MATH. SCAND. 39 (1976), 171-190

SOME ENUMERATIVE PROPERTIES OF SECANTS TO
NON-SINGULAR PROJECTIVE SCHEMES

DAN LAKSOV

1. Introduction.

In the following article we shall make some remarks on two recent articles
which generalize, to non-singular algebraic varieties of arbitrary dimension,
classical results about secants of algebraic curves. The two articles treat
apparantly different questions. A. Holme (in [4]) is interested in giving
numerical criteria for the possiblility of embedding non-singular projective
varieties into projective spaces by projections from the ambient projective
space. C. A. M. Peters and J. Simonis (in [8]), on the other hand, are
interested in determining the number of secants of a non-singular projective
variety passing through a general point of the ambient projective space. The
key to the two articles is, however, the same, the determination, in terms of
projective invariants, of the rational equivalence class of the bundle of secant
lines to a given non-singular projective variety: The class considered in the
Chow ring of the Grassmann variety of all lines of the ambient projective
space. C. A. M. Peters and J. Simonis work directly on the Grassmann
manifold and determine the class of the secant bundle using the well known
description of the Chow ring of a Grassmann variety in terms of generators
and relations given by the Schubert cycles of the Grassmann variety. A. Holme,
on the other hand, uses a fibration of the Grassmann variety obtained by
adding points to the lines of the ambient projective space. His approach has
the advantage that the structures of the Chow rings of the varieties considered
are extremely simple, all morphisms between the varieties being structure
morphism of projective bundles. However, a major part of the work Hies in the
construction of the fibration map and in the ensuing cumbersome
computations of the Chern classes involved. The main objective of the present
article is to give a natural construction of the fibration map leading to a simple
determination of the rational equivalence class of the secant bundle in
question. In addition to the purely technical advantages, our approach brings
forth the connection between the methods of A. Holme and Peters-Simonis
and allows us to obtain their results from the same general formula. We show
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that the result of A. Holme is an immediate consequence of a slight
generalization of the result of Peters-Simonis (Theorem 21 (ii)) together with
the classical (and geometrically obvious) result that a projection between two
projective spaces induces an embedding of varieties whose secants do not
intersect the center of projection. On the other hand, the result of Peters—
Simonis follows from the methods of Holme together with the result that a
secant in general position on a projective variety (which is not a hypersurface
in a linear subspace) intersect the variety in exactly two simple points. This
result is classical when the ground field is of characteristic zero. Below,
(Lemma 15) we offer a proof of the result valid for an arbitrary ground field.

A different approach to the construction of secant bundles in a far more
general sense than that mentioned above was given by R. L. E.
Schwarzenberger [10]. He also gave a beautiful method for solving problems
of the kind mentioned above. Apart from the generality, Schwarzenberger’s
method has many advantages that may be worthwhile exploiting before trying
new constructions of secant bundles. We shall return to Schwarzenberger’s
approach at a later occasion.

2. Monoidal transformations with center on a linear subspace.

Let X denote a scheme and Y a closed subscheme of X defind by an ideal I
of the structure sheaf ¢ of X. The monoidal transformation B,(X) of X with
center on Y is the projective space Proj (®5%,I") over X associated to the
graded Oy-algebra @3%,I", and the exceptional divisor of the monoidal
transformation is the projective space Proj (@3, I"/I"**) over Y associated to
the Oy-algebra @, I"/I"*". .

A surjective homomorphism H — I of quasi-coherent @y-modules induces a
surjective homomorphism Sym,, (H) — @;%L,1" of Oy-algebras and con-
sequently a closed immersion t: B,(X) — P(H) of schemes. Moreover, the
above surjection restricted to the open subscheme (X —Y) of X clearly gives
rise to a section s: (X —Y) — P(H).

Lemma 1. With the above notation, the monoidal transformation B;(X) of X
with center on Y considered as a subscheme of P(H) via the immersion t, is the
(scheme theoretic) closure of the subscheme s(X —Y) of P(H).

For a proof see [6, Proposition (3.2.1), p. 419].

We shall now give a different and more classical construction of the
monoidal transformation of a projective bundle with center on a linear
subspace. Let S denote an integral scheme and let

0O-E->F->G—-0
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be an exact sequence of locally free Os-modules of finite rank. Put W= P(E), X
=P(F) and Y=P(G) and denote by i the closed immersion of Y in X defined
by the surjection F — G of O5-modules. Moreover, denote by K the kernel of
the universal quotient map E,, — L, from the pull back E, of the sheaf E to
W. The following exact diagram of locally free sheaves on W defines a
quotient @ y-module M of F, of rank two,

(*) ol

Denote by Z the projective bundle P(M) over W defined by M and by h and j
the closed immersions Z — P(F}) and P(G,) — Z defined by the surjections
Fy,— M and M — G, of the above diagram. Moreover, denote by f the
morphism Z — X defined by the surjective map (F,), — L, of @;-modules
obtained by composing the pull back to Z of the surjection F,, —» M with the
universal quotient map M, — L, on Z. Note that we have obvious canonical
isomorphisms P(F ;)= P(E,) and P(G,)= P(E). From the morphisms defined
above together with the structure morphisms of the schemes defined we obtain
the following diagram,

