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INTEGRALITY RELATIONS ON SMOOTH MANIFOLDS

EMERY THOMAS*

1. Introduction

Hirzebruch, in his book [11], introduced the important notion of a
multiplicative sequence (=m-sequence). This is a function K that assigns to
each vector bundle ¢ over a complex X a class

K@) = {K;(Q} e H**(X; 4) = [] H'(X; 4),
i=0
where A is some fixed coéfficient ring with unit. There are two possibilities: (i) &
is a real oriented stable vector bundle, in which case K;(£) € H*(X; A); or (ii)
¢ is a complex stable vector bundle, with K;(¢) e H 2J(X; A). In the first case we
call X real, and in the second case, complex. The m-sequence K satisfies three
axioms.

(1.1) Ko(§) = 1e HY(X; A).
(L.2) K(E®n) = K(&): K(n), for bundles ¢ and n over X .
(1.3) If f: X' - X, then K(f*&) = f*K () e H**(X'; A) .

We call A4 the coefficient ring for K. In most of our applications, 4=Q, the
rational numbers.

Suppose that M is a smooth, closed manifold in the domain of K — i.e., M is
oriented, if K is real, or M has a stable almost-complex structure, if K is
complex. We then set K(M)=K(t,,), where 7,, denotes the tangent bundle of
M. If [M] denotes the homology orientation class for M, we set

KIM] = {K(M)}[M] € 4.

We now can give the main definition of this paper. Suppose that Sc A is a
subring, that Y is a fixed space, and that K is an m-sequence. We define a
subgroup of H**(Y; A4), S(Y, K), as follows:
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(1.4) S(Y,K)=all classes 6. € H**(Y; A) such that for all smooth manifolds
M and maps’f/: M — Y, ’

{f*0-K(M)}[M]eS < 4.

Of course, in (1.4), we only allow manifolds in the domain of K. (In an
appendix, section 10, we consider the extension of tius definition to PL and
Top manifolds.)

We illustrate the definition with two examples — in each case we have
A=Q and S=2Z, the integers.

ExamrLE 1. Take K to be the Todd sequence, td [11]. This is a complex m-
sequence such that for all stably almost-complex manifolds M, td[M] € Z; see
[12] and [17]. By the Riemann—Roch Theorem (as extended by Atiyah—Singer
[11]), given any stable complex vector bundle w on M,

{cho-td (M)}[M] e Z,

where ch o denotes the Chern character of w. Now we may regard w as a map
from M into BU, the classifying space for the stable unitary group, and so we
have

ch e Z(BU,td),
regarding ch as an element of H**(BU; Q).

ExaMmpLE 2. Let K be the m-sequence L of Hirzebruch [11]. Thus if M is an
oriented manifold, by the Hirzebruch signature theorem [11],

signatureM =L[M]eZ.

The following result has recently been proved, [13], [22]; let r and s be
integers with 0<r<s. Then, for any oriented manifold M and class
ue H*(M; Z),
{exp (s—2r)usechsu-L (M)}[M] e Z .
Since u can be regarded as a map from M into the Ei]enberg—MacLan.c space
K (Z,2), we have:
) exp (s—2r)tsechst € Z(K (Z,2),L),

where we set H**(K (Z,2); Q)=QI[[t]], degree t=2.

Example 2 suggests that we consider Z(K (Z,2n), K), n>1 We compute
these groups for m-sequences that take integral values on manifolds — see

(2.7). In fact, Z(K (Z,2),K) is the ring of formal power series with integer
coefficients, generated by a certain power series determined by K, see (2.2).



INTEGRALITY RELATIONS ON SMOOTH MANIFOLDS 197

To state our result for K (Z,2n), with n greater than one, we set
(1.6) S(Y,K) = S(L,K) N H**(Y; 4),

~ \
where H**(Y; A) denotes the reduced cohomology of Y. In marked contrast
with the case n=1 we have (see'section 7):

(L7) For n=22,
Z(K(Z,2n,L) = 0, Z(K(Z,2n),td) = 0.

Our main emphasis in the paper is to compute S(Y,K) for Y either a
classifying space (e.g., BSO () or BU (n)) or the Thom complex of the universal
bundle over a classifying space (e.g., MSO (n), MU (n)). In the first case a map
M — Y represents a vector bundle over M and so S(Y, K) gives information
about characteristic classes of bundles relative to the m-sequence K. If Y is a
Thom complex a map M — Y gives rise to a submanifold of M (with a certain
type of normal bundle) and so S(Y, K) relates the normal characteristic classes
of this submanifold to K. In sections 3--6 we compute S(BG, K) and S(MG, K)
for various Lie groups G and m-sequences K. The paper concludes with four
appendices: section 8, power series; section 9, the f\-sequence; section 10, PL
and Top manifolds; section 11, bordism.

We conclude this section by noting three simple properties of S(Y, K).

(1.8) THEOREM. (i) S(Y,K) is an S-submodule of H**(Y; A).
(i) f*S(Y,K)=S(Y',K) given any map - Y' — Y.
(ii)) S'(Y,K)=S(Y,K), given any subring S’ of S.

These follow at once from (1.4).

ReEMARk (added March 29, 1976): I am indebted to P. Gilmer for pointing
out to me that some of the material in this paper overlaps with work of P.
Conner, described in a brief research announcement some time ago (Bull.
Amer. Math. Soc. 69 (1963), 276-279). In particular, definition (1.4) is given
there; also Theorem (2.6), Corollary (4.4) and Theorem (11.1) are stated there
without proof.

2. Complex projective space.

Let K be a fixed m-sequence with coefficient domain A. One of our goals is
to compute S(B G, K), where S = 4 and where B G denotes the classifying space
for a Lie Group G. A general principle in dealing with Lie groups is: restrict to
the maximal torus. Thus in this section we compute S(B T, K), where T is an
arbitrary torus group.
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Hirzebruch showed that every m-sequence K (real or complex) is completely
determined by a power series CX € A[[¢]]. Namely,

21 C(0) = K(w) € H**(Py; 4) = A[[].

Here P, denotes the infinite complex projective space and w is the canonical
complex line bundle (by restriction  is the normal bundle of P,in P, ;,n2=1).
Note that if K is real, then C* is a series in even powers of t. Following
Hirzebruch we call C¥ the characteristic power series for K.

We define

t
C* (1)

we call R¥ the reciprocal series for K. If K is real, R¥ is a series in odd powers
of t.

22) RE(f) =

e A[[t]];

(2.3) Exampies. (i) If K=L, then

ct = tar:ht, R' = tanht (=T).

(i) If K=td,
td t td -t
= — R = - = .
C 1=y l-e (=E)
We now restrict attention to an important type of m-sequence. Let S< A4 be
a subring. We say that K is S-integral if
(24) K[M] € S, for every M in the domain of K .

(Note that L and td are Z-integral. Moreover, since the compler and oriented
cobordism rings (mod torsion) are integral polynomial rings [20], there is an
infinite number of distinct Z-integral m-sequences.)

To state our main result, let P, denote complex projective d-space, d=1.
Also, given indeterminates t,,...,t, set

(2.5) R; = R*(t) e Q[[ty,. . .,tJ], 1ZiZn,

where RX is the reciprocal series for K.

(2.6) THEOREM. Let K be an S-integral multiplicative sequence. Then, given
positive integers d,,. . .;d,,

S(Pdl X .o XPdn’K) = S[[Rl,. . .,Rn]]/(til,. . .,t:"), e,-=d‘+1 .
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We use here the fact that

H**(Py x ... xP,; A) = A[[ty,...,t,]1/(5,. . ., &) .
Let T(n) denote the n-dimensional torus group. Then BT(n)=P, X ...
x P, (n factors). Thus, passing to the limit in (2.6) we obtain

(2.7) CoroLLARY. Let K be an S-integral m-sequence. Then, for n=1,

S(BT(n),K) = S[[Ry,....,R,1] < A[[ty,....t,]] .

We develop some preliminary material before proving (2.6). Let M be an
oriented manifold and N an oriented codimension 2 submanifold, with
embedding j: N <M. Suppose that N is dual to u € H*(M; Z). We prove

(2.8) LEMMA. Let 0 € H**(M; A). Then,

{j*0-K(N)}[NT = {6-R(u)- K(M)}[M],
where R is the reciprocal series for K.

To see this, let v denote the normal bundle to N in M. Then v is a complex
line bundle and so v=j*¢, where ¢ is the complex line bundle over M with first
Chern class u. Since ty®v=j*1,, we have, by (1.2), (2.1), and (2.2),

K(N) = j*(K(M)-K(©)) = (K(M) —9‘—’)

Let j,: H**(N; A) » H**(M; A) denote the Gysin homomorphism (of degree
+2) defined by j. Thus (see [9], [11]),

{*0K(N)}[N] = j, {j*0-K(N)}[M] = j*{ <0 K(M)- R(u))}[M]

{(0 K(M): “) }[M]= (6-R(w)-K(M)[M],
as claimed.

