, apply the construction of section 1.3 at the point
w=0. Especially because of the action on X determined by I'* there is certain
ambiguity in determining a corresponding point of D[J]. What is
unambiguously determined by (X, g) is the origin-orbit (I'*/I'§) (0*) where 0*
denotes a specific point in D[J]< T, corresponding to w=0.

.2.2. Let U be a neighborhood of 0* in T, so smalt that (i) A(U)NU = for
all elements A of Stabd, T, with A ¢ I'§. We may also assume (ii) that A(U)
=Ufor all A eT}¢.

Index the components of {I'*(U)} as U,U_,U,,...,U_,, U,,... where U,
has “center” 4,(0*) and A, is the element of I'*/I'¥ which when pulled back to
{Rew> —1} is w > w+2nki/nlogR, n being the order of the finite cyclic
group (I'*/I$)/{TLy1}.

2.3. Now choose a neighborhood V of (X,g) in 0,T, so small that (i)
o(V)N V= for the restriction ¢ to 9, T, of any element of Stabd, T, not in I".
We may also assume (ii) that o(V)=V for all o €I To each (,h) eV
corresponds a Teichmiiller disk D, “tangent” at (Y,h): The subgroup of
Stabd,T, which preserves D, is a subgroup of I'* which is different from
Fix 0, T, only if (Y, h) is fixed under a non-trivial element of I. In any case (Y, h)
uniquely determines an origin-orbit in D,. We require (iii) that V be so small
that the origin-orbit of (Y, h) lies in U U, for all (Y,h) € V.

In each U, there is at most one point of the origin-orbit of a point in V.

2.4. We want to ensure that every origin-orbit has exactly one point in U. If
this is not the case for a point (Y, h) of ¥ we must modify the construction of
the origin-orbit for this point. This will be done by performing a shift as
follows.
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We know that a point of the origin-orbit of (Y, h) lies in U, for some 0<k <n.

Recall that a point of the origin-orbit of (Y, h) is determined by attaching
{R™*<|{|<1} in D(1) under the map Hy: { — R{ to {1<|{|<R*}in D(1) and
the origin-orbit is obtained by letting the appropriate subgroup of I'* act.

" Form instead a new origin-orbit as follows. Attach {R™*<|{|<1} to {1l <|{|
< R*} but under the map { — ¢*R{ where ¥ = —2nk/n. Take the orbit of this
new point in D, under the same subgroup of I'*.

If applied to (X, g) the new origin-orbit would be the same as the old, but as
applied to (Y, h) we obtain the required shift.

2.5. With this shift carried out wherever necessary in V define the function
%: Vi U by setting €((Y, h)) equal to that point in the origin-orbit of (Y, h)
that lies in U.

LEMMA 2.1. € is continuous in terms of the Teichmiiller metrics on 0, T, and T,

Proor. Assume (Y, h,) — (Y,h)in V. We may assume that for some 0<k<n,
a point of the origin-orbit for (Y, h,,) lies in U, for all m. By continuity of J_ on
0,T,, a point of the origin-orbit of (Y, k) must also lie in U, and be the limit of
these other points. But now the shift simultaneously moves all these points

from U, up to U.

2.6. As in [2, § 5.3] it follows easily from Lemma 2.1 that there is a natural
homeomorphism of ¥ x D onto the neighborhood of 0* in T, consisting of the
union of all those Teichmiiller disks D[JJ which are “tangent” to a point of V.

2.7. Consider the situation now that cross sections %,,4, have been
constructed as above for neighborhoods V;, ¥, in 0,T, with VNV, + .
I

LeEMMA 2.2. For each point P=(Y,h) € V; NV, there exists a biholomorphic
automorphism Ap of the Teichmiiller disk corresponding to P which varies
continuously with P and satisfies

€,(P) = Apo%,(P).

The pull-back to {Rew> —1} of A, is a parabolic transformation w > w
+a(P)2ni where a(P) € R depends continuously on P.

Proor. Given a component of ¥; N ¥, and a point P in it our construction of
€, and €, shows that €,(P) and €,(P) are related by such an A,. That 4,
depends continuously on P follows from the fact that ¢, and €, do.
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3. Construction of the principal bundle.

3.1. Itis convenient to represent the open unit disc D as the right half plane
{Rew> —1} by means of the transformation w=2z/(1 —z) which sends z=1 to
w= +00. Via this transformation we will interpret D as a topological group as
follows.

For w; =u; +iv,, w,=u, +iv, in this half plane define

Wi Wy = Uy Uy +uguy +i(v, v, +ug0,) .

With this operation, D is a non-abelian group with w=0 serving as the identity
element and the inverse w™!= —w/(1 +u).

This group operation arises from the formula for composition of maps
f1@) = zlzI™, fo(2) = zlz|™2
yielding
faofi(2) = z|z["™2 .

The numbers w with Rew=0 form an abelian subgroup G, isomorphic to
the additive group of real numbers.

The translation w+— w+ia, a € R, appears in G as left multiplication
W ia-w.

3.2. TueoreM 3.1. T, is a principal G=D bundle over 0,T, with projection
determined by the decomposition of T, by Teichmiiller disks “tangent” to 0,T,. It
is equivalent to the principal product G-bundle 0,T, x D.

Proor. The group G=D acts on T, as a group of homeomorphisms
preserving the Teichmiiller disk corresponding to each point of 0,T,. This
action is as follows. To each point (S, f) € T, corresponds a Jenkins differential
¢ on S determined by f(y). Let z € D. Define the action

z:(5,f) = (fz(s)afz°f)

where f, is the extremal Teichmiiller map of S with complex dilation —z@/|¢p|.
G acts freely on T,. Together with Lemmas 2.1 and 2.2 this proves the first
statement of the Theorem.
Note that T, is in fact a fibre bundle- with respect to the subgroup G,.
The second statement follows either from the fact that 0, T, is contractible [3,
Corollary 11.6] or from the fact that G is contractible [3, Corollary 12.3].

3.3. A consequence [3, Theorem 12.2] is that any cross section into T,
defined on a closed subset of d, T, can be extended to a global cross-section. In
particular, the locally defined section % in section 2.5 can be so extended. This
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is what was needed in [2] and completes the proof of that Theorem. The proof
given there is incomplete because of our failure to take account of the full
group I'*; only {T[y]} was considered.

The argument presented above works just as well for the more general
Teichmiiller space T(g,n). As a consequence, T, can be parameterized as
described in [2, § 5.4].
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