P(Ey) —> Z = P(M) —> P(Ey) = P(Fy)
! b !
Y= PG —> X = P(F) W1= P(E)
S

LeEMMA 2. The closed immersion i defined by the surjection F — G of Oy-
modules identifies Y with “the scheme of zeroes” of the homomorphism Ey — Ly
of Ox-modules obtained by composing the pull back of the inclusion E — F with
the universal quotient F, — Ly on X. Consequently, the image in Oy of the
resulting homomorphism Ey®Ly* — Oy of Ox-modules is the ideal defining
the closed subscheme i(Y) of X. Moreover, the restriction of the above
homomorphism to Y (via i) gives an isomorphism

E,QL;' - I/I*.
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Proor. Let T be an S-scheme and L an invertible @ -module. Then the
composite map of a surjection F;— L of Or-modules with the pull back
E; — F; of the inclusion map E — F to T is zero if and only if the morphism
T — X resulting from the map F;— L factorizes via Y. The first assertion
of the lemma follows.

By the first assertion of the lemma, the map E,®L,* — I/I? is surjective.
The second assertion then follows from the fact that 1/I? is locally free of rank
equal to the rank of E,®L; ' (see [1, VII Theorem (5.8)]).

By Lemma 2 we have a surjection Ey,® Ly! — I where I is the ideal in 0y
defining the subscheme i(Y) of X and consequently we have a closed
immersion t: B;(X) —» P(Ex® Ly'). Moreover, by the second assertion of
Lemma 2, we conclude that under this immersion the exceptional locus P(I/I?)
of the monoidal transformation of X with the center on Y is mapped
isomorphically onto P(E,® L;!).

The following proposition is a particular case of a result about monoidal
transformations of special Schubert schemes along their singular locus (see [6,
Theorem (5.2), p. 426]).

ProrositioN 3. With the above notation, the canonocal isomorphism P(Ey)
— P(Ex®Ly!) of projective bundles over V defined by “twisting by Ly ” sends
Z, considered as a subscheme of P(Ey) via h, isomorphically onto B,(X)
considered as a subscheme of P(Ex® Ly') via t. Under this isomorphism the
projective bundle P(Ey)= P(G ) over Y, considered as a subscheme of Z via j, is
sent isomorphically onto the exceptional locus P(Ey® Ly') of the monoidal
transformation B,;(X) of X with center on Y.

Proor. By Lemma 1, the morphsim ¢ sends B,(X) isomorphically onto the
closure of the section s: (X —Y) —» P(Ex®Lyx") defined by the restriction of
the surjection Ex®Ly' — I of Lemma 2 to (X —Y). On the other hand, the
same surjection Ey_, — (Ly|X —Y) defines a morphism (X —Y) - P(M)=Z
which is a section to the morphism f (restricted to f ~!(X — Y)). Indeed, the
surjection defines a morphism w: (X — Y) — W such that the surjection is the
pull back by f of the universal quotient E,, — Ly on W. Considering the pull
back of the diagram (*) by w we see that the composite map

Ww*K — w*F,, = Fy_y — (Ly| X - Y)

is zero and consequently that the universal quotient Fy_, — (Ly|X—Y) on
(X — Y) factorizes via a quotient map w*M — (Ly| X — Y). The latter defines a
morphism (X-Y)— Z which clearly is the inverse to the morphism
1Y X =Y), as asserted.
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From the above we conctude that the image of Z in P(E,® Ly!) contains
the image of B,(X) and that the two images have a non empty open subset in
common. Since P(M) is an integral scheme, (S being integral) the first part of
the proposition follows. Moreover, using Lemma 2, we easily see that the open
set common to the images in P(E,®Lyx!) of Z and B,(X) is the image in
P(Ex®Lx") of the complement in Z of j(P(E,)) and of the complement in
B,(X) of the exceptional locus. The second part of the proposition
consequently follows by the first part of the proposition.

ExaMmpLE 4. Let V be a vector space over a field k. On the projective space
P=P(V),there is a canonical exact sequence

0 Q- Vo®L;' > 0, — 0

of locally free @p-modules, where Q} is the sheaf of Kihler differentials on P
(see [1, I, Theorem (3.1)]). We can apply the constructions above to this
sequence and conclude from Proposition 3 that the monoidal transformation
of the scheme P(V,®L;') with center on the closed subscheme P=P(0,)
defined by the surjection V,® L;! — @, is canonically isomorphic to the
projective bundle P(M) over the scheme T = P(Q}), where M is the locally free
0r-module of rank two defined by the following diagram corresponding to the
diagram (*) above,

0 0
! !
0> K— (Q;’)T', - L;— 0
(***) ! 1
0-K— (Vi®L;))> M—-0
! !
O, = 0;
l !
0 0

Moreover, we conclude from Proposition 3 that by the above isomorphism the
exceptional locus P(QL® L, !) of the monoidal transformation of P(V,®L;*)
with center on P is mapped isomorphically onto the subscheme T of P(M)
defined by the surjection M — O of O;-modules defined above.