Proor oF THEOREM (2.6). We first show
(l) S[[RD . "Rn]]/(til’- . .,tin) < S(P:h X ... den’K)'

Note that since K is S-integral, 1 € S(Py, x ... x P4, K). Now let 6 be any
element of S[[R,,...,R,]1/(t5,. . ., t&) such that 6 € S(Py, % ... x Py, K). We
show that

0-R; € S(Py x...xP,,K), forl=sisn.
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This will prove (i).
Let M be an oriented manifold with u,,...,u, € H*(M; Z). We are to show
that
{6(uy,. . .,u) Ru) - KM)}[M]eS,

for 1<i<n. Regard u; as a map M — P, and make u; transverse regular. to
P;_,cP,. Set N;=u;'(P,,_,); then N, is dual to u;. Let j: N;= M denote the
inclusion. By (2.8),

{i*0(uy,. . .,u) K(N)}NJ = {6(uy,...,u,) R(u) K(M)}-[M] .
But by hypothesis, 8 € S(P;, x ... x P, K) and so
{j*6(uy,. . .,u) K(N)}INJ €S,
which completes the proof of (i).
To complete the proof of Theorem (2.6), we prove
(i) S(Py, x...xPy,K)cS[[Ry,...,RI)/(t],...,tm).

We adopt the following notation: given variables x,,. . ., X, in any ring and
given an ordered set of n non-negative integers I=(iy,...,i,), we set x(I)
=xi...xh

Since the series R; begins with t; we have (see section 8),

A[[Ry,. . ., RIV/ (D, . ., 130 & ALlty,. - -, 1,01/ (5. 800)

Thus, given any element 6 € S(P; x ... x P,,K), we may write -
0 =3 aDR(),
1

where each a(l) € A. To prove (ii) we need simply show that in fact each
coefficient a(l) lies in S = A. We do this by an inductive argument on the degree
of I, where by definition, degree I =i, + ... +1i,.

Let I4=(0,0,. . .,0). We see that a(I,) € S by mapping a point into Py X ...
x P,. Suppose inductively we have proved that for some integer >0, all
coefficients a(I) € S, when degree I <q. Let 8 =Y. a(I')R(I'), where the sum is
over all I' with degl’<q. Then, a(I')e S and so, by (i) and (1.8), ' €
S(Py, x ... x Py, K). Consequently,

0 =60—0 €SP, x...xP,;,K);

moreover, 0”=Z,ua(1")R(I”), ‘where degl’=gq. Let J=(j,...,J,) be a
sequence with degJ=q. We show that a(J)eS, which will complete the
inductive step.
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We may assume j;<d;, 1<i<n, for otherwise R(J)=RJt ... Ri»=0. Let I
Pyx...xP;,cPyx... xP, denote the inclusion, and let v; € H*(P;; Z)
denote the canonical generator. Then,

{I*0"-K(Pj,x ... xP)}[Pjx...xP;]
= {aw ... v+ ) (4 )P X .. x[P]
= a(J),
since {vji}[P;]=1. But by hypothesis on 6",
{I*0" - K(Pj,x ... xP)}[P;;x...xP;] €S,

and so a(J) € S, which completes the inductive step and hence the proof of
Theorem (2.6). -

ReMARK. I am indebted to E. Rees for helpful comments which simplified
the proof of (ii) above.

3. Restriction to the maximal torus.

In this section we study S(BG,K) where G is a compact connected Lie
group. Our key definition is this: given G and S < A, we say that an m-sequence
K is (G, S)-regular if there is a maximal torus T of G such that

3.1) j*S(BG,K) = j*H**(BG; A) N.S(BT,K),

where j: BT — B G is induced by T<G.

Recall [4] that when A is a field of characteristic zero, j* is injective and
H**(BG; A) is a formal power series ring. Since we know S(B T, K) by (2.7),
(3.1) then reduces the calculation of S(B G, K) to the formal algebraic problem
of computing the intersection of two power series subrings of A[[¢,,...,t,]]
(assuming dim T=n). In sections 4 and 5 we give examples of such

Talculations. '

As in section 1 let td denote the Todd sequence, with coefficient ring Q. Our

first result is: )

(3.2) THEOREM. Let S be any subring of the rationals. Then for any compact
connected Lie group G, td is (G, S)-regular.
Note that in definition (3.1) one always has, by (1.8),
j*S(BG,K) < j*H**(BG; A) N S(BTK).

Thus to prove that an m-sequence K is (G, S)-regular we need only show:
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(3.3) Given any class 8 in H**(B G; A4) such that j*0 € S(B T, K), then for
any manifold-M (with K(M) defined) and any map f*M — BG,

{f*0-K(M)}[M]€e5.

We show that (3.3) holds for K=td (and S<=Q), which will prove (3.2).
To begin with assume simply that M is an oriented manifold and f a map
M — BG. Recall that up to homotopy type the map j can be replaced by a
- fiber map n: BT — B G, with fiber G/T. By using the theory of Steenrod [19,
§ 19.6, § 7.4], and by taking finite dimensional approximations, we may as-
sume that

G/T —» BT —*» BG

is a smooth fiber bundle. Also, by a suitable homotopy, we may take f to be a
smooth map. We then have a smooth G/T bundle induced over M by f, giving
a commutative diagram

(34) G/T = G/T

M — BT

|-

M L BG.

Choose a Riemannian metric on M and define f; to be the bundle orthogonal
to p*ty in 14: By is called the bundle along the fiber (see [5], [6]). By [5] we
remark that S can be given a complex structure.

We now prove (3.3) for K=td. Assume then that M is a stably almost-
complex manifold. Then t,, is stably complex; since 7, =p*1,,® B, we see that
M is stably almost-complex.

Let 6 be a class in H**(B G; Q) such that n*0(=j*6) € S(B T, td). Our goal is
to show:

* {f*0-td M)}[M]€S.

Let p,: H**(M; Q) —» H**(M; Q) denote “integration along the fiber” ([5],
[6]). We need the following result, which can be deduced from§§22.2, 22.5 of
" [5] — see especially equation (10), § 22.5.

(**) The complex structure on f; can be chosen so that p,(td )
=1€ H'(M; 2).
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Since 15 =p*t,®Pr we have td (M)=p*(td M)-td ;. Thus
{p*f*0-td (M)}[M] = p,{p*f*0-td (M)}[M]
Pu{p*(f*0-td M)-td (B,)}[M]

{f*0-td M p,(td Bp)}[M]
= {f*6-td M}[M].

I

But p*f*=I*n*, in (3.4), and by hypothesis, n*0 € S(B T, td). Thus,
{p*f*0-td M}[M] = {I*(n*0)-td M}[M] €S,
and so {f*0-td M} € S, as desired. This completes the proof of Theorem 3.2.

For real m-sequences we have a rather more general result.

(3.6) THEOREM. Let S =Q be any subring containing the integers, and let K be
a real m-sequence that is S-integral. Then, for n22, K is (U (n), S)-regular.

Again we need simply prove (3.3) for K. Let M be a smooth oriented
manifold and f a map M — BU (n). We again use diagram (3.4), taking
G=U (n), T=T(n); = now becomes the “standard” inclusion B T'(n)=BU (n).

In order to prove (3.3) (for G=U (n)) we need more information about the
bundle along the fiber, f;. Recall the map [ in diagram (3.4), I: M — B T(n).
Let w,,...,w, be the canonical complex line bundles over B T'(n), and set
¢=1*w;, 1Zi<n. By Theorem (13.1.1) of [11], one has

(3.7) Br ~ Y E®E.
i>j

Let A;,=c, (&), the first Chern class. Then, ¢, ((;®¢&; ') =4,— 4, see [11]. Let
R € Q[[t]] denote the reciprocal series for K (see 2.2). Set

(3.8) A[M] = {p*f*o-K(M)-[]R(l.-—i,-)}[m.
i>j
We prove (cf. (3.3))
(3.9 A[M] = n!{f*0-K(M)}[M] .
Since 1y = p*1,, @B, we have by (3.7),
K(M) = p*K(M)-K(B) = p*K(M)- [T (4—A)/R(A4—4),

i>j
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and so
A[M]

{p*(f*o'K(M))' [1 (/1;—/1,-)}[1‘71]

i>j

= p*{l’*(f*f)'K(M))'H (&--%)}[M]

i>j

{f*O'K(M)'P*<H (/1;—/1,-)>}[M] -

i>j
Let g=n(n—1)/2, so that B is a complex g-plane bundle. By (3.7) we have:
Cq(ﬁF) = n (’1.'""1,‘)-

i>j
But by [5] one sees that k*(f;) is the complex tangent bundle to G/T, where
k: G/T — M in (3.4). Thus,

k*c,(BLG/T] = x(G/T) = n!,
by [5]; and so, by [5], pyc,(Br)=n!-1 € H°(M; Z). Consequently,
A[M] = {f*6-K(M)-pc,(B)}[M] = n!{f*6-K(M)}[M],

as claimed.
On the other hand, we will prove

(3.10) A[M] = n!s, for some s€S .

