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ON VON NEUMANN REGULAR RINGS - 1II -

R. YUE CHI MING

Introduction.

A well-known theorem of Kaplansky states that a commutative ring R is von
Neumann regular iff every simple R-module is injective. Rings whose simple
singular modules are injective are studied in [1] and [4]. In particular, it is
proved in [4, Theorem 3.6] that a commutative ring R is regular iff every
simple singular R-module is injective. In this note, the injectivity property is
weakened to p-injectivity. Several other results in [2], [4] and [6] are
generalised. Finally, arbitrary regular rings are characterised ip terms of: (a)
singular p-injective modules and annihilators; (b) semi-simple p-injective
modules. .

Throughout, A denotes an associative ring with identity and “module”
means “left, unitary A-module”. We recall that

(a) an A-module M is p-injective if, for any principal left ideal I of 4 and any
left A-homomorphism g: I — M, there exists y € M such that g(b)=by for all
bin I;

(b) the singular submodule of M is Z(M)={y € M/I(y) is essential in A} and
M is called singular if Z(M)=M.

Write “A satisfies (*)” if every simple singular 4-module is p-injective.

LemMa 1. If A satisfies (*), then foF every element b of A, there exists a left
ideal K such that A= (AbA+I1(b))®K.

Proor. For any b € A, there exists a left complement ideal K such that (4bA4
+1(b))@K is essential in A. If (4bA + (b)) @K # A, let L be a maximal left ideal
containing (4bA + (b)) ®K. Define g: Ab — A/L by g(ab)=a+ L for all a in A.
Then g is a well-defined left A-homomorphism and since 4/L is p-injective,
there exists ¢ in A4 such that g(ab)=ab(c+ L) for all a in A. In particular, 1 +L
=g(b)=bc+L and since bc € AbASL, then 1 € L which contradicts the
maximality of L. Thus (4bA +1(b))®K = A.

We now extend [4, Theorem 3.6] and [6, Proposition 3].
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THEOREM 2. The following conditions are equivalent;

(i) A is regular without non-zero nilpotent elements;
(i) A satisfies (*) and every left ideal of A is two-sided.

Proor. (i) implies (ii) by [6, Lemma 2].

Assume (ii). For any b € A, A=(AbA+1(b))@®K for some left ideal K of A
(Lemma 1). Since every left ideal is a right ideal, A= (4b+!(b))®K and
KAbs AbNK =0 implies K =0 and hence A= Ab+I(b). Then 1 =ab+d,a € A,
d € I(b), yields b=ab?. This proves that (ii) implies (i).

Throughout, N will denote the Jacobson radical of 4.

ProposiTION 3. If A satisfies (*), then
(i) Z(4A)NN=0;
(ii) A=AcA for every non-zero-divisor ¢ of A;
(iii) Every essential left ideal of A is an idempotent.

Proor. (i) Let ze Z(4)NN. By Lemma 1, A=(AzA+1(z))®K which
implies K=0 (since I(z) is essential in A). Let 1=w+d, w e AZASN (two-
sided), d € I(2). There exists v € 4 such that vd=v(1 —w)=1. Then z=0vdz=0
which proves that Z(4)N N =0.

(ii) If c is a non-zero-divisor of A, then A= (AcA +1(c))®K again by Lemma
1. Since l(c)=0 and <K< AcANK =0, then K=0 and 4=AcA.

(iiij) Let I be an essential ideal of A. For any b € I, IA+I(b) is essential
in A. If IA+1(b)# A, let L be a maximal left ideal containing 14 +1(b). Then
A/L is p-injective and this leads to a contradiction as in Lemma 1. Therefore
A=IA+1(b)and 1=u+d, u € IA, d € I(b), which implies b=ub € I* and hence
I=I>

DErFINITION. An A-module M is called semi-simple if the intersection of all
maximal submodules of M is zero [3].
CoRroOLLARY 4. The following are equivalent:

(i) Every simple A-module is injective;

(ii) A satisfies (*) and has the following properties:
(@) Every minimal left ideal is injective and
(b) Every cyclic singular A-module is semi-simple.