Note that the latter isomorphism P(Q:®L; ') —» T=P(Q}) is defined by
the quotient map Q, — L,®L,. on T'=P(QL®L;"'). Indeed, it is, by
Proposition 3, the restriction of the morphism

P((2:®L; ")) — P ((2p)r)
to P(Q®L; '), where P'=P(V,®L;'). On the other hand, the monoidal
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transformation of P(V,®L; ') with center on P is isomorphic to the monoidal
transformation B,(P x P) of P x P along the diagonal 6: P — P x P. Indeed,
“twisting by L,” the projective bundle P(V,®L; ') over P maps isomorphically
onto the projective bundle P(Vp,)=PxP and the composite of this
isomorphism with the inclusion P — P(V,®L;!) defined by the surjection
Vo®L;! — 0,is easily checked to be the diagonal morphism d. Consequently,
we have that the scheme B,(P x P) is canonically isomorphic to the bundle
P(M) over T and that this isomorphism induces the identity map between the
exceptional locus T=P(Q}) of B,(P x P) and the subscheme T of P(M) defined
by the surjection M — @ of O-modules. The latter isomorphism is, in fact, the
identity morphism. Indeed, as noted above the isomorphism is defined by the
quotient map (Q}); — L;.

Corresponding to the diagram (**) above, we have a commutative diagram

T=PQ)—~+—B = PM)
ok ok % ok \ ;/
( ) g BA(PX\PT f !
P ¢ ,PxP T
N}z ig
* P

where g and A are the structure morphisms of the projective bundle T= P(Q})
over P and of the projective bundle B=P(M) over T, and p, is the projection
onto the second factor.

Note. The morphism A defined above is the map A defined by A. Holme ([4,
II1, § 8, Proposition 8.7 and Lemma 8.73, pp. 26-31 and IV, § 13, pp. 60-64]) by
a ‘glueing together” method and is essential in his as well as in our treatment of
secant schemes. In the approach of Peters—Simonis on the other hand the key
morphism is thé composite map of A with the morphism a: T — G, (V) from T
to the Grassmann scheme parametrizing lines in P, defined by the surjection
(Ve)r — (Lp)r® M. However, it is easy to check that T (via a) is canonically
isomorphic to the projective bundle P(Q) over G,(V) where Q is the universal
sheaf of rank two on G,(V). This explains the close connection between the
approaches of Holme and Peters—Simonis.

We collect the observations about the morphisms of the diagram (****) that
we shall need below in the following lemma.
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LEMMA 5. (i) The image of T by the morphism j is the scheme of zeroes of the
inclusion map (Lp)y — Lg obtained by composing the pull back of the inclusion
map Ly — M of the diagram (***) to B (by 1), with the universal quotient map
My — Ly on B.

(i) The morphism f: B — P x P is defined by the quotient map

((( VP)T)B) - ((LP)T)B ® Ly

obtained by tensoring with ((Lp);)s the map obtained by composing the pull back
to B, (Ve®Ly ")r)s — My, of the corresponding map of the diagram (***), with
the universal quotient map My — L, on B.

(iii) The image of P by d is the scheme of zeroes of the composite map

(Q}’®LP)P><P — Lp,p

of the pull back (Qs@Lp)pyp — (Vp)pxp to P x P of the corresponding inclusion
on P, with the universal quotient map (Vp)pyp — Lp,p on Px P,

Proor. (i) The morphism j is defined by the surjective map M; — O, of the
diagram (***). Consequently, the assertion (i) follows from Lemma 2 applied
to this surjection.

(ii) Part (ii) is simply the definition of the morphism f.

(iii) The morphism 6: P — P x P=P(V}) is defined by the universal quotient
map ¥, — L, on P. Consequently, the assertion (iii) follows from' Lemma 2
applied to this surjection.

3. Computation of the Chow ring of monoidal transformations with center on a
linear subspace.

Let S denote a non singular quasi-projective scheme over an algebraically
closed field. Moreover, let F — G be a surjective homomorphism between two
locally free Os-modules and consider P(G) as a subscheme of P(F) via the
closed immersion defined by the surjection. The construction of the previous
section makes it straight forward to determine the Chow ring of the monoidal
transformation of P(F) with center on P(G) in terms of the Chow rings of P(G),
P(F) and the exceptional locus (see e.g. [2, § 13, Lemma 19, p. 128] where the
necessary computations are performed in the corresponding Grothendieck
rings). We shall in the following, restrict our attention to the case of Example 4
of the previous section and perform the few computations we need in our
treatment of secant schemes. We keep the notation and definitions of section
two.-For convenience we assume that the ground field k is algebraically closed.
We fix an ideal J in 0, and assume that the closed subscheme X defined by J is
smooth over Speck, and of pure codimension p in P. To avoid inconveniences

Math. Scand. 39 — 12
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later on we assume that p<dim P=n. Note that with the above assumptions,
the Ox-module J/J? is locally free of rank equal to p ([1, III, Theorem 5.8]). It’s
dual 0,-module (J/J?) is called the normal sheaf of the subscheme X in P and
is denoted by N(J).

We shall denote by B,(X x X) the monoidal transformation of the product
scheme X x X with center on the diagonal A(X). Moreover, we denote by
B(X x X) the closure in B of the preimage of (X x X — 4(X)) by the isomor-
phism f| f~!(P x P—A4(P)). It follows from Lemma 1 that B(X x X) is iso-
morphic to B,(X x X) by the isomorphism BxB,(P x P) of the diagram
(****). The exceptional locus of the monoidal transformation is clearly
P(Q}) (see [1, VI, Proposition (1.13)]) and is a subscheme of T'= P(}) by the
composite map of the closed immersion w: P(Q}) — P(2}| X) defined by the
canonical surjection (23|X)— Q% of Kihler differentials, with the pro-
jections b: P(Q}| X)=X x , P(Q}) — P(R}) onto the second factor.