Combining (3.10) and (3.9) we see that {f*6-K(M)} € S, which proves (3.3)
and hence Theorem (3.6).
We assemble several facts before proving (3.10).

(3.11) LEMMA. There is a class A € H**(M; Q) such that p* A=K (B;).

Proor. In BT(n), set {=3;, ;0;@w; ', so that f.=I*(. If we show that
K({) e n*H**(BU (n); Q) ,

this will prove (3.11). But K({)=TIT;>; (t;—t)/R(t;—t;), where t;=c, (w;). Since
t/R(t) is an even function, K ({) is invariant with respect to permutations of the
t’s. Thus, K({) € Image n*, as claimed, proving (3.11).

In H*(BT(n); Q), set R;=R(t), 1 <i<n. We prove

(3.12) LEMMA. There is a class B € H**(BU (n); Q) such that
n*(B) e S[[Ry,.. .RJ] and [] Rtt:—t) = [] R—R,)-n*B.

i>j i>j
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Proor. We use the followiag result from [21]: since K is S-integral there is a
series ¥ (x,y) € S[[x, y]] such that

1) ¥(x, =", x),
(i) Y(=x,y)=¥(x, —y),
(iii) R(x+y)=(Rx+Ry) ¥ (Rx,Ry).

Thus by (iii), (since R is an odd function),

H.R(ti_tj) = Z (R.'_Rj)'n ¥Y(R, —R) .

i>j i>j i>j

But by (i)-(i) above, [];»;¥(R;,—R; is invariant with respect to
permutations of the ¢;s and so belongs to image n*. Finally, as noted above,

[T #(R, —R)) € S[[Ry,...,R,]],

which completes the proof of (3.12).
At the end of the section we prove:

(3.13) There are classes C,D € S[[R,,...,R,]] such that
IT Ri—R) = C+n!D,

i>j
and

p,(*C) = 0.

Proor or (3.10). Combining (3.8), (3.11), (3.12), and (3.13), we have:
(**) ALM] = {p*(f*6-K(M)- A-£*(B)-I*C}[M]
+n!{I*(n*(0-B)-D)- K(M)}[M] .
But

{P*(f*0-K(M)-A-f*(B)-I*C}[M] = p.{p*(f*6-K(M)-A-f*(B)I*C}[M]
= {f*©0B)K(M):4-p,I*C}[M] =0,
by (3.13). On the other hand, since 7n*0 e S(BT(®),K) and D,

7*B e S[[Ry,. . .,R,]], it follows from (2.7) that n*(0-B)-D € S(B T(n),K),
and so

{I*(n*(0-B)-D)K(M)}[M] = s€eS.
Hence, by (**), A[M]=n!s, as claimed, which proves (3.10).
ProOF oF (3.13). We use the ideas developed by Hirzebruch in § 14 of [11].
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Let
4, = Qty,...t,]}, B, = Qlloy,...,0,]] = 4,.

Then A4, is a free module over B,, with base elements all monomials
th,. .., ti-t such that 0<q;<n—i, 1<iSn—1. Thus any element P € 4, can
be uniquely written

P = Z Qa,..., au-lt‘l'l s t:':l‘ where Qq,..., an-1 € Bn .
0<d'sn—i

Define the “indicator” ¢(P) by
e(P) = (=12, _,
As before, let R;=R(t;) € A,. We prove:

(3.14) LemMA. Let P € A,. If o(P)=a-1 € B,, a € Q, then
P(R,,...,R) = P+a-R7"'RY"2...R,_,
where g(P)=0. Moreover, if P € S[[t,,...,t,]], then P’ € S[[R,,...,R,]]

We adopt the following notation. Let J=(a,,...,a,_,) denote an
“admissible” sequence as above: that is, 0<q;<n—i. Set

t(J) = tr... et
so that P € A, can be written
P = ;a;t(J),
summed over all admissible J. Now replace ¢; by R, — we then have

P(R,...,R) =} ¢,(R)R()),
J

where g,(R) is obtained from g, by replacing each t; with R;. Notice that we
continue to have g,(R) € B,. By hypothesis on P, in (3.14), t;"* ... t,_, has
coefficient a in P. Thus R}~ ... R,_, has coefficient « in P(R,...,R,). So to
prove (3.14) we need simply show: -

if J # (n—1,n—2,...,1), then o(R(J)) =0

To see this, note that since J £ (n—1,n—2,. . ., 1), there are distinct integers i, j,
1=i,jSn—1, such that a;=a,, where J = (ay,. . .,a,_,). Therefore R(J) remains
invariant when we interchange t; and t;, and so by 14.1.2 of [11], ¢(R(J))=0,
which proves (3.14).

To prove (3:13), take P=[T;,;(t;—t) € A,. On page 108 of [11], (see
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equation (4)) Hirzebruch shows that

e(ﬂ (t;—t,~)> =n!,

i>j
and so by (3.14) there are classes C,D € S[[R,,...,R,]] with
[l R=R) = C+n'D and (C)=0.

i>j
Consider now the ffbration
G/T - BT —*» BG.

Then, H**(BT; Q)=A,, H**(BG; Q) =B,, assuming dim T=n. Moreover,
from [5, § 20] one sees that

¢ = m, = integration along the fiber .

Thus, from our commutative diagram (3.4) and by [6] we have:
pyI*(C) = f*n,(C) = f*(C) =0,

which completes the proof of (3.13).

4. Characteristic classes for m-sequences.

In this section we consider m-sequences that are (U (n),S)-regular and
obtain an explicit formula for S(BU (n), K). To do this we introduce the notion
of (complex) characteristic classes for m-sequences.

As in section 3, let T(n), n=1, denote the n-torus and let j,: BT (n) — BU (n)
be the standard map. We now take cohomology with coefficients in some fixed
ring A, which we omit in our notation. Then,

H**(BT(n) = Al[t,...,t]], degt;=2,
jxH**(BU (n)) = Al[oy,- .., 0,11,

where o; denotes the ith elementary symmetric function in ty,.. .,t,.
Suppose that K is any m-sequence (real or complex) with reciprocal
sequence R. Set R;=R(t) € A[[ty,...,t,]], 1Si<n. We define

(4.1) 6,(K)=ith elementary symmetric function in R,,...,R,, 1SiZn.

Notice that 6,(K) € A[[0,,. . .,0,]], and so we can define ¢;(K) € H**(BU (n))
by -

(4.2) jreiK) = 0;(K) .
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We use here the fact that j* is injective with A-coefficients, since
H**(B T(n); Z) and H**(BU (n); Z) are torsion-free and j* is injective with Z-
coefficients.

We call ¢;(K) the ith Chern class of K. (Compare [3] and [20]). Note that

¢;(K) = ¢; +higher terms ,

where ¢; denotes the image of the ordinary Chern class by the coefficient
homomorphism Z — A.
We now can state our result.

(4.3) TueorReEM. Let K be an m-sequence that is (U (n), S)-regular for some
subring S of A. Suppose that K is S-integral. Then,
S(BU (n),K) = S[Lc,(K),. . .,c,(K)] .
By (3.2) and (3.6) we have

-

(4.4) CorOLLARY. Let S be a subring of the rationals containing the integers.
Then '
() S(BU (n),td) = S[[c,(td),. .., c,(td)1,

(i) S(BU (n),K) = S[[c,(K),...,c,(K)] .
where K is any real m-sequence that is S-integral.

Note that (i) can also be deduced from the Riemann—-Roch Theorem [11]
and the Stong-Hattori Theorem [20], [10].

Chern classes for K can be computed as follows: given an ordered sequence
of integers I=(iy,...,i,), r<n, let s, denote the unique polynomial in
Z[[oy,...,0,]] such that

Sl(dl,. . .,0’,,) = Z tiI‘ “e ti' .

