COMMUTATIVE SUBRINGS OF PERIODIC RINGS

THOMAS J. LAFFEY

A ring R is called *periodic* if for each $x \in R$ the set $\{x, x^2, x^3, ...\}$ is finite, or equivalently, for each $x \in R$, there exist natural numbers m(x), n(x) such that $x^{m(x)} = x^{m(x)+n(x)}$. Examples of periodic rings are nil rings and direct sums of matrix rings over finite fields. In this note we prove the following result:

THEOREM 1. Let R be an infinite periodic ring and assume:

- (a) R has no infinite subring S with $S^2 = \{0\}$,
- (b) R has no infinite set of mutually orthogonal idempotents.

Then R has a commutative ideal I with R/I finite.

In proving Theorem 1 we introduce a new ideal H(R) of a ring R and obtain some "radical-like" properties of it.

This paper is selfcontained modulo elementary group theory and the following well-known result:

Jacobson's $(x^n = x)$ Theorem. Let R be a ring such that for each $x \in R$, there exists n(x) > 1 such that $x^{n(x)} = x$. Then R is commutative.

We also recall:

Poincare's Theorem. Let G be a group and H_1, \ldots, H_n subgroups of G with $[G:H_i] < \infty, i = 1, 2, \ldots, n$.

Then $[G: \bigcap_{i=1}^n H_i] < \infty$.

Let R be a ring and let R^+ be its additive group. If S is a subring of R, [R:S] denotes the index $[R^+:S^+]$.

If X is a nonempty subset of R, write

$$A(X) = \{ r \in R \mid rx = xr = 0 \text{ for all } x \in X \}.$$

If $X = \{r\}$, write A(r) in place of A(X). Define

$$H(R) = \{x \in R \mid [R:A(x)] < \infty\}.$$

Received February 7, 1976.

We note the following elementary properties of H(R):

LEMMA 1. Let R be a ring and let $x \in R$. Then

- (a) $x \in H(R)$ if and only if xR and Rx are finite.
- (b) H(R) is an ideal of R.
- (c) $x \in H(R)$ if and only if RxR is finite (where RxR is the set of all finite sums $\sum r_i x s_i$ $(r_i, s_i \in R)$).
- (d) H(H(R)) = H(R).
- (e) if I is a subring of R with $[R:I] < \infty$, then $H(I) = I \cap H(R)$.

The next result is important.

LEMMA 2. Let R be a ring with no infinite subring S with $S^2 = \{0\}$. Then, if $x \in R$ is such that $x^2 \in H(R)$, $x \in H(R)$.

PROOF. Let
$$B = \{xax \mid a \in A(x^2)\}$$
. Then $B^2 = \{0\}$, so B is finite. Thus
$$C = \{a \in A(x^2) \mid xax = 0\}$$

has finite index in $A(x^2)$ (since it is the kernel of the map: $y \to xyx$) and thus in R^+ . Let $D = \{xa \mid a \in C\}$. Again $D^2 = \{0\}$, so D is finite and thus $E = \{a \in C \mid ax = 0\}$ has finite index in C and thus in R^+ . The result follows using symmetry.

COROLLARY. Let R be a ring with no infinite subring S with $S^2 = \{0\}$. Then H(R) contains all nilpotent elements of R.

LEMMA 3. Let R be a periodic ring with no infinite subring S with $S^2 = \{0\}$. Then R/H(R) is commutative.

PROOF. Let $x \in R$. Then $x^m(x-x^n)=0$ for some natural numbers m, n with n>1. So $x-x^n$ is nilpotent. The result now follows from the Corollary to Lemma 2 and Jacobson's $(x^n=x)$ Theorem.

LEMMA 4. Let R be a ring with H(R) infinite. Then (at least) one of the following statements holds:

- (a) H(R) has an infinite subring S with $S^2 = \{0\}$.
- (b) H(R) has an infinite set of mutually orthogonal idempotents.

PROOF (cf. Bell [1]). Suppose the result is false and let R be a counter example. Let $h \in H(R)$. Then the ring V generated by h is finite since otherwise $W = V \cap A(h)$ is an infinite subring of R with $W^2 = \{0\}$.