P(2y) —*> P(2;| X) —> P(2})
&

X——P

We denote by A(Y) the Chow ring of a nonsingular quasi-projective scheme
Y. The direct and inverse image maps A(Z) —» A(Y) and A(Y)— A(Z)
associated to a morphism a: Z — Y of nonsingular quasi-projective schemes Y
and Z we denote by a, and a'. Moreover, we denote the rational equivalence
class, in A(Y), of a subscheme V of Y by y(V).

Let E denote a locally free sheaf on Y on rank m. The Chern classes of E in
A(Y) we denote by c;(E) i=0,1,...,n and the Chern polynomial ¢, (E)+c, (E)t
+ ... +cu(E)™ by c¢,(E). It is well known that the Chow ring A(P(E)) of the
projective bundle P(E) over Y is a free A(Y) module with a basis 1,¢,¢2,. . .,e"
where e=c¢, (Lp) (see [11, Exposé 4, sections 2, 4, 5 and 6]). We shall, in the
following, identify A(Y) with a subring of 4(P(E)) (via the inverse image of the
structure morphism), thus applying the projection formula without mention.

We denote the images of ¢;(N(J)) by the direct image 4(X) — A(P) of the
inclusion of X in P defined by J by n,c;(Ly)”* where n, is an integer and p is the
codimension of X in P.

LEMMA 6. Let E — L be a homomorphism from a locally free O0y-module E of
rank m to an invertible sheaf L. Assume that the scheme of zeroes Y of the
homomorphism is of pure codimension m in X. Then the rational equivalence class
Y(Y) of Y in A(X) is equal to c,,(E ® L), where E_ denotes the dual Oy-module of
the module E.

For a proof see [3, Remark following Theorem 2, p. 153].
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LemMA 7. With the above notation, the following equations hold.
(i) Let x denote an element of A(T). Then
Jx) = x-¢;(A*Ly '®Lg) = x(cy(Lg)—c;(Ly))
and j'(cy(Lg))=0.
(ii) Put (n+1)=dim, V. Then
fleipp) = (e(Lp)+e (L) forall i,
LS = idypep
and for i=0,1,...,(n—1) we have
fier(Ly) = (c1(Lpep)—ci (L)) -
(iii) The formula
oL, = e (L iey(Ly)
holds for i=1,2,....

Proor. (i) From Lemma 5 (i) together with Lemma 6 we conclude that
J(T) = y(T) = ¢;((Ly)s '®Ly)

where (L;)y=A*L;. The first formula of assertion (i) is thus an immediate
consequence of the projection formula applied to j. In order to prove the
second formula of assertion (i), it is sufficient to note that j is defined by the
surjection M — 0, of O-modules and consequently that j*L,=0,.

(i) By Lemma 5 (ii) we have that

S*Lpup = ((LP)T)B®LB = A*g*L,®L, .

The first quality of (i) is an immediate consequence of this formula.

The second equality of (ii) is an immediate consequence of the facts that fis a
birational morphism (being a monoidal transformation) and that the Chow
ring gives rise to a graded intersection theory.

To prove the third equality of (ii), we rewrite the expression fic, (L) as

S (C 1 (LT)i ! (cy(Lp)—¢4 (Ln)» +/ (C 1 (Lpy! (c1(Lp)+cy (LB)))
~fi(ey (Lr)‘ “le 1(Lp)) -

Computing each of the three terms separately, we obtaiq
f!(cl (L)Y~ ey (Ly)—cy (LB))) = fuiley (L))
by formula (i) of Lemma 7 and f; ji(c, (Lr)' ') =4, g,(c; (L;)'~!) which is zero
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fori=1,...,(n—1) (see [11, Exposé 4, sections 2, 4, 5 and 6]). Moreover, we
have the equations

f;(cl(LT)"l(cl (L) +c, (LT))) = filey (LT)i_lf!cl(LPxP))
= f!(cl(Lr)‘wl)Cx (Lpxp)

by the first formula of Lemma 7 (ii) and the projection formula. Finally, we
have that

Siler (L) ey (Ly) = file (L) ™) ¢y (Lp)

by the projection formula. In sum, we have proved for i=1,..., (n—1), the
formula

Files(Le)) = files L)) ey (L) =y (L)

The last formula of (ii) follows from this formula by induction on i.
To prove the formula (iii) we recall that by the definition of Chern classes
([3, § 3, p. 144)]), the following relation is satisfied

¢y (Lp)* — ¢y (M)ey (L) +¢,(M) = 0.

However, it follows from the exact sequence 0 - L; - M — (0 — 0 of the
diagram (***) that ¢, (M)=c,(L;) and c¢,(M)=0. Consequently, we have the
formula c,(Lg)*=c,(Ly)c,(Lg) which is the case i=2 of assertion (iii). The
general case follows immediately by induction on i.

LemMMmA 8. With the above notation, the following equality holds in
A(P(©:] X)), ;
wp(P(2) = c,(N(/)®b*Ly) .
Moreover, we have that
¢, (ND)®b*Ly) = Y ¢y (b*Ly)c;(N()) .
i+j=p

Proor. On X, there is a canonical exact sequence of locally free ¢x-modules
(see [1, VII, Theorem 5.8]),

0> J/J2 > Q| X - Q,— 0.