If R is the reciprocal series for K, write R=3", ., a,t’, where a; € A. Then, for r
21,

(4'5) C’(K) = z (ah cee air)sil ..... ir -
15is...54,

Here we write A[[oy,...,6,]]1=Z[[0},...,6,]®4; also, each s, can be
expressed in terms of the (ordinary) Chern classes (e.g., see [11], [18]).
ProoF o THEOREM 4.3. By (3.1) and (2.7), since K is (U (n), S)-regular,
Jj*S(BU (n),K) = j*H**(BU (n) N S(B T(n),K)
= A[[ey,...,0,]1 N S[[R;,...,R,]].
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By (8.2) of the appendix
Alloy,...,0,]] = A[lo,(K),...,0,(K)]].
Also by (8.4) (taking ¢;=t;=R;, 1Li<n), we see that
Allo,(K),. ..,0,(K)]] N S[[Ry,...,R,]] = S[[0,(K),...,0,(K)]].
Since j¥S[[c,(K),. . .,c,(K)]]1=S[[s,(K),...,0,(K)]], we have
S(BU (n),K) = S[[c,(K),...,c,(K)1,
as claimed. This completes the proof of (4.3).

5. Real characteristic classes.

We define Pontrjagin classes and an Euler class for m-sequences. Using these
we compute S(BSO (n),K). Throughout the section we take A=Q, the
rationals.

We adopt the following notation. Let n be a fixed positive integer and set
q=2n+¢, ¢e=0 or 1. Let fq: B T(n) » BSO (q) denote the map induced by
the standard embedding of the maximal torus. Then,

(5.1) JEH**(BSO (9) = Q[[4y,. . .,4.], q=2n+1
= Q[[619-~"&n—1’an]]9 q=2n,

where &; denotes the ith elementary symmetric function in t3,. . .,2.
Suppose now that K is a m-sequence with reciprocal series R. Define R €

QL[t1] by
R(t) = —=R(-1).
Note that RR and (R+ R)/2 are both even functions, and that
RR =t*+...,R+R)2=t+....
Also, if R is an odd function (e.g., if K is a real m-sequence) then

RR = R, £R+R)/2 =R.

As usual, set R;=R(t;) for 1 <i<n; we define

(52) 6,(K) = ith elementary symmetric function in R(R,,...,R,R, .

Thus, 6,(K) € Q[[4,,. . .,6,]] and so we can define p,(K) € H**(BSO (g)) by
(53) T*p(K) = 6,(K), 1Sisn.

Math. Scand. 39 — 14
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Similarly, when g=2n, we define y,,(K) € H**(BSO (g)) by
f;nXZn(K) = n (R1+R;)/2 .
i=1
Notice that if R is odd, then

f;nXZn(K) = an(K) .

We now prove

oy

(5.4) THEOREM. Let K be an m-sequence that is (SO (q), S)-regular and S-
integral for some subring S of the rationals. Suppose moreover that

* R e S[[R1],

and that

** (R+R)2 € S[R]], ifq is even.
Then,

S(BSO (2"), K) = S[[pl (K)’ « s Dn- 1 (K), XZn(K)]:L q =2n )
S(BSO (2n+1),K) = S[[ps(K),. . ., p.(K)]], q=2n+1.

Note that when K is a real m-sequence, R=R and hence (*) and (**) are
trivially satisfied for any SSQ such that Z<S. We give a second instance
where these hypotheses are satisfied.

(5.5) ExaMPLE. Ler E=1—¢7", and let S be any subring of Q containing Z.
Then, E e S[[E]]. Moreover, if 1 € S, then (E+ E)/2 € S[[E]].

Proor. We have e *=1—E and so ¢=(1—E)™!. Thus, E=e¢'—1=E-(1
-E)"'=Y,E from which the result follows.

Combining Theorems (3.2) and (5.4), with Example (5.5), we obtain:

(5.6)1C0R0LLARY. Let S be a subring of the rationals containing the integers.
hen, for n=1,
S(BSO (2n+1),td) = S[[p, (td),. . .,p,(td)]] -
oreover, if € S, then
S(BSO (2n)td) = S[[p;(td),. . .,p,-; (td), xz,(td)]] .
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Before proving (5.4) we develop some preliminary material. Let l,: BSO (g)
— BU (g) denote the natural inclusion, and let i, BT(n)=B T(q) denote the
mapping on tori induced by /.. Recall (see [5]),

% —
lq t2r—l - tr

1=5r<n,
i;tZr = -t
Bnt1tzner = 0, if g=2n+1
Consequently,
i;RZr—l = Rr
i*R,, = —R,, 1=rgn,
i;n+1R2n+l = 0’ if q=2n+l .

This implies that
Igeu(K) = (—1'pi(K), 1=5i<n,

I¥c5i_ 1 (K) = 0, 1

IIA

iSn+1.
Proor ofF THEOREM (5.4). We consider first the case g=2n+1. By
hypothesis, and by (3.1) and (2.7),
Jj%+1S(BSO (2n+1),K) = Q[[4,,...,6,11 N S[[R,,.. LR.11.
Now by (8.3) (see Appendix)
(A) QL[6,,. . -,,1]1 = QL[4 (K),...,6,(K)]].

Note that ¢;(K)=d;(RR), in the notation of section 8, and that by hypothesis
(*) 6:(K) € S[[Ry,...,R,]]. Therefore by (8.4),

(B) Q[[4,(K)....,d,(K)]] N S[[Ry,...,R,]] Q[[4,(RR),...,é,(RR)]]1 N
N S[[R,,...,R,]]
= S[[6,(K),...,6,(K)]].

But by (5.3), S[[6,(K)....,6,(K)1]=j4+1S[[P1(K),. .., ps(K)]]. Therefore,
since j¥, ., is injective, we have

S(BSO (2n+1),K) = S[[py(K),...,p»(K)]],

as claimed.

When q=2n the proof is similar, using now the fact that ¢,(K)=0,((R
+R)/2); and so by (**), 6,(K) € S[[R,,. . ., R,]]. Thus we may again use (8.4).
We leave the details to the reader.
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In order to apply Theorem (5.4) we need to know when an m-sequence K is
(SO (g), S)-regular. We prove

(5.7) THEOREM. Let K be a real m-sequence that is (U (q), S)-regular for some
subring S = Q and some integer q =2. Suppose also that K is S-integral. Then, K
is (SO (g), S)-regular.

Proor. By (3.3) we need simply show
(5.8) JXH**(BSO (¢)) N S(B T(n),K) < j*S(BSO (9),K) .

Consider the following commutative diagram, where the maps are those
defined earlier. (3=2n+¢, ¢=0 or 1).

BT(g) —* BU (g)
J
BT(n) = BSO (9)
Take first the case g odd. Then
I*H**(BU (g)) = H**(BSO(g)) and i*S(BT(g),K) = S(BT(n),K).

Since K is (U (g), S)-regular and since (by (1.8)) [*S(BU (g), K) = S(BSO (g), K),
we see that (5.8) is satisfied. (We need (A) and (B) above to show that

izigH**(BU (¢) N i*S(BT(g), K) = if (jH**(BU (9)) N S(B T(9),K)).

q

Suppose then that g is even, g=2n. Then, by the same argument as above,
we have: -

Q[[el" . wan-—-l’ &n]] n S[[Rb . aRn]] < f{nS(BSO (2"),K) *
Now j3,H**(BSO (2n)=Q[[é,,. . .,6,-1,0,]], and é,=a2. Also, by (8.4) (see
appendix),
Q[[é\.lﬁ' . -’&n—lr o'n]] = Q[[él (K), . "&n —II(K), an(K)]] ’

since 6,(K)=0,(R?), 0,(K)=0,(R). Using the fact that j¥x,,(K)=0,(K), the
proof of (5.8) follows from:

(5.9) ‘LEMMA.' Let K be a real m-sequence. Then, given any class
6 € S(BSO (2n),K),

8- 1,,(K) € S(BSO (27i), K) .

Proor oF (5.9). This is a mild generalization of (2.8) and so we only sketch
the details.
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Suppose then that 6 € S(BSO (2n), K), that M is ari oriented manifold and fa
map M — BSO (2n). We need to show that

© {/*(0 124(K) - K(M)}[M] €5 .

Deform f so that it is smooth; let £ denote the smooth bundle over M induced
by f. Let s: M — E, denote the zero-section of £ Deform s to a section §
transverse regular to s(M) and set N=35"'(s(M))= M. Thus N is an oriented
codimension 2n submanifold of M. (We assume dim M 2 2n; otherwise (C) is
trivially true). Let i: N = M denote the embedding, with normal bundle v. Note
that v=i*{ and that N is dual to y(&). By an argument similar to that given for
(2.8) we have
{i*f*0-K(N)}[N] = {f*6-K(&)~*-K(M)- x(&}[M] .

