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COMMUTATIVE SUBRINGS OF PERIODIC RINGS

THOMAS J. LAFFEY

A ring R is called periodic if for each x € R the set {x,x2,x>,...} is finite, or
equivalently, for each x € R, there exist natural numbers m(x),n(x) such that
x™¥) = xmx)+nx) Examples of periodic rings are nil rings and direct sums of
matrix rings over finite fields. In this note we prove the following result:

THEOREM 1. Let R be an infinite periodic ring and assume:

(@) R has no infinite subring S with $*>={0},

(b) R has no infinite set of mutually orthogonal idempotents.
Then R has a commutative ideal I with R/I finite.

In proving Theorem 1 we introduce a new ideal H(R) of a ring R and obtain
some “radical-like” properties of it.

This paper is selfcontained modulo elementary group theory and the
following well-known result:

Jacobson’s (x"=x) THEOREM. Let R be a ring such that for each x € R, there
exists n(x) > 1 such that x"¥=x. Then R is commutative.

We also recall:

Poincare’s THEOREM. Let G be a group and H,,. .., H, subgroups of G with
[G:H]<oo, i=1,2,...,n
Then [G: N?_, H]<o0.

Let R be a ring and let R* be its additive group. If S is a subring of R, [R:S]
denotes the index [R*:S*].
If X is a nonempty subset of R, write

A(X) = {reR| rx=xr=0 for all xe X}.
If X ={r}, write A(r) in place of A(X). Define
H(R) = {xe R| [R:A(x)]<00}.
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We note the following elementary properties of H(R):

LEMMA 1. Let R be a ring and let x € R. Then

(a) x € H(R) if and only if xR and Rx are finite.

(b) H(R) is an ideal of R.

() x € H(R) if and only if RxR is finite (where RxR is the set of all finite
sums Xrxs; (r,s; € R)).

(d) H(H(R))=H(R).

(e) if I is a subring of R with [R:I]1< 00, then H(I)=I1NH(R).

The next result is important.

LEMMA 2. Let R be a ring with no infinite subring S with S*>={0}. Then, if
x € R is such that x* € H(R), x € H(R).

ProoF. Let B={xax | a € A(x?)}. Then B2={0}, so B is finite. Thus
C = {aecA(x?| xax=0}

has finite index in A(x2) (since it is the kernel of the map: y — xyx) and thus
in R*. Let D={xa|ae C}. Again D*={0}, so D is finite and thus
E={a e C| ax=0} has finite index in C and thus in R*. The result follows
using symmetry.

COROLLARY. Let R be a ring with no infinite subring S with S*={0}. Then
H(R) contains all nilpotent elements of R.

LeMMa 3. Let R be a periodic ring with no infinite subring S with $*={0}.
Then R/H(R) is commutative.

ProoF. Let x € R. Then x™(x—x" =0 for some natural numbers m,n with
n>1. So x—x" is nilpotent. The result now follows from the Corollary to
Lemma 2 and Jacobson’s (x"=x) Theorem.

LeMMA 4. Let R be a ring with H(R) infinite. Then (at least) one of the
following statements holds:

(@) H(R) has an infinite subring S with S*={0}.
+ (b) ‘H(R) has an infinite set of mutually orthogonal idempotents.

Proor (cf. Bell [1]). Suppose the result is false and let R be a counter
example. Let h € H(R). Then the ring V generated by h is finite since otherwise
W=V N A(h) is an infinite subring of R with W?2={0}.
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We now pick a sequence of elements of R as follows: Let
y1 € H(R), y, e HR) N A(y)—X,,. ..,
Va1t EHR)N A N L. NAQ)— X+ ... +X),..

where X, denotes the ring generated by y,. Since X, is finite for each n and
HR)NA(y,)N ... N A(y,) has finite index in H(R), by Poincare’s Theorem,
and is therefore infinite, this process can be continued indefinitely.

Since the elements of a finite ring with no nonzero idempotent are nilpotent
and (b) does not hold, X, is nilpotent for all but finitely many (and thus,
without loss of generality, for all) n. Let S, be a subring of X, maximal with
respect to S2={0}. Since X,X,,={0} (m#n), the ring T generated by U™, S,
satisfies T2={0} and is thus finite. -

Hence there exists N =1 such that

A

S,< S U...USy

for all m. In particular, for m>N, S, X,,=X,S,,={0}. By the maximality of S,,
we thus find that for m> N, S,, contains all elements y € X,, with y2=0.

Let x € X,, (m>N) and let q be the least integer such that x?=0. Then
xl@+*V21 ¢ §  where [-] as usual denotes the greatest-integer function, so
xl@*+ 12141 _ 0 and thus ¢<3. Hence y3=0 (m>N) and X ={0} (m>N).