The first part of the lemma follows from Lemma 2 and Lemma 6 applied to
this sequence.

The second part of the lemma follows from the first part and a well known
formula for the highest Chern class of a locally free sheaf tensorized by an
invertible sheaf.
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COROLLARY 9. With the above notation, the following formula holds in A(T),
byw, V(P(Q)l(» = Z njcl(LT)icl(LP)p+j .
itj=p

Proor. We want to compute b,w, y(P(2%)). By Lemma 8 and the projection
formula we obtain

b!W!V(P(Q,{'))

Z b, (Cl (b*LT)icj(N o) )))

it+j=a

= Z €1 (Lr)ib!cj(N V) .

itj=a
The formula of the corollary follows since, with the above notation and
identifications, we clearly have

biey(NW) = njey (Lp)P*7 .

Lemma 10. With the above notation, the following equality holds in A(T),
bw,yP(Q5) = j'y(B(X x X)) .

Proor. The scheme P(Q,) is the exceptional locus of the monoidal
transformation B,(X x X) and consequently it is isomorphic, by the composite
morphism bw, to the scheme theoretic inverse image of the scheme B(X x X) by
the morphism j. Consequently, Lemma 10 follows from the following well
known result.

LEMMA 11. Let a: Z — Y be a morphism of irreducible schemes, both quasi-
projective and smooth over Spec k. Moreover, let V be an integral subscheme of Y.
Assume that Z is of codimension one in Y and that the scheme theoretic
intersection a= (V) of Z and Y is of pure codimension one in Z. Then the formula
a'(y(V))=y(a~1(V)) holds in A(Z).

Proor. Let q be a generic point of a~! (V). Since Z is of codimension one in Y
there is an exact sequence

0 Oy —> Oyg— 0z, 0

where e is an element of the local ring Oy,. Tensoring the exact sequence by
0y, we obtain the sequence

0— @V,q . @V,q - 0«"("),4 -0
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which is exact because V is integral. Consequently, we have that
Tor{* (0,,,0y,) = 0 for i>0

and since Tor{" (04, 0,)=0,-, the lemma follows.

Lemma 12. The rational equivalence class of X x X in the ring A(P x P) is
equal to d*c,(Lp)’c,(Lp, p)P, here p and d are the codimension and the degree of
X in P.

Proor. Clearly the product (X x X) is the transversal intersection of the
subschemes (X x P) and (P x X) of the product P x P, hence y(X x X)=
y(P x X)-y(X x P). Moreover, recall that P(Vy)=Px P 1is considered as
a projective bundle over P via the projection onto the second factor.
Consequently, y(P x X)=dc, (Lp)". Finally, we have that

(X xP) = dp!lcl(LP)p

where p, is the projection onto the first factor and clearly we have that p¥L,
=Lpp-

As a result of the preliminary computations, we obtain the following
theorem which is the main result of this article.

THEOREM 12. With the above notation we have the following two exyressions
for the rational equivalence class of B(X x X) in A(B),

(i) fl)’(XXX)"(Cx(LB)"Cl(LT)) Z njcl(LT)iCl(Lp)p+j

i+j=p-1
(i) Z n;c, (Lr)ic 1 (Lp)p” +¢ (LB)( Z (dz ('17) - nj)c 1 (Lr)ic 1 (LP)pH)
i+j=p i+j=p-1

where d is the degree of X in P and p is the codimension of X in P.

Proor. Since the morphism f'is an isomorphism outside of the exceptional
locus T, the subscheme B(X xX) and f~!(X x X) agree outside of T.
Consequently, the element y(B(X x X))— f'y(X x X) of the ring 4(B) will lie in
the image of A(T) by j,. However, we consider A(T) as a subring of A (B) by the
homomorphism ' and since j'1' is the identity of A(T) we may write

Y(BX x X))~ fy(X xX) = jx
with x € A(T). To determine x we recall that j,(x)=x(c, (Lg) —c, (L)) and that
J ! (x(c, (Lp)—c, (LT))) = —xc¢,(Ly)
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by Lemma 7 (i). On the other hand, we have that
j!?(B(X x X)) = b,w,y(P(Q}))

by Lemma 10 and that

JIYXxX) = jf'de,(Lp)e; (LppV
by Lemma 12. Consequently, we have the formula

JIYX xX) = de(Lp) (ey(Lg)+cy (L) = dPey(Le)??,

by Lemma 7 (i) and (ii). We conclude that

byw, y(P(Qy) —d*c; (Lp)*? = —xc;(Ly),
and using Corollary 9, we obtain the formula

H;_pn,cl(LT)‘01(Lp)"”—dzcx(Lp)z” = —x¢y(Ly),

in A(T). However, the elements c,(L;) i=0,1,..., (n—1) form a basis for the

A(P) module A(T) and clearly x and c,(L;) are both in the ring A(P).
Consequently, we have that n,c, (Lp)*” =d*c; (Lp)*® and that

X = - Z njCI(LT)‘Cl(LP)p+j'

i+j=p—1

Having determined x, the proof of formula (i) is complete.
In the proof of formula (i) we used the formula