Since {i*f*0-K(N)}[N] € S by hypothesis on 6, the proof of (5.9) is complete
when we show

(D) K@) ') = f*x2a(K) -

We do the proof in the universal example: let y,, denote the canonical
bundle over BSO (2n). By (2.2),

- - = R(t)
];nK(YZn) ' = I—_Il t. .

i=

Since j¥,x2,=IT'-1 t;» We see that

FEK 2™ 2) =TT Re = o)

Thus, K(7,,) 7! %20 = X2 (K), which proves (D) and hence Lemma (5.9).

Combining Theorems (5.4) and (5.7) we now have computed S(BSO (n), K)
for any real m-sequence that is (U (n), S)-regular and S-integral. In particular
by Theorem (3.6) we have

(5.10) CoroLLARY. Let S be any subring of the rationals containing the
integers, and let K be a real m-sequence that is S-integral (e.g., K =L). Then, for
nzl,

S(BSO (2’1), K) = S[[pl (K)’ . '!pn—l(K)’ X2n(K)]] ’
S(BSO (2n+1),K) = S[[ps(K),. .., pa(K)] -

6. Thom Complexes.
So far we have studied S(Y,K) with Y a classifying space. We now consider
the case Y a Thom complex.
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Suppose then that ¢ is a smooth oriented vector bundle with base space B,
and total space E,. We denote by T, the Thom complex of . Recall that A *(Ty
is a free module over H*(B,) on one generator U, (the Thom class) — we take
coefficients in a fixed field A.

Now let K be an m-sequence with coefficient domain A. The question we
consider is: given S(B,, K), how does one compute S(T,K)? To state our
results, we define

UyK) = UgK(QQ)™" € H**(T;

We assume that £ is complex if K is.
Our first result is

(6.1) ProposITION. Let & be a smooth oriented bundle with Thom complex T,
and let K be an m-sequence. If K is complex assume & is also. Then,

S(T, K) = U,(K)-S(B,K) .

Proor. Let M be a smooth manifold and f a map M — T, Given
f € S(B,, K) we are to show:

*) {I*(UyK)-0)-K(M)}[M] €S .

Now T,=E,U oo, that is, the one-point compactification of E,. Since E, is a
smooth manifold the map f can be deformed to a map (which we continue to
call f) which is transverse regular to B,<E, Set N=f"'(B), g=f|N:
N — B,,i: Nc M. Then N is an oriented submanifold of M with normal bundle

g*&. In particular if M is stably almost-complex and ¢ is complex, then N is
stably almost-complex. Let i, : H*(N) — H*(M) denote the Gysin homomor-
phism. Now the Thom isomorphism H*(BE)~ H*(T¢) can also be viewed as a
Gysin homomorphism [11]. Thus, given 0 € H**(B¢),

f*Ug0) =i,g*0.
Moreover, K(N)=i*(K(M)-g*K(£)~!), and so

{g*0-K(N)}[N] = i,{g*(6-K (&) )i*K(M)}[M]
{i.g*(6-K(O)™")- K(M)}[M]
= {/*(Ug K@) 0)- K(M}[M]

= {f*(Ug(K)-0) K(M)}[M] .

]

Since 0 € S(B¢, K), {g*6-K(N)}[N1 € S, which proves (*) and hence (6.1).
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We now prove two theorems giving sufficient conditions for the inclusion in
(6.1) to be an equality.

Following Thom, we write MU (n) (respectively, MSO (n)) for the Thom
complex of the canonical bundle over BU (n) (respectively, BSO (n)).

We prove

(6.2) THEOREM. Let K be an m-sequence that is (U (n), S)-regular for some
subring S of A. Suppose also that K is S-integral. Then,
S(MU (n),K) = U,(K)-S(BU (n),K) .
Here U,(K)=U, (K), where w, is the canonical bundle over BU (n).
Let s,: BU (n) = MU (n) denote the map given by the zero cross-section.
At the end of the section we prove:
(6.3) stUL(K) = c,(K),

where ¢, (K) is defined in section 4. Using this we prove (6.2).
By (6.1) and (6.3), since s* is injective, (6.2) follows from

(6.4) s*S(MU (n),K) < c,(K)-S(BU (n),K) .

To prove (6.4), recall that ¢;(K)=c;+ higher terms, where ¢; denotes the
image of the ordinary Chern class by the coefficient homomorphism Z — A.
Thus,

skH*(MU (n))

En'A[[cly' . .,C"]]
Cn(K)'A[[cl (K)’ . -’cn(K)]] ’

and so
s*$(MU (n),K) < c,(K)- A[[c;(K),. . .,cy(K)] -
On the other hand, by (1.8) and (4.3),
s*$(MU (n),K) = §(BU (n),K) = S[[c,(K),...,c,(K)]].

Thus (6.4) follows, since
ca(K) A[[c, (K),. . ., c,(K)]] N S[Ley (K),. - -, ca(K)T]
= ¢,(K)*S[[c; (K),. . .,ca(K)]] = c,(K) S(BU (n),K) .

This completes the proof of (6.4) and hence of Theorem (6.2).

Combining this with Theorems (3.2) and (3.6) we have:
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(6.5) CorOLLARY. Let S be a subring of the rationals that contains the integers.
Then, for n21,

S(MU (n),td) = U,(td)- S[[c, (td),. . ., c,(td)]]
S(MU (n),K) = U,(K)-S[le1(K),. . ., cu(K)T] -
where K is any real m-sequence that is S-integral (e.g., K=L).
We now consider MSO (n) and a real m-sequence K.
(6.6) THEOREM. Let K be a real m-sequence that is (SO (q), S)-regular and S-
integral for some subring S of the rationals.-Then,
S(MSO (9),K) = U,(K)-S(BSO (9),K) .
Again we set U (K)= U, (K), where y, is the canonical bundle over BSO (g).
Combining (3.6) and (5.7), we have:
(6.7) CorOLLARY. Let S be a subring of the rationals that contains the integers.
Then, for n=1,
g(MSO (2"), L) = U2n(L)‘S[[pl (L)y' «sPn-1 (L)7 x2n(L)]] s
S(MSO (2n+1),L) = Uyps4(L)-S[lps (L), - ., pa(LY]] -

Note that (6.6) does not apply to the m-sequence td. Thus we have:
(6.8) ProBLEM. Compute S(MSO (g), td).

Proor oF (6.6). We distinguish two cases: g even and ¢ odd.
Caske I: g=2n. At the end of the section we prove:
(6.9) $32U2a(K) = x24(K) € H**(BSO (2n)) ,

where x,,(K) is defined in section 4. (Here s,: BSO (g) - MSO (g) is the
zerosection). Using (6.9) the proof for case I is similar to that of Theorem (6.2)
and so we leave the details to the reader.

Case II: g=2n+1. Let S* denote the circle. Recall that by Atiyah [2] there
is a natural map

Yz,: ST x MSO (21) — MSO (2n+1)
such that u2,U,,.,=1,®U,,, where 1, generates H'(S"; Z). Define

S2ne1: ST X BSO (2n) — MSO (2n+1)
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to be the composition

1 XSz

S' x BSO (2n) —2 §! x MSO (2n) —2 MSO 2n+1).

Then, §%,,,Uz,41=1,®),, At the end of the section we prove:

(610) §’2“n+lU2n+l (K) = 11®X2n(K) .
Finally, in the following section we prove:
(6.11) S(S* x BSO (q),K) = H**(S';Z) ®, S(BSO (g), K).

Assuming these facts we now prove case II of Theorem (6.6). Note first that
$%.+1 is  an  injection, mapping  H**(MSO(2n+1)) into
H**(S")®H**(BSO (2n+1)). Thus by (6.1) and (6.10) to prove case II of (6.6)
we need simply show:

* $3,+1S(MSO (2n+1),K) < (1;®@%2.(K))-S(BSO (2n+1),K) .
Now
$4e (H**(MSO 2n+1)) = (4,®20) QULPy,- - 2]
= (1,®724(K))- QLLpy (K),. . ., P4 (K)]] ,

and so

§%,415(MSO (2n+1),K) < (1;®124(K))- QLLp1(K),. . ., pa(K)] -
On the other hand, by (1.8), (5.4), and (6.11),
§%,+1S(MSO (2n+1), K) = S(S* xBSO (2n+1), K)
= H**($';Z) ®; S[[p,(K),. - ., pa(K)I] -
Thus, (*) follows, since
(i1 ®124(K))- QLLP (K), - - -, P(K)T] N S[Lpy (K),. - -, pa(K)T]
= (1, ®%24(K))* S[[p1 (K);. . ., Pa(K)]]
= (1;®2.(K)):S(BSO (2n+1),K) .

This proves (*) and hence Theorem 6.6.