We now pick a sequence of elements of R as follows: Let

$$y_1 \in H(R), \ y_2 \in H(R) \cap A(y_1) - X_1, \dots,$$

 $y_{n+1} \in H(R) \cap A(y_1) \cap \dots \cap A(y_n) - (X_1 + \dots + X_n), \dots,$

where X_n denotes the ring generated by y_n . Since X_n is finite for each n and $H(R) \cap A(y_1) \cap \ldots \cap A(y_n)$ has finite index in H(R), by Poincare's Theorem, and is therefore infinite, this process can be continued indefinitely.

Since the elements of a finite ring with no nonzero idempotent are nilpotent and (b) does not hold, X_n is nilpotent for all but finitely many (and thus, without loss of generality, for all) n. Let S_n be a subring of X_n maximal with respect to $S_n^2 = \{0\}$. Since $X_n X_m = \{0\}$ (m + n), the ring T generated by $\bigcup_{n=1}^{\infty} S_n$ satisfies $T^2 = \{0\}$ and is thus finite.

Hence there exists $N \ge 1$ such that

$$S_m \subseteq S_1 \cup \ldots \cup S_N$$

for all m. In particular, for m > N, $S_m X_m = X_m S_m = \{0\}$. By the maximality of S_m we thus find that for m > N, S_m contains all elements $y \in X_m$ with $y^2 = 0$.

Let $x \in X_m$ (m > N) and let q be the least integer such that $x^q = 0$. Then $x^{\lfloor (q+1)/2 \rfloor} \in S_m$ where $\lfloor \cdot \rfloor$ as usual denotes the greatest-integer function, so $x^{\lfloor (q+1)/2 \rfloor + 1} = 0$ and thus $q \le 3$. Hence $y_m^3 = 0$ (m > N) and $X_m^3 = \{0\}$ (m > N).

Now $y_m^2 \in T$ (m > N) so there exists $z \in T$ such that $y_m^2 = z$ holds for infinitely many (and thus, without loss of generality, for all) m > N. Now sz = 0 for some $s \ge 1$. Hence the elements

$$w_{1} = y_{n+1} + \dots + y_{N+s}$$

$$w_{2} = y_{N+s+1} + \dots + y_{N+2s}$$

$$\vdots$$

$$w_{n+1} = y_{N+ns+1} + \dots + y_{N+(n+1)s}$$

satisfy $w_i w_j = 0$ (i, j = 1, 2, ...) and are distinct (by our choice of $\{y_k\}$). So the ring generated by $\{w_i\}$ is an infinite subring of R with square zero, giving a final contradiction.

COROLLARY (cf. Bell [1]). Let R be an infinite nil ring. Then R has an infinite subring S with $S^2 = \{0\}$.

PROOF. If the result fails, the Corollary to Lemma 2 implies that H(R) = R and Lemma 4 gives a contradiction.

We now prove Theorem 1.

Let R be an infinite periodic ring and suppose that R has no infinite subring S with $S^2 = \{0\}$ and no infinite set of mutually orthogonal idempotents.

By Lemma 4, H(R) is finite and, by Lemma 3, R/H(R) is commutative. Now A(H(R)) is an ideal of R and R/A(H(R)) is finite, by the finiteness of H(R) and Poincare's Theorem. Let $x, y \in A(H(R))$. There exists n > 1 such that $x - x^n \in H(R)$ (cf. proof of Lemma 3) and $xy - yx \in H(R)$ (since R/H(R) is commutative). Now since

$$H(R)A(H(R)) = A(H(R))H(R) = \{0\}$$

it follows that

$$xy - yx = x^{n}y - yx^{n}$$

$$= x^{n-1}(xy - yx) + x^{n-2}(xy - yx)x + \dots + (xy - yx)x^{n-1}$$

$$= 0.$$

Thus I = A(H(R)) satisfies the conclusions of Theorem 1.

COROLLARY TO THEOREM 1 (cf. [2]). Let R be an infinite ring. Then R has an infinite commutative subring.

We now obtain a general result on H(R).

THEOREM 2. Let R be an infinite ring with no infinite subring S with $S^2 = \{0\}$. Then H(R/H(R)) is commutative.