Fy(X xX) = d*¢;(Lp)?(cy (Lg)+ ¢y (Lp)Y

= dc,(Lpf Y (BeiLpVey(LyY -
i+tj=p
From this formula together with the formula (iii) of Lemma 7 we obtain the
expressions

f!)’ (X xX) = d2C1 (Lp)cy (Lg) Z (1), (L‘r)icx (Lr)i + d2C1 (Lp)zp

i+j=p-1

= d*, (Lp) Z (7)" 1 (Lq)'ey (Lp)? it die, (Lp)zp .

i+j=p-1

Substituting these expressions into formula (i) of the theorem and reordering,
we obtain (applying the equality n,c, (Lp)*? =d*c,(Lp)*” noted in the first part
of the proof) formula (ii). '
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DerFiniTiON 13. The scheme theoretic image of B(X x X) by A we call the
pointed secant bundle of X, relative to the imbedding of X in P defined by the
ideal J of @ and denote it by Sb (J). Note that since p, f=gA with the notation
of the diagram (****) we have that g maps Sb (J) onto X.

The scheme theoretic image of A™'Sb(J) by the composite morphism
p1f: B — P, where p, is the projection of P x P onto the first factor we call the-
secant scheme of X in P, relative to the imbedding of X in P defined by the
ideal J of Op, and denote it by Sec (J). In other words, Sec (J) is the transform
of Sb(J) by the incidence correspondence between the schemes T and P
defined by the subscheme B of the product T x P.

Intuitively, the points of T consists of a point x of P with a line going
through it and the fiber of g|Sb (J) at a point x of X consists of the point x
together with all the secants of X passing by the point x. Moreover, the fiber of
A at a point ¢ of T consists of all points of the line through the point g(t) in the
tangent direction t. Consequently, Sec (J) consists of all points lying on all
secants to X.

LEmMMA 14. Let m denote the dimension of the scheme X. Then the pointed
secant bundle Sb (J) is of dimension (2m — 1) when X is a linear subspace of P and
of dimension 2m when X is non-linear. In the latter case, the morphism
A|B(X x X) maps B(X x X) birationally onto Sb (J) when X is not a hyper-
surface in P. When X is a hypersurface of P then the fiber of 1| B(X x X) over
a generic point of Sb (J) consists of (deg (X)—1) simple points.

ProoF. Let t be a rational point in Sb’(J) and put x =g(t). The fiber of 4 at ¢
is the projective line P(M (t)), where M (t) is the restriction to ¢ of the locally free
O;-module M defined by the diagram (***). Denote by h the morphism

P(N(t) > Pxx x P

obtained by restricting f to N(t). Recall that the morphism fis defined by the
surjective map (V,®L;'); - M of the diagram (***) together with a
“twisting by Lp”. Hence, the morphism & is defined by the restriction V=V (¢)
— M(t) of this surjection to the point ¢t of T In other words, h maps the
projective line P(M(t)) isomorphically onto the line in P through x “in the
direction” defined by ¢t. We know that the morphism f is an isomorphism
outside of T. Consequently, outside of T the intersection of B(X x X) and
P(M(t))=4"1(t) is isomorphic to the intersection of X x x= X with the line
h(P(M(t))) in P x x= P outside of x. If X is a linear subspace, then clearly the
fiber 271(f) is contained in B(X x X) and consequently the dimension of the
image of Sb (J) by 4 will be one less than the dimension 2m of B(X x X). If X is
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a hypersurface, then by Bertini’s theorem (e.g., [S, Corollary 11, p. 296]) we
may choose ¢t in T such that g(f) is in X and such that the line P(M (z)) intersect
X in deg (X) simple points. Consequently, the fiber of 1| B(X x X) at a general
point of Sb (X) consists of (deg (X)— 1) simple points. In particular, if X is not
a hyperplane in P then dim (Sb (X))=dim (B(X x X))=2m. Finally, assume
that X is neither a hypersurface in P nor a linear subspace. Then, by the
following lemma a generic secant intersect X in exactly two simple points.
Choose t to be such a secant together with one of the points of intersection.
Then the fiber of 1| B(X x X) at t consists of one éimple point. It easily follows
that A| B(X x X) defines a birational map between the schemes B(X x X) and
Sb (X).

LEmMMA 15. Let X be a non-linear integral subscheme of P of codimension
strictly greater than one. Assume that X is not contained in any linear subspace
of P and that it is non-singular in codimension one. Then a generic secant to X
intersect X in exactly two simple points.

ProoF. A generic linear subspace of P of codimension equal to (dim (X)—1)
intersect X in a smooth connected curve ([5, 11 Corollary p. 296] and [7,
Theorem 7, Chapter VIII, § 6, p. 212]) and since (n—dim (X)—1)>2 and X is
not contained in a hyperplane, this curve is not contained in a plane. Since the
intersection of a secant to the curve with the curve is the same as the
intersection of the secant with X it is sufficient to prove the lemma when X is a
curve.

Assume that every secant to the curve X intersect X in at least three points.
Let x and y be points on X and assume that the secant through x and y is not
tangent to X at any point. We shall show that the tangents to X at the points x
and y intersect. Let z be a third point on the secant through x and y. The
projection of P onto P"~! with center z maps X onto a curve X'. A general
secant to the curve X through x intersect X in distinct points x, x,,. . ., X, with
s22 and maps to a nonsingular point x' of X under the projection. The
tangents t¢,,...,t, to the curve X at the points x,,...,x, then map -onto the
tangent to X’ at x'. Consequently, the tangents t,,...,t, all intersect. In
particular a general secant through z has the property that the tangents to X
through any two points on the secant, different from z, intersect. Hence this
property must hold for all secants through z. In particular, the tangents
through x and y intersect. Since the tangents at two points on X in general
position intersect it easily follows that the tangents at any two points intersect.