We are left with proving (6.3), (6.9), and (6.10); (recall that (6.11) is proved in
section 7.) We start with (6.9). By definition and by equation (D) in section 5,
s‘rnUZn(K) = s;n(UZn(VZn)'K(YZn)_I)

x2n(YZn)'K()’2n)-l = in(K) ’

I
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which proves (6.9). In exactly the same way, one shows that
@) K(w,)™! = ¢,(K),

in H**(BU (n)), and so (6.3) follows as above. Finally, (6.10) follows from (6.9)
when we show

13Uz (K) = i;®@U,,(K) .

To see this, let j: BSO (2n) —» BSO (2n+ 1) denote the natural inclusion.
Then, by [2], given 0 € H**(BSO (2n+1)),

13(Uzns1°0) = (1, ®U,,) j*0 .
Hence,
H3Uzns1(K) = p35(Uzps1 K(20+1)7Y)
(1, ®U32,) j*K (2041 7!
= (4QU,) K(12)7 ! = ,®U,,(K),

which proves (6.10).

Theorems (6.2) and (6.6) might lead one to conjecture that for any bundle &,
S(T,, K)=U,S(B,, K). However, this is not the case as we now show.
Let w denote the complex line bundle over P, (=S?). Then T, = P,. By (2.6),

Z(Py,td) = H**(P; Z);

also by (26), E(=1—e™") € Z(P,,td). Since U,=t e H*(P,;Z) and E=
t—4t2+ ..., we see that E ¢ U, Z(P,,td) and so Z(T,,td)# U, Z(B,, td).
Thus we have

(6.12) ProBLEM. Given S and K, for which bundles ¢ does S‘(Tb K)

7. Computations.

We consider in this final section two separate problems: (i) compute
S(K(Z,2n),K), n21; (ii) given S(Y, K), compute S(S” x ¥, K), where S" denotes
the n-sphere, n= 1.

Since K(Z,2)=P,,, we have computed S(K (Z,2), K) by Corollary (2.7) (at
least when K is -S-integral). To compute S(K (Z,2n),K) for n>1 we, need
several definitions.

Let K denote a fixed m-sequence (real or complex) with the rationals as
coefficient domain. In section 2 we associated with K a power series R (the
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reciprocal series) with R® € Q[[t]] and RX(t)=t+ . ... Define IX to be the
inverse to R, in the sense of composition of series; that is, IX(R¥ (1)) =t. We
call I the inverse series for K. By (2.3) we obtain:

(7.1) EXAMPLE.

" t2n—1
— I'= :
n’ 1z 2n—1

-5
Now let ¢ € Q[[¢]] be any series with ¢(0)=0. We write ¢ as:
o) = 3 Bt
osi Vi

where B;,7; € Z and (B;,y)=1. (Note that y,=1 if §;=0). We say that ¢ has
infinitely many primes if, given any positive integer N, there is a prime p and an
integer i(N) such that p>N and p|y,y. We say that the m-sequence K has
infinitely many primes if this is true of its inverse series I¥. Note that by (7.1) the
m-sequences td and L have infinitely many primes.

We now can state our result.

(7.2) THEOREM. Let K be a Z-integral m-sequence with infinitely many primes.
Then, for n>2,
Z(K (Z,2n),K) =

In particular,
Z2(K(Z,2n),td) = 0, Z(K(Z,2n),L) =0
Recall that H**(K (Z,2n); Q)=Q[[t]], degree t=2n. Thus we have,
(7.3) CoroLLARY. Given any series 0 € Q[[t]] and any.integer n22, there is
an oriented manifold M(0,n) (=M) and a class u € H*"(M; Z) such that
{0(w) L M)}[M] ¢ Z.

Similarly, there is a stably almost-complex manifold N(0,n) (=N) and a class
v e H**(N; Z) such that

{0(v) td (N}[N] ¢ Z..

ReMARK. Theorem (7.2) suggest the following problems: (i) Characterize
those spaces Y such that Z (¥, K)=0, for all m-sequences K with infinitely many
primes. (ii) Calculate Z(K (Z,2n), K), n22, for m-sequences that do not have
infinitely many primes.
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Proor oF THEOREM (7.2). We use the space B T'(n); as in section 2, set
H**(BT(n);Z) = Z[[t,,...,t,]], degt;=2.

Define u,:BT(n) — K(Z,2n) by pri,,=t,...t, where 1,, denotes the
fundamental class for K (Z,2n). Then with rational coefficients pY is a
monomorphism and

urQLL]] = QLLG, ... t)]] = QLlty,. . .,8,00,
where degree t=2n. By (1.8) and (2.7),
u*¥Z(K (Z,2n),K) <« Z(BT(n),K) = Z[[R,,...,R,]1],
where R is the reciprocal series for K. Thus to prove (7.2) we need only show:

*) Z[[R,,.. ,R,JINQ[[t, ... 1,11 = 0.

We transform this as follows: let I denote the inverse series for K, so that
I(R(t))=t. Then (*) becomes

**) 2[[uy,.. ., u, 1N QILI(wy) ... I(4)]] = O,

Whel‘l u‘=Ri=R(t‘).
To prove (**) we need the following result, whose proof is given in the
appendix (section 8).

(7.4) LeMMA. Let ¢ € Q[[t]] have infinitely many primes. Then so does ¢',
forr=1.

Assuming this we prove (**). Let ¥ € Q[[¢]] be a series such that
"l(l(ul) s I(un)) € z[[uls' . -auu]] .

Write y(t)=3X, c;a;t', where a; € Q. We are to show that a;=0 for all i21.
Suppose inductively we have shown that a,,. . .,ay_; =0, for some N=>1. We
show that then ay =0, which will complete the inductive step. Write ay = by/cy,
with by,cy € Z and (by,cy)=1. Also, set
tor = 3 2o,
osi &
where d;,¢; € Z and (6;,¢)=1. Then,

Y(I(uy) ... Iu,) = ay(I(,)...I(uy)" +higher terms

- ay uf,v.‘.u':ﬂ(z éfu’,:’”) £,
osi &

= Z -b—ﬁgullv...uﬁ’_lu):.’-i'i'.... H

osi Cnéi
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where the terms omitted in the last equation all have higher powers of '
Uy ... U,_y. Since Y(I(uy) ... I(w,)) € Z[[u,,...,u,]], this implies that

eZ, fori=0.
Cné;

By hypothesis and by Lemma (7.4), I(z)" has infinitely many primes and so
there is a prime p and an integer s such that

p > by, Dple.

Thus, &+1 and so 6,40. Since (by,cy)=1 and (§,e)=1 and since
byd/cyes € Z, we must have by=0, and so ay=0 as claimed. This completes
the proof of Theorem (7.2).

We turn now to the problem of computing S(S" x Y, K).

(7.5) THEOREM. Let K be an m-sequence with coefficient domain A and let S
be a subring of A. Then for any space Y and any positive integer n,

SS"x Y,K) = H**(S"; Z) ®; S(Y,K) .

ProoF. Let 1 and 1, generate the respective free Z-modules H°(S"; Z) and
H"(S"; Z). Then any element 6 of H**(S"; Z) ®; S(Y, K) has the form

0=1Q0¢+1,0V,
where ¢, € S(Y,K). We first show that every such class 6 is an element of
S(S" x Y, K).
By the ‘universal coefficient theorem, we identify S(S" x ¥, K) with a subring

of H**(S"; Z) @, H**(Y; A). Note that by Theorem (1.8), applied to the
projection S"x Y — Y,

1¢p e S(S"x Y, K) .

Thus it remains to show that 1,y € S(S" x Y, K). Let M be a smooth oriented
manifold (in the domain of K) and let u: M — S", f: M — Y be maps. We need
simply show:

(A) {(u, N)*,@Y) K(M}[M] €S .

Let e € S” be a basepoint; make u transverse regular to e and let N =u"1(e)
<M, with embedding i. Note that N is dual to u*i, and that N has a stably
trivial normal bundle — hence, K(N)=i*K(M). Also, if M is stably almost-
complex, so is N. Thus we have (compare (2.8)),
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{i*f*y-K(N}[N] = i i*{f*y K(M)}[M]

{f*y-K(M)-u*,}[M]

{W f)*.¥) K(M)}[M] .

But {i*f*y-K(N)}[N] € S, since y € S(Y,K). Thus, (A) follows, and so
H**($"; Z) ®;S(Y,K) = S(S"x ¥, K).

I

To complete the proof of Theorem (7.5) we show:
(B) Every element w in S(S" x ¥, K) can be written in the form
w = 1®Ql +lu®92 ’
where ¢,,0, € S(Y,K).

As remarked above, the element w can be written in this form with
0102 € H**(Y; A). To prove (B) we need only show g,,0, € S(Y; K).

