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THE THEOREM OF DESARGUES IN PLANES WITH
ANALOGUES TO
EUCLIDEAN ANGULAR BISECTORS

B. B. PHADKE

1. Introduction.

In the Euclidean plane one can bisect an angle of a triangle by joining the
vertex of the angle to the point which divides the opposite side in the ratio of
adjacent sides. This construction uses only distances and it does not depend
explicitly on angular measure. Making this simple but ingenious observation
H. Busemann [3] characterized the Minkowski planes

(i) among all Desarguesian planes, and also,
(i) among all straight planes with differentiable circles,

by the following property: (P) “Inside a nonstraight convex angle with legs
N,,N, and vertex v there is a ray M with origin v such that any segment
T(ay,a,) with a; € N, i=1,2, a;+v, intersects M in a point b=b(a,,a,) for
which the distances satisfy va, :va, =ba, :ba,”. The question as to whether the
differentiability hypothesis is necessary in the second characterization was left
as an open question. It is the purpose of this paper to show that the hypothesis
of differentiable circles is indeed not needed.

We use the same terminology and notation as in [2] and [3]. Thus R is a
straight plane with distance xy satisfying the property (P). We are going to
prove that R is Desarguesian. From this it follows by characterization (i)
above, proved by Busemann in [3], that R is in fact Minkowskian.

Our proof is divided into three short paragraphs which follow. The main
idea is to show that the group of dilatations with an arbitrary centre is
transitive on R.

2. The fundamental axioms of affine geometry.

We take the set of points of R as the set 2, the set of metric straight lines of
R as the set % and the incidence relation I given by set inclusion i.e. for p € 2
and L € % we say p I Lif and only if p € L. In this section we briefly note that
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the “incidence structure” (2, %, I) satisfies the fundamental axioms of affine
geometry:

(i) If a#b there exists one and only one line L(a, b) incident with a and b.
This is true because R is a straight space, see [2, p. 38, also © 10.7 and ° 11.1].

(ii) There are three non collinear points. This follows from the fact that the
topological dimension of R is 2.

(iii) Given a point p and a line L with p not on L there exists a unique line L’
containing p such that L and L' do not meet. This follows from the following
two propositions:

ProrosiTION 1. The property P implies the following property (P'): The
parallel axiom holds. For two distinct parallel lines L, and L, there is a line L
(parallel to L;) which contains the centres of all segments T(p,,p,) with p, € L,,
i=1,2.

This is proved by Busemann [3, p. 6]. Since, however, the meaning of
“parallel” and “parallel axiom” is different in the context of G-spaces [2, p.
141] we also need the following proposition, again proved by Busemann [2, °
23.7, p. 141]. (This proposition shows that in straight planes parallel axiom is
the same as the usual one.)

ProOPOSITION 2. The parallel axiom holds in a straight 2-dimensional space if

and only if for a given line L and a given point p not on L exactly one line through
p exists which does not intersect L.

These propositions imply that in our straight plane R “being parallel” is an
equivalence relation. (Compare with ° 23.6 of [2, p. 141]).

We have thus proved that R with the incidence structure (#,.#,1) is an
affine plane in the sense of Artin [1, p. 52, 53].

3. Existence of dilatations.

Let L, and L, be two parallel lines and let o be a number between 0 and 1.
For a segment T(a,,a,) with a; € L;, i=1,2 let m,=m,(a,,a,) be the point on
T(a,,a,) such that a,m,=o0a,a,. The second condition in property P’ (sge
Proposition 1 above) can now be stated as follows: the points m,(a;,a,),
a; e L, i=1,2 lie on a line L which is parallel to L, L,.

By “bisecting and doubling” we see that m,(a,, a,), a; € L,, i=1,2 lie on a line
parallel to L, whenever « is a dyadic fraction. As the dyadics form a dense set in
[0, 1] the same conclusion holds for all @, 0Sa<1.

Using the symbol [abc] to denote three points a, b, ¢ such that ab+bc=ac
(that is, b € T(a,c)) we see that the above observations yield the following:
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LemMa 1. (i) If [axx'] and [ayy'] and ay':ay=ax':ax then L(x, y) is parallel
to L(x',y).
(i) If [xax'] and [yay'] and ax:ax' =ay:ay then L(x, y) is parallel to L(x', y').

xl yl

Figure 1 - Figure 2

To prove (i) we draw a line through a parallel to L(x’,y) and consider
division of segments T'(a, x') and T'(a, y'). To prove (ii) we draw a line through y
parallel to L(x', y') and let this line meet L(g, x) in x”. By comparing ratios and
considering the line through a parallel to L(x', y’) we show x” = x. This proves

(ii).

We are now ready to show the existence of dilatations.

Let z be any point of R and let x, x’ be points on a line through z. We show
that there is an incidence preserving bijection which takes z to z, x to x’ and
which takes a line to a parallel line. Such a bijection is an affine collineation
called a “dilatation” (sometimes “homothety” or “similarity”) with centre z.

Let zx'=1zx. We send a point p to p’ in such a way that

() zp'=Azp
(i) p,p’ lie on a line through z
(iii) z lies between p and p’ if and only if z lies between x and x'.
Given p these conditions uniquely determine p'.
We show that if p,g,r lic on a line L so do their images. We may assume
P,q,r do not lie on a line through z because if they do then p’,q’,7’ also lie on
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this same line by the definition of the mapping. As zp:zp'=zq:zq' =zr:zr' we
have, by the lemma 1 proved above, that L(p, g) is parallel to L(p’,q’) and L(q,r)
is parallel to L(q’,r'). As L(p,q) and L(g,r) are the same line and since L(p’, q')
and L(q',r") have the point ¢’ in common, this shows that L(p’,q')=L(q',r).
Hence p’,q',7 lie on a line parallel to the line containing p,q,r.

We have thus proved the existence of the dilatation with centre z and taking
X to x'. As z was an arbitrary point we have proved:

LemMA 2. The group of dilatations with centre z is linearly transitive on R for
every choice of point z.

4. Proof of the main results.

Standard theory of affine planes now applies and, in particular, from
Theorem 2.16 of [1, p. 71] we see that the affine theorem of Desargues holds in
.our space. Combining this with the results of the previous sections we have the
following:

THEOREM 1. A straight plane R satisfying the property P carries an incidence
structure of an affine plane whose points are points of R, whose lines are lines of R
and whose incidence relation is derived from set inclusion. In this affine plane the
affine theorem of Desargues holds true.

It is well known that this implies that our geometry is coordinatized by a
skew field, see, for example [1, Chapter 2]. This skew field must be the field of
real numbers in our case because our lines are metric straight lines which are
isometric to, and hence models of, the real line. This, together with theorem 1
of Busemann [3, p. 7] gives us the following:

THEOREM 2. A straight plane satisfying the property P is a Minkowski plane.

This shows that the hypothesis of differentiable circles in theorem 2 of [3, p.
9] is not necessary.
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