Fix two tangents ¢, and t, to the curve X and denote by u their point of
intersection. Then either all tangents to the curve X pass through u or at most
a finite number of tangents pass through u. In the first case, the curve is called



186 DAN LAKSOV

strange and the only nonsingular strange projective curves are the lines and in
characteristic two also the plane conics ([9, Appendix to Chapter II, p. 76]). In
the second case all but a finite number (and hence all) tangents to X lie in the
plane spanned by the lines ¢, and t,, hence the curve X lies in this plane. Since
by assumption X is not contained in a plane we conclude that every secant to
the curve X can not intersect X in at least three points.

PROPOSITION 16. Assume that X is a subscheme of P of degree d> 1. Then with
the above notation, the rational equivalence class of Sb (J) in A(T) is equal to

Y (@O -n)e e, (Lpy
i+j=p-1
where v is one when X is not a hypersurface (p>1) and v=(deg (X)—1) when
X is a hypersurface (p=1).

Proor. We have that A4,1,5=0 and Ac,(Lg)=1, (see [11, Expos¢ 4,
sections 2, 4, 5 and 6]). Hence, applying 4, to the formula (ii) of Theorem 12 we
obtain the formula

AyBXxX) = Y (d®(B)—n)c; (L), (Lp)P*i.
i+j=p-—-1
The formula of the proposition now follows from the equality 4,(B(X x X))
=vy(Sb (J)) which holds because of Lemma 14.

COROLLARY 17. Assume that X is not a linear subspace of P. Then, with the
above notation, the following equalities hold in A(P x P),

f!l!V(Sb (J)) =v! Z (d2 (‘;’) - "j)(c1 (Lpxp)—c¢y (LP))iC1 (Lp)p”

i+j=p-1

p—1 p-1 )
v 'z:o Z, (=17 (@ (-5 - )= np-1- ) Des LpY? ™ ey (Lpp)

]

p — l p — l . 3 - .
v 2 <d2- Z ("ly—'({)"p—l—j)cl(Lp)zp_' ey (Lpyp)
i=0 j=i
ProoF. The first-equality of Corollary 17 is an immediate consequence of
Proposition 16 together with the last formula of Lemma 7, (ii). The second
equality follows by a simple reordering. Finally, the third equality follows from
the second equality and the formula

T (18- = (-1



SOME ENUMERATIVE PROPERTIES OF SECANTS ... 187

The last formula follows from the trivial formula

p—1-i

;0_ (-2 =1

J

together with the identity
0= (=177

4. Applications.

I. (A. Holme [4]). Embeddings of non-singular algebraic schemes by linear
projections.

We keep the notation of the previous section. In particular, X is an algebraic
scheme, smooth over an algebraically closed field k with a fixed embedding
into a projective space of dimension n over the field k.

The following classical and geometrically obvious result holds.

ProrosiTION 18. The scheme X can be embedded into a projective space P, of
dimension n’' <n over k, by a projection from P with center on a linear subspace if
and only if there exists a linear subspace L of P of dimension (n—n' — 1) which is
disjoint from the secant scheme Sec (J).

In particular, s(J)=dim Sec (J) is the smallest integer such that X can be
embedded into the projective space of that dimension by a projection from P
with center on a linear subspace of P.

For a proof see e.g. [4, IV, Proposition 12.1].

To compute the number s(J)=dim Sec (J), we use, following Holme, the
following, easily proved observation (for a proof, see [4, II Lemma 7.5].)

LemMA 19. With the above notation, let Y be a closed irreducible subvariety of
the product P(V,)=P x P and write

y(Y) = '—Zo aicl(LPxP)‘

in A(P(V;)) with a; in A(P). Then dimp,(S)=s if and only if ap="... =a,_,,
=0 and a,_,+0.

THEOREM 20. (A. Holme [4, II, Theorem 4.2.]). With the above notation the
scheme X can be embedded in a projective space of dimension s by a projection
from P, with center on a linear subspace, if and only if the integers
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25(J) = X (=7@ (-5 ) —mp-1- )0
=TT R et

p—1—1

S e

are zero for i=0,...,n—s—1 and s,_, is different from zero.

Proor. Denote by Y the scheme theoretic image by f of the scheme
A~1Sb (J). Then, since 4 is the structure morphism of a projective bundle and f
is birational outside of f P it is clear that we have the equality £,4'y(Sb (J))
=y(Y) in the ring A(P x P). The theorem is thus an immediate consequence of
Corollary 17 together with Lemma 19.

IL. (C. A. M. Peters and J. Simonis [8]). The secants of a nonsingular
algebraic scheme passing through a general point.

Assume that X is not a linear subspace of P. Since the morphism 4 is flat
with one dimensional integral fibers and the morphism fis birational it follows
from Lemma 4 that the scheme Y= 47! Sb (J) is irreducible of dimension (2m
+1). Denote by u the number of points (counted with multiplicity) of the
general fiber of the morphism q: Y — Sec (J) of Y onto Sec (J) induced by the
projection of P x P onto the first factor. We call the number 2~ 'y the number
of secants through a general point of Sec (J) and when Sec (J) is properly
contained in P we say that there are no secants through a general point of P.