Let j:Y— S$"xY be the map given by y — (e,y). Since j*S(S"x Y, K)
<S(Y,K) and since j*w=g,, it follows that g, € S(Y,K). Let 0'=w—-1®g,
=1,®0,. By (A) and the above, 0’ € S(S" x Y, K). Let M be a manifold and f a
map M — Y. Consider the map

Ixfi8"xM— S"xY.
Then,
{IxfN*" K(S"x M)}[S"xM] €S,

since @' € S(S"xY,K). But K(S"xM)=1®K(M) (since S" is stably
parallelizable) and so

{(1 x f)*o' - K(S" x M}[S" x M]

(]

1 {1.®f *e," K(M)}[S" x M]
= +{f*e,"K(M)}[M].
Thus, {f*e,K(M)}[M] € S, and so g, € S(Y,K) as claimed. This completes
the proof of Theorem (7.5).
Taking Y=point, in (7.5), we obtain

(7.6) CoroLLARY. Kor n=1,
S(S" K) = H**(S";S).

8. Appendix: Power series.
Let A be a fixed commutative ring with unit. We consider formal power
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series over A in variables t,,...,t,, n=1, (see [14, p. 146]). Denote by
A[lty,- - ->t,]] the subring of A[[ty,...,t,]] consisting of those power series
with constant term zero. Given a series @ € A[[t]], we set, for 1<i<n,

o;¢ = ith elementary symmetric function in ¢(t,),...,o(t,);

for example

0190 = o(t)+... +o(t) € A[[ty,. .., 1,1].

(8.1) LEMMA. Let ¢,,...,p, € A[[t]], ¢;£0. Then the natural map
N A[[Gl(pb' . "Un(pn]] - A[[tlv' . ~atn]]

is an injection.

Proor. We do the proof by induction on n. When n=1, 6,9, =¢, and the
lemma is easily seen to be true. Let N> 1 and suppose (8.1) has been proved for
all n>N. Let fe A[[o,0,,..-,0y¢y]] and suppose that 1f=0, in
A[[ty,. . .,ty]]. Write f as:

f(0101,. .., 080y) = Z gi(0101,. . ., ON_1@N-1) (UN(PN)i;
i=0

now set ty=0. Then aypy=0 and so

0 = 1f (6101, - -, 0N 1P -1,0) = 180(0101,. . ., ON—1PN-1)
where ojp, denotes the ith elementary symmetric function in
@;(ty),. . ., @;(ty_,). By the inductive hypothesis, g,=0. Assume now that
€0:815- - -» 85—y =0, where s>0. We show that then g,=0 and hence (again by
induction) f=0, which will complete the original inductive argument.
Since s>0 we may write

f= i (8:)(0N¢N)i = Z ((gs+i)(aN(pN)i)(aN(PN)s’

where g, =g,(6,0,,...,0y_;¢y-,)- But
0=1f = [‘ Z (gs+i)(aN(pN)i] [i(anen)] .
i=0
Since 1(oy gy 40, this implies that i £, (g,+(owey)'=0. (Compare [23, p.
79]). By what we have already proved, this shows that g,(¢,¢;,. . .,0x 19y -1)

=0, which completes the proof.

From now on we identify A[[d;0,. . .,0.@,]] With ifs image by 1.
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Given @ € A[[t]], we define degree ¢ to be the exponent of the lowest power
of t occurring in ¢ with a non-zero coefficient. We say that ¢ is monic if the
lowest power of t occurring in ¢ has as coefficient a unit in 4. We say that ¢ is
monic rel. S if this coefficient is a unit in the subring S.

(8.2) LEMMA. Let Y be a monic series of degree one in A[[t]]. Then,

A[[alr . '961:]] = A[[alwa' . 'aan'/’]] )
as subrings of A[[t,,...,t,]].

Proor. It suffices to show that for 1 <i<n, g, € A[[0,V,. . .,0,¥]]. Since ¥ is
monic of degree one there is a series P € A[[t]] such that t=P(y), and so
6;=0;(P(y)). But clearly o,(P(¥)) € A[[alqll, ..,o.¥]], and so the proof is
complete.

For 1<i<n, let 6;=ith elementary symmetric function in t3,...,t2.

(8.3) LeMMA. Let ¢,y € A[[t]] with @ an even monic series ;)f degree two and
Y an odd monic series of degree one. Then,

(l) A[[&l: . ',6'11—1’ 0',,]] = A[[al(p,' «s0p-10, Gu‘/’]]’
(ll) A[[éli . 9&n]] =A[[al(p,' . "an(p]]'

Proor. Let fe A[[t,,...,t,]], and let s be a positive integer. We say that
f=0 (mods) if f has no term of degree <s in t,,...,t, (note that degree
t;=1). We write f=g (mods) if f—g=0 (mods). The following facts are
obvious:

@i If f=0, g=0 (mods), then a, f+4a,g=0 (mods), a,,a, € A.
(ii) Suppose that a,f € A[[t]] with a(t)=t+..., B({)=t>+.... For any
he Allty,. . .,t,], if

h(é,,6,,...,6,-1,0,) = 0 (mods),
then -
h(ab c30p-1,0 n) = h(alaa <9 Op—y 0, onﬁ) (mOds+1) :

We now can prove (8.3). Suppose that (t)=et>+ ..., Y(t)=dt+ ..., where
&0 are units in A. Set

p=¢tlg, Y=06"y.

Since ¢ is even and ¥ is odd, we have

A[[”x‘l_’,- . '9an—l¢! an'p]] < A[[aly . '!&n—han]] .
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Thus to prove (i) in the lemma it suffices to show that
6,0, € A[[0,9,...,0,_,¢,0,0]], 1=Zisn—-1.

Consider first 6,=t, ... t,. Then, g,=0,y (modn). Suppose, inductively, we
have found a series f;, for n<s<N, such that

o, = f(0,9,...,0,_,p,6,§) (mods).

We show that we then can find fy, thus completing the inductive step.

Set g,=0,— f,, regarded as an element of A[[G,,...,6,-,,0,]]. Note that
g,=0 (mods) and so by (ii) above, if we set

g =gnv-1(010,...,0,.,19,0,¥),
we have g=gy_; (modN). Set fy=fy_,+§. Since
0—fn-1 = 8gv-1 = § (modN),
it follows that ¢,— (fy-,+£)=0 (mod N) and so
0p = fy-1+8 = fy (modN),
which completes the inductive step. Thus
o, € All049,. . .,0,-19,0,¥1];
in a similar way one shows that é; € A[[0,9,...,0,-,p,0,¥]]. Since
All0,6,...,0,-19,00]1] = All0,9,...,0,-,0,0,¥]],

Lemma (8.3) (i) is proved. Similarly one shows (8.3) (ii); we omit the details.

(8.4) LEMMA. Let ¢,...,p, € A[[t]] with each @; monic rel. S. Then
A[[GI(PI" . "an(pn]] n S[[tl" . "tn}] = S[[al(ph' . ',an(pn]] .

We precede the proof by some remarks. Recall the lexicographic ordering of
monomials in A[[t,,. . .,t,]]. Given monomials a=t{! ... t;» and B =5 ... th,
we say that a<}p if either dega<degf (recall that degt;=1) or dega=deg
and for some j, 1<j<n, a;=>b, for i>j and a;<b;.

Note the following simple fact:

(8.5) If o, B,y are monomials in A[[ty,...,t,]] with f<y, then af <ay.
Let {4}, i20, denote the monomials in A[[t,...,t,]] with the above

ordering: so, Ag=1, A;=ty,..., Aps1=tilp.... Thus, any series ¢ in
A[[t,,. . .,t,]] has a unique expression
00

=) ak, a€A.

i=0

Math. Scand, 39 — 15
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We define the leading coefficient of ¢ to be the first non-zero a;. The main fact
needed to prove (8.4) is the following:

(8.6) LEMMA. Let & and n be series in A[[t,,...,t,]] such that the leading
coefficient of n is a unit in S. If n and &neS[[ty,...,t,]1], then
é € S[[tl" . -,tn]]'

ProoF. Let £=32,s5;4;, s; € A. Suppose, by induction, that s,,. . .,sy_, € S,
for some N =0. We show that then sy € S, which will complete the inductive
step and prove the lemma. If s, =0, then trivially sy € S, so we assume sy 0.
Set

{=¢- Z Sid = issls;
N

clearly &'n e S[[t,,...,t,]]. Suppose that n=32,rd;, where r,$0. By
hypothesis, r,=¢, a unit in S. Write £'n=3¢ g;4;, where gx+0. By (8.5),
Ax=Ay'Ay and hence gx=sy-ry=sy€ Since &'n e S[[t,,...,t,]] we have
gk € S. Thus, sy=qxe~! € S, which completes the proof.