PROOF. Let $x+H(R) \in H(R/H(R))$. By definition

$$C = \{ y \in R \mid xy \text{ and } yx \in H(R) \}$$

has finite index in R^+ . So $x^m + C = x^{m+n} + C$ for some natural numbers m, n. Thus $x^{m+1} - x^{m+n+1} \in H(R)$ and thus $(x - x^n)^{m+1} \in H(R)$. So, by repeated application of Lemma 2, we get $x - x^n \in H(R)$. The result now follows from Jacobson's $(x^n = x)$ Theorem.

We now give an example.

EXAMPLE. Let S be a finite ring with $A(S) = \{0\}$. Let T be the set of infinite sequences $\{s_n\}$ of elements of S made into a ring by defining $\{s_n\} + \{s'_n\} = \{s_n + s'_n\}, \{s_n\} \{s'_n\} = \{s_n s'_n\}$. For $t = \{s_n\} \in T$ and $s \in S$, define $st = \{ss_n\}$ and $ts = \{s_n s\}$. Let $R = S \times T$ made into a ring by defining

$$(s_1, t_1) + (s_2, t_2) = (s_1 + s_2, t_1 + t_2)$$

$$(s_1, t_1)(s_2, t_2) = (s_1 s_2, s_1 t_2 + t_1 s_2 + t_1 t_2)$$

 $(s_1, s_2 \in S, t_1, t_2 \in T)$. Then $H(R) = \{(0, t) \mid t \in T\}$ and R/H(R) = H(R/H(R)) $\cong S$. Thus H(R/H(R)) is not necessarily commutative. In this example, if S has no nonzero nilpotent elements, then R has no infinite subring U with $U^2 = \{0\}$, so S is commutative by Theorem 2. In particular taking S to be a finite division ring, we get Wedderburn's Theorem, namely: every finite division ring is commutative. However Jacobson's $(x^n = x)$ Theorem which is used in the proof of Theorem 2 is, of course, a generalization of Wedderburn's Theorem.

The well-known Kurosh problem on rings is: "Is a finitely generated ring in which each element generates a finite subring necessarily finite." While the answer is in general negative we get an affirmative answer for rings not having an infinite subring S with $S^2 = \{0\}$. We prove:

THEOREM 3. Let R be a finitely generated ring in which each element generates a finite subring. If R is infinite, then R has an infinite subring S with $S^2 = \{0\}$.

PROOF. By Lemma 3, R/H(R) is commutative. Also for each $x \in R$, there exists n(x) > 1 such that $x - x^{n(x)} \in H(R)$. Also $q(x)x \in H(R)$ for some natural number q(x). So R/H(R) is finite.

Let $y_1 + H(R), \ldots, y_m + H(R)$ be a basis for the finite abelian group $[R/H(R)]^+$. Let x_1, \ldots, x_n be a set of generators for R. Now

$$x_{i} = \sum_{k=1}^{m} a_{k} y_{k} + h_{i} \quad (i = 1, 2, ..., n)$$

$$y_{i} y_{j} = \sum_{k=1}^{m} b_{ijk} y_{k} + h_{ij} \quad (i, j = 1, 2, ..., m)$$

for some integers a_k, b_{ijk} and elements $h_i, h_{ij} \in H(R)$. Let e_i be the order of $y_i + H(R)$, i = 1, 2, ..., m. Let L be the ideal of R generated by

$$\{h_i \mid i=1,2,\ldots,n\} \cup \{h_{ij} \mid i,j=1,2,\ldots,m\} \cup \cup \{e_i y_i \mid i=1,2,\ldots,m\} .$$

Since R has no infinite subring S with $S^2 = \{0\}$, Lemma 1 (c) implies that L is finite. Also if $r \in R$, then

$$r = \sum_{k=1}^{m} c_k y_k + w$$

for some integers c_i with $0 \le c_i < e_i$ and some $w \in L$. If $r \in H(R)$, then $r - w \in H(R)$ and thus $\sum_{k=1}^m c_k(y_k + H(R)) = 0$, forcing $c_1 = c_2 = \ldots = c_m = 0$ (since $0 \le c_i < e_i$). This implies that L = H(R). So R is finite.

REFERENCES

- 1. H. E. Bell, Infinite subrings of infinite rings and near rings, Pacific J. Math. 59 (1975), 345-348.
- 2. T. J. Laffey, On commutative subrings of infinite rings, Bull. London Math. Soc. 4 (1972), 3-5.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE DUBLIN 4 IRELAND