Now y2 € T (m> N) so there exists z € T such that y2, =z holds for infinitely
many (and thus, without loss of generality, for all) m>N. Now sz=0 for some
s21. Hence the elements

Wi = Ypr1F o HNas

Wy = Ynpsert oo TN

Wot1 = INemsrt oo TINL1s

satisfy ww;=0 (i,j=1,2,...) and are distinct (by our choice of {y:}). So the
ring generated by {w;} is an infinite subring of R with square zero, giving a final
contradiction.

CoroLLARY (cf. Bell [1]). Let R be an infinite nil ring. Then R has an infinite
subring S with §?={0}.

PRrooF. If the result fails, the Corollary to Lemma 2 implies that H(R)=R
and Lemma 4 gives a contradiction.
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We now prove Theorem 1.

Let R be an infinite periodic ring and suppose that R has no infinite subring
S with §?={0} and no infinite set of mutually orthogonal idempotents,

By Lemma 4, H(R) is finite and, by Lemma 3, R/H(R) is commutative. Now
A(H(R)) is an ideal of R and R/A(H(R)) is finite, by the finiteness of H(R)
and Poincare’s Theorem. Let x,y € A(H(R)). There exists n>1 such that
x—x" € H(R) (cf. proof of Lemma 3) and xy—yx € H(R) (since R/H(R) is
commutative). Now since

H(R)A(H(R)) = A(H(R)H(R) = {0}
it follows that
xy—yx = x"y—yx"
= x""1(xy—yx)+x""2(xy—yx)x+ ...+ (xy—yx)x" !
=0.
Thus I=A(H(R)) satisfies the conclusions of Theorem 1.

CoroLLARY TO THEOREM 1 (cf. [2]). Let R be an infinite ring. Then R has an
infinite commutative subring.

We now obtain a general result on H(R).

THEOREM 2. Let R be an infinite ring with no infinite subring S with S* ={0}.
Then H(R/H(R)) is commutative.

Proor. Let x+ H(R) € H(R/H(R)). By definition
C = {yeR| xy and yx € H(R)}
has finite index in R*. So x™+C=x™*"4+C for some natural numbers m,n.
Thus x™*!—x™*"*! ¢ H(R) and thus (x—x")"*! e H(R). So, by repeated
application of Lemma 2, we get x—x" € H(R). The result now follows from
Jacobson’s (x"=x) Theorem.

We now give an example.

ExaMPLE. Let S be a finite ring with A(S)={0}. Let T be the set of infinite
sequences {s,} of elements of S made into a ring by defining {s,} +{s;} =
{Sn+5n}, {Sa}{sp} ={5,5,}. For t={s,} € T and s € S, define st={ss,} and ts=
{sxs}. Let R=S x T made into a ring by defining
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(51, t0)+ (52 t5) = (5, +55, 8 +t3)
(51:8)(S2:t3) = (5153, 81t, +11S,+14t5)

(51,5, €8, t5,t, € T). Then H(R)={(0, t)| te T} and R/H(R)=H(R/H(R))
~S. Thus H(R/H(R)) is not necessarily commutative. In this example, if § has
no nonzero nilpotent elements, then R has no infinite subring U with U2={0},
so S is commutative by Theorem 2. In particular taking S to be a finite division
ring, we get Wedderburn’s Theorem, namely: every finite division ring is
commutative. However Jacobson’s (x"=x) Theorem which is used in the proof
of Theorem 2 is, of course, a generalization of Wedderburn’s Theorem.

The well-known Kurosh problem on rings is: “Is a finitely generated ring in
which each element generates a finite subring necessarily finite.” While the
answer is in general negative we get an affirmative answer for rings not having
an infinite subring S with §2={0}. We prove:

THEOREM 3. Let R be a finitely generated ring in which each element generates
a finite subring. If R is infinite, then R has an infinite subring S with $?={0}.

Proor. By Lemma 3, R/H(R) is commutative. Also for each x € R, there
exists n(x)>1 such that x —x"™ ¢ H(R). Also g(x)x € H(R) for some natural
number gq(x). So R/H(R) is finite.

Let y,+H(R),...,y,+H(R) be a basis.for the finite abelian group
[R/H(R)]*. Let x,,...,x, be a set of generators for R. Now

Z akyk-!—h,- (i=1,2,...,n)

k=1

I

X;

iy = Z bijhyk+hij (,j=12,...,m)
k=1

for some integers a,,b;; and elements h;,h;; € H(R). Let e; be the order of
yi+H(R), i=1,2,...,m. Let L be the ideal of R generated by
{h| i=1,2,...,n} U {hy| i,j=1,2,...,m} U
u {eiy;| i=1,2,...,m}.

Since R has no infinite subring S with §?={0}, Lemma 1 (c) implies that L is
finite. Also if r € R, then

r= 3 antw
k=1
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for some integers ¢; with 0=c;<e¢; and some we L. If r € H(R), then
r—we H(R) and thus I, ¢ (y,+H(R))=0, forcing ¢,=c,=...=c,=0
(since 0=c;<e¢,;). This implies that L=H(R). So R is finite.
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