(Apply [4, Theorem 3.3] and Proposition 3 (i).)

COROLLARY 5. If A is a left continuous ring satisfying (*), then A is regular.
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Proor. If 4 is left continuous, Z(4)=N and A4/N is regular [5, Lemma 4.1].
By Proposition 3 (i), N=0.

The next result generalises [4, Prop. 4.3 and Prop. 4.5].

PROPOSITION 6. Let A be a semi-prime ring satisfying (*). Then every left
ideal of A is an idempotent.

Proor. For any left ideal I of A, suppose there exists b e I, b ¢ I?. Then
Ab=+ (Ab)* but (Ab)? is essential in Ab since A is semi-prime. By Zorn’s
Lemma, the set of left ideals J such that (4b)?> = J = Ab has a maximal member
L. Then Ab/L is simple singular and therefore p-injective by hypothesis. If
g: Ab — Ab/L is the canonical homomorphism, there exists ¢ € A such that
g(ab)=ab(cb+L) for all a in A. Then b—bcb € L which implies b € L. This
contradicts L= Ab. Thus I =1

CoRrOLLARY 7. If A is a P.I. ring, then A is regular iff A is a semi-prime ring
satisfying (*).

(Apply Proposition 6 to [2, Theorem 1]).

COROLLARY 8. If A is a prime left Goldie ring satisfying (*), then A is simple,
(see [4, Corollary 4.6].)

So far, only certain classes of regular rings have been characterised in terms
of singular p-injective modules. We now turn our attention to arbitrary regular
rings.

THEOREM 9. The following are equivalent:

(i) A is regular:
(ii) Every principal left ideal of A is the left annihilator of an element of A and
every left cyclic singular A-module is p-injective;
(iii) Every principal right ideal of A is a right annihilator and every left cyclic
singular A-module is p-injective;
(iv) Every left cyclic semi-simple A-module is p-injective.

Proor. (i) implies (ii), (iii) and (iv) by [6, Lemma 2].

Assume (ii). For any b € 4, let Ab=I(t), t € A. Let K be a left complement
ideal such that I(f)@K is essential in A. Then A/(/()@K) is p-injective by
hypothesis and if g: At — A4/(I()®K) is defined by g(at)=a+ ((t)@K) for all a
in A, there exists ¢ in A such that 1+ (I()®K)=g(®)=tc+ ({()®K). If 1 —tc
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=db+k, d € A, k €K, then b=bdb+bk and bt=0 implies bk € [(t)NK=0.
Thus b=>bdb which proves that (ii) implies (i).

Assume (iii). For any b € A, let bA=r(S) for some subset S of 4. Since
I(b)@K is essential in A for some left complement K, if g: Ab — A/(I(b)®K) is
defined by g(ab)=a+ (I(b)®DK), there exists ¢ in 4 such that 1 + (I(b))®K)=g(b)
=bc+ (I(b)®K). Then 1 —bc=t+k, t €l(b), k K. For any s € S, s=st+sk
and sk=s—st € I(b)NK=0. Therefore Sk=0 implies k € r(S)=bA. If k=bd,
d € A, then b—bcb=bdb which implies b=>b(c+d)b. Thus (iii) implies (i).

Assume (iv). Then every simple A-module is p-injective. We prove that every
principal left ideal I of 4 is semi-simple. Then (iv) will imply (i) as in [6,
Lemma 2]. For any 0%b € I, by Zorn’s Lemma, the set of all left subideals K of
Ab such that b ¢ K has a maximal member J. Then 4b/J is simple, p-injective
and the canonical homomorphism f: Ab — Ab/J may be extended to g:
A — Ab/J. Restrict g to h: I — Ab/J. Then I/ker h~ Ab/J which proves that
ker h is a maximal subideal of I. Since ker h N Ab=ker f, b € Ab, b ¢ ker f, then
b ¢ ker h. Thus I is semi-simple which completes the proof.
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