Clearly u is never zero and is finite if and only if the equality dim (Sec (J))
= (2m+ 1) holds. Intuitively, the points of the fiber of the morphism g over a
point y of Sec (J) consists of pairs (y,x) where x is a point of X lying on a
secant to X through y. When y is in general position on Sec (J) and X is not
contained in a linear subspace of P it follows from Lemma 15 that to each
secant [ to X through y there correspond exactly two such pairs (y,x,) and
(»,x,) where x; and x, are the points of intersection of / and x.

THEOREM 21. Assume that X is not a linear subspace of P. Denote by e the
degree of the secant scheme Sec (J) in P and by p the codimension of X in P.
With the above notation the following two assertions hold.

(i) Assume that dim (Sec (J))=2m+1. Then the number of secants to the
scheme X passing through a general point of the secant scheme Sec (J) is equal to
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e—lsp—m—l('])

p—1
2—le—l<d2_ Z (_l)j—p+m+1(p_'{l_l)np—l_j>

j=p-m-1
2“e“(d2— > (—D’"‘f(::f::;)nj)
j=0

(i) (C. A. M. Peters and J. Simonis [8, Theorem 3.4]). When finite, the
number of secants to X passing through a general point of P is equal to

so(J) = 2"‘(412-—‘,i1 (-1)"'l_jnj)
j=o

I

Proor. By definition of the direct image map (p,),: A(P x P) —» A(P) we
have that the class (p,),(y(Y)) is equal to uy(Sec (J)) when dim Sec (J)= (2m+1)
and is zero when dim Sec (J)<(2m+1). Consequently, when dim (Sec (J))
= (2m+1) the number ey is equal to

cl(LP)Zm“(Pl)!(V(Y)) = (Pl)!(cl(LPxP)ZMH‘)’(Y))-

. We clearly have an equality y(Y)= f,A'y(Sb (J)). Consequently, part (i) of the

theorem follows from Corollary 17 and the relations (p,),c, (L,)'=0 for i%n
and (py),c;(Lp)"=7(P).

Clearly, the assertions (i) and (i) of the theorem are the same when
dim Sec (J)= (2m + 1)=n. Consequently, to prove part (ii) of the theorem it is
sufficient to prove that the number sy(J) is zero when Sec (J) is properly
contained in P. However, Sec (J) is properly contained in P if and only if
7(Sec (J))c, (Lp)" is equal to zero. The last equality clearly holds if and only if
Y(S)- ¢y (Lp, p)* is zero (see e.g. Lemma 19). Part (ii) of the theorem is now an
immediate consequence of Corollary 17 and the relations y(Y)=f,1"y(Sb (J))
and c¢,(Lp,p)'=0 for i>n.

The connection between the results of Holme and Peters—Simonis is now
clear. To obtain Holmes result from the result of Peters—Simonis, we note
that by Proposition 18 and Theorem 21 X can be embedded into P"~! by a
projection from P if and only if s,(J) zero. Similarly, for X to be embedded into
P"~2 by a projection from P"1 it is necessary and sufficient that the integer
so(J") is zero, where J' is the ideal defining the embedding of X into P"~*. The
integer s,(J’) is easily seen to be equal to s;(J). Continuing in this same way
successively projecting X into projective spaces P"~3,P"~%,. .. we obtain the
integers s,(J), s5(J),. .. and finally Holmes criterion Theorem 20. Conversely,
by the theorem of Holme and Proposition 18, s,(J) is zero if and only if Sec (J)
is properly contained in P. Hence to obtain the result of Peters—Simonis it is
sufficient to identify s, with the number of secants through a general point of P
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when this number is finite and different from zero. However, as we have seen in
section 41I, this identification follows from the definition, used by Holme, of

Sec (J) as the image of Y= fA~! Sb (J) by the projection p, and from Lemma
15 above.

REFERENCES

1. A. Altman and S. L. Kleiman, Introduction to Grothendieck Duality Theory (Lecture notes in
mathematics 146), Springer-Verlag, Berlin - Heidelberg - New York, 1970.
2. A. Borel and J. P. Serre, Le théoréme de Riemann—Roch, Bull. Soc. Math., France, 86 (1958),
97-136.
. A. Grothendick, La théorie des classes de Chern, Bull. Soc. Math., France 86 (1958), 137-154.
. A. Holme, Embedding-obstruction for algebraic varieties 1, Preprint University of Bergen,
Norway (1974). (To appear in Advances in Math.)
S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297.
. S. L. Kleiman and J. Landolfi, Geometry and deformation of special Schubert varieties,
Compositio Math. 23 (1971), 407434,
S. Lang, Introduction to algebraic geometry (Interscience Tracts in Pure and Applied
Mathematics 5), Interscience Publishers, Inc., New York, 1958.
8. C. A. M. Peters and J. Simonis, A4 secant formula, Quarterly J. Math. (Oxford), 27 (1976), 181—
189.
9. P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute of Fundamental
Research, Bombay, 1966.
10. R. L. E. Schwarzenberger, The secant bundle of a projective variety, Proc. London Math. Soc.
14 (1964), 369-384.

11. Séminaire C. Chevalley, Anneaux de Chow et applications, Ecole Normale Supérieuere, Paris,
1958.

» W

o »

~

UNIVERSITY OF OSLO, NORWAY