Proor oF (8.4). Using (8.6) the proof of (8.4) is very similar to that given for
(8.1); we leave the details to the reader.

We turn now to the proof of Lemma (7.4) — recall we are given a series
¢ € Q[[t]]. For r=1 we write

(P' = z a‘(r)tH—r = Z ﬂ_i(ﬂti+r’

osi ozi i(r)
where B;(r), :(r) € Z and (B;(r),7:(r))=1. We set ;= B;(1), y;=y;(1).

(8.7) LeMMA. Given r2 1, for each k=0 there are integers di(r) and e,(r) so
that

. _ BN+ e
@) . ou(r) = 'w‘
(ii) d(l) =1, ¢()=0,
k-1
(iii) a0 = dr=1- [ vp-ir=1), r22.
i=1

(We interpret the product over the empty set as 1.)
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The proof is by induction on r, using the fact that ¢"=¢- ¢’ !. We omit
the details.

As a consequence of (8.7) we have

(8.8) LEMMA. Let r and k be positive integers. Then,

d,(r) is a product of powers of yy,.. . Yk-1 »
Y(r) is a product of powers of yy,. ..,V .

Note that by (8.7) (i), y«(r)|7x-di(r). Thus (8.8) follows from (8.7) (iii) by
induction on r; we omit the details.

Proor oF LEmMa (7.4). The proof is by induction on r; by hypothesis, the
lemma is true for r=1. Suppose then that r>1 and that ¢ has infinitely many
primes for 1 <i<r. We show that ¢" does also.

Let N be a positive integer. Since ¢ has infinitely many primes, there is a
prime p and an integer s such that

p>N, p>r, ply-

For a given prime p, let s be the least integer with this property. Thus,
p,l’v,,. ..,7s—1 and so by (8.8), p,{'ds(r). To prove (7.4) we show: p|y,(r).

For by (8.7) (i), B.(r)|rBd,(r)+7.e,(r), and y,(r)|y, d,(r). Since p|y, and
pfrBd,(r), it follows that p ) rBd,(r)+7.e,(r). Thus the factor p in y,d,(r)
persists when we write a,(r) as B,(r)/y,(r), and so p|7,(r) as claimed. This proves
lemma (7.4).

9. Appendix II: The m-sequence A.

An important role in topology is played by the m-sequence A, with
characteristic series t/2sinh (/2). Since A is Z[4]-integral one may apply the
theorems of sections 27, taking coefficient domain=Q, S=Z[4]. However, by
proceeding in a slightly different way, we obtain more precise results.

Define .# to be the set of all triples (M, £,d), where M is a smooth manifold,
¢ is a vector bundle over M and d is a class in H*(M; Z) such that d mod 2
=W,&+ W, M. Let csh denote the real m-sequence with characteristic series
cosh (¢/2). For any space Y and any subring S<Q, define

(9.1) §,,(Y,A)=all classes § € H**(Y,Q) such that for all triples in .# and all
maps f: M — Y,

25{f*0-e¥*-csh (£)-A (M)}[M] €S,
where ¢ is a (2s+¢)-bundle, e=0 or 1.
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By the Atiyah-Singer theorem (e.g., see [11]), 1 € S,,(Y,A).
Suppose that w is a complex bundle over a smooth manifold M, with ¢,
=d € H*(M;Z). Then (see [11]),

td (0) = e¥?-A (w),
and so
S.(Y,A) = S(Y,td).

Our result is:

(9.2) THEOREM. For any compact connected Lie group G and any subring
§<Q,

S.(BG,A) = S(BG,td).

Proor. We need only show:
(* S(BG,td) = S, (BG,A).

Recall that S(B T(n),td)=Z[[E,,...,E,]], where E;=1—e"" Since Z[[E]]
=Z[[e"]] and since for any class u € H?>(M; Z), 2nu+d =dmod 2, (*) follows
for G=T(n), n21.

Now let G be any compact, connected Lie group. By (3.2) there is a maximal
torus T< G such that td is (G, S)-regular with respect to T. Let j: BT — B G be
induced by the inclusion. Using (3.3), to prove (*) we need only show: given
any class 6 € H**(BG,Q) such that j* € S, (BT, 4) then for any triple
(M, ¢,d) and any map /M — BG, -

(**) 22{f*0-¢*-csh (&)-A (M)} [M] e Z.
Let
M-S BT
|
M -5 BG

denote the diagram given in (3.4). As before, let §; denote the bundle along the
fiber, with complex structure chosen so that p,(td fz)=1 e H°(M). Let o
=Cl (ﬁp). Then

A (ﬂr) = e ¥2td Br
and so

A (M) =p*A (M)-e~*2td f;
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Let (M, ¢,d) be the triple in 4 and 6 the class in H*(BG), as above. Set d
=p*d, E=p*&. Note that

{p*f*0-e?* 9 csh () A (M)}[M]
= pu{p*f*6-e* 2 csh () A (VM) M]
= {f*0-¢"*-csh (§)-A (M)}[M] .
Let &=a mod 2. Then,
WoM + Wyé = p*WoM+a+p*Wy¢
= (d+a) mod2,
and so, since j*0 € S,,(B T,A) and p*f*=1*j*, we have
25{p*f*0-e?* 2. csh (8)-A (M)}[M] € Z,
which proves (**). Thus
j*S,.(BG,A) = j*H**(BG) N S,,(BT,A)
= j*H**(BG) N S(B T;td)
= j*S(BG,td) .

Since j* is injective, this proves (9.2).
In a similar fashion one can prove:
(9.3) Tueorem. §,,(MU (n),A)=S(MU (n),td), for n21.

We omit the details.

10. Appendix III. PL and topological manifolds.

So far we have assumed that all manifolds are smooth. We note here what
can be said about PL and topological manifolds.

A real m-sequence K can be regarded as a class in H**(BSO). (We assume
the coefficient domain is Q). Since the natural H-space maps BSO — BSPL
— BSTOP induce isomorphisms

H*(BSO) ~ H*(BSPL) ~ H*(BSTOP),

we can regard K as defined on oriented PL and topological manifolds. Given a
subring S of Q, and a space Y, we define S?(Y, K) (respectively S*(Y, K)) to be
the subgroup of H**(Y,Q) defined as in (1.4), where we replace smooth
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manifolds by PL (respectively topological) manifolds. Clearly,
(10.1) S'(Y,K) « SP(Y,K) = S(Y,K).
We prove:

(10.2) THEOREM. Let S be a subring of the rationals and let K be a real m-
sequence that is S-integral. Then, SP(Y,K)=S(Y,K) for the following spaces
Y: B T'(n), BU (n), BSO (n), MU (n), MSO (n), K (Z,2n), n21.

The proof consists in observing that in sections 2-7 we have used only the
following properties of smooth manifolds: (i) Thom transversality, (ii) The
“pull-back” property given in (3.4), (iii) Poincaré duality and (iv) the Gysin
homomorphism. Since these properties also hold for PL manifolds, it is easily
checked that for each space Y in (10.2), equality holds in (10.1) between
SP(Y,K) and S(Y, K).

On the other hand, I do not know whether $*(Y, K) = S(Y, K) for the spaces Y
given in (10.2). The difficulty is that one does not always have Thom
transversality for topological manifolds, as for example, when one maps an n-
manifold into the total space of an (n—4)-plane bundle.

11. Appendix IV: Bordism.

We note here a geometric interpretation of the group S(Y, K). Recall [1] an
m-sequence K can be regarded as a ring homomorphism K: 2§ — 4, where G
=U or SO and QS denotes bordism of G-manifolds. Consider now the
bordism groups Q5 (Y), for Y a space [7]. We will say that a homomorphism
@:Q5(Y) > A is K-linear (K an m-sequence) if

o(a-u) = K@) o),

where o € Q5, u € Q5(Y) and where a-u denotes the usual module action of 2
on Q5(Y).
Suppose now that H,(Y; Z) has no torsion. Using the fact ([8])

(VR4 =~ H, (Y, 2)@2,®4,
it follows that any K-linear morphism ¢ has the form ¢=A®K where
A € H**(Y; A). Thus we have:

(11.1) Tueorem. Let ¢:Q%(Y) — A be a K-linear homomorphism, where
H (Y;Z) is torsion-free, and let S be a subring of A. Then (p(Qi(Y))CS if, and
only if, p=A®K, where 4 € S(Y,K)c H**(Y; A).

RemArk. The work of Mayer [16] can be interpreted as a study of group
homomorphisms y: Q5(Y) — Z, where Y=BU (n) or BSO (n).
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