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ON THE LINEAR PREDICTION PROBLEM
OF CERTAIN
NON-STATIONARY STOCHASTIC PROCESSES

HANNU NIEMI

1. Introduction.

Tjostheim and Thomas [12] have introduced the class of uniformly bounded
linearly stationary stochastic processes. This class consists, in general, of non-
stationary stochastic processes for which the shift operator group T,, s € R, of
the process is well-defined and uniformly bounded, that is, | T,| <M, s € R, for
some constant M >0. In this paper the spectral properties and the linear
prediction problem of these stochastic processes are studied.

It is shown here that every continuous uniformly bounded linearly
stationary stochastic process x(t), t € R, is V-bounded, that is, x has a spectral
representation

x(t) = J‘e“ du(), teR,

where u is a bounded stochastic measure. Moreover, it is shown that the linear
predictidn problem of a uniformly bounded linearly stationary stochastic
process is analogous to the linear prediction problem of a wide sense
stationary stochastic process.

In section 4 the linear prediction problem of harmonizable uniformly
bounded linearly stationary stochastic processes is studied. A necessary and
sufficient condition for such a stochastic process to be purely non-deterministic
(respeciively deterministic) is derived. The conditions presented here have the
same form as the corresponding conditions concerning a continuous wide
sense stationary stochastic process. These results give a solution, in a special
case, to the linear prediction problem of harmonizable stochastic processes
considered e.g. by Cramér [2].

2. Uniformly bounded linearly stationary stochastic processes.
Let (R, o/, P) be a probability space. By L3(, o/, P) we denote the linear
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space of (equivalence classes of) complex-valued random variables ¢ defined
on (2, «, P) for which

E¢=0 and E|f? < .

The space L3(2, «, P) is a Hilbert space if the norm and the inner product are
defined in the well-known way.

In the following the underlying probability space (£, o/, P) is defined only
through L2(9, s/, P).

Following Tjostheim and Thomas [12] we call a stochastic process x:R
— L%(Q, o/, P) uniformly bounded linearly stationary, if there exists a constant
M >0 such that

1)

Y akx(tk+h)” =M
k=1

Z akx-(tk)”
k=1

for all h,t, e R, aq, e C, k=1,...,m,meN.

Let sp {x} be the closure in L2(£2, o/, P) of the linear span, sp {x}, of the set
{x(t) ! teR}. If x is a uniformly bounded linearly stationary stochastic
process, then for every k € R there exists a bounded linear operator T;:sp {x}
— sp {x} such that

n(z akx(tk)) = 3 axe+h)
k

=1 k=1

for all elements Tj_, a,x(t,) € sp {x}.
Moreover, if M >0 is a constant for which the condition (1) is satisfied, then

IT <M forall heR
(Getoor [3], Tjostheim and Thomas [12]). Clearly,
Tw=1 TT =T, forallsteR

(I stands for the identity operator). Thus the operators T,, h e R, form a
commutative group. Following Getoor [3] we call the group T;, h € R, the shift
operator group of the stochastic process x. (Note that in the present case T_,
=T, ! for all heR)

In this paper we call a stochastic process x:R — L3(Q, o, P) wide sense

stationary, if the covariance function r(s,)=Ex(s)x(t), s,t € R, of x has the
form

Ex(s)x(t) = (x(s)|x(t) = r(s—t) for all s,zeR.

A stochastic process x: R — L3(, &, P) is wide sense stationary if and only if
the shift operator group T, h € R, of x is a group of unitary operators.
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DEFINITION 1. Let x: R — L%(R, o, P) be a stocnastic process. A couple (y, B)
consisting of a wide sense stationary stochastic process y: R — L2(%, /', P') and
a bounded linear operator B:sp {y} — sp {x} with a bounded inverse B™! is
called a stationary similarity of x, if

x(t) = By(t) forallteR.

REMARK 2. A stochastic process x: R — L3(Q, o, P) is uniformly bounded
linearly stationary, if there exists at least one stationary similarity of x.
Conversely, suppose x:R — L3(©, ., P) is a uniformly bounded linearly
stationary stochastic process. Then there exists a stationary similarity (y, B) of
x such that the random variables y(¢), t € R, are defined on (£, o, P), that is,
y(t) € L3(Q, o, P), t € R, and B is a bounded self-adjoint operator from sp {y}
onto sp{y}; in this case sp{y}=sp{x} (Tjostheim and Thomas [12],
Theorems 1 and 2. See also Martin [5]). Moreover, it follows from Theorem 1
in [10] and from the method used in the proof of Theorem 2 in [12] that the
self-adjoint operator B:sp{x} — sp{x} can be chosen such that
1/M £ ||Bll £ M for any constant M > 0 satisfying the condition (1).

We recall that a stochastic process x: R — L2(2,.,P) is called (g.m.)
continuous, if the mapping x:R — L2(2, ., P) is continuous. Let x:R
— L%(R, o4, P) be a uniformly bounded linearly stationary stochastic process
and let T,, h € R, be the shift operator group of x. Then x is continuous if and
only if for all z € sp {x} the vector valued functions Tz, h € R, are continuous.

The following lemma is obvious. -

LeMMA 3. Suppose x:R — Li(2,5,P) is a continuous stochastic process.
Then for any stationary similarity (y, B) of x the wide sense stationary stochastic
process y is continuous. If there exists such a stationary similarity (y, B) of x that
y is continuous, then x is continuous.

Next we show that every continuous uniformly bounded linearly stationary
stochastic process is V-bounded (for the definition of a V-bounded stochastic
process see Bochner [1; p. 18] or [6; p. 34]).

We recall that a continuous stochastic process x:R — L3(Q, s/, P) is V-
bounded if and only if there exists a bounded (uniquely determined) vector
measure u: Cy(R) — L3(R2, o, P) such that

(¥3) x(t) = je“‘du(i) for all t e R;

here C,(R) is the linear space of all continuous functions f: R — C vanishing at
infinity (see [6; Theorem 3.2.1] or Kluvanek [4; Theorem 2]. For a more
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general treatment see Ylinen [13]). The bounded vector measure 4 on the rignt
hand side of the representation (2) is called the spectral measure of the
continuous F-bounded stochastic process x. (In this paper we use the
integration technique of vector measures introduced by Thomas [11].)

THEOREM 4. Every continuous uniformly bounded linearly stationary stochastic
process x: R — L¥(Q, o, P) is V-bounded. Let (y, B) be any stationary similarity
of x. Then the spectral measure p, of x can be represented in the form

() ie = Bep,,

where p, is the spectral measure of the continuous wide sense stationary
stochastic process y.

Proor. Since x is a uniformly bounded linearly stationary stochastic process
there exists a stationary similarity (y, B) of x. Since x is continuous, the wide
sense stationary stochastic process y is, by Lemma 3, continuous. Thus there
exists a uniquely determined bounded vector measure p,: Co(R) — sp {y} for
which (u,(f)|u,(g))=0 for all f,g € Co(R) with compact and disjoint supports
and

y(t) = J ehdu () forall teR

(see [7; Theorem 8]). Define u,: Co(R) — sp {x} by setting
By = Bop, .

Then p, is a bounded vector measure and by using a result of Thomas [11; pp
78-79] we get

x(t) = By() = B(Je"%duy(z)> = fe"‘dBoyy(A)

for all t € R. Thus x is V-bounded and p, = Bop, is the spectral measure of x.

REMARK 5. There exist continuous V-bounded stochastic processes x: R
— Li($2, o, P) for which the shift operator group T,, h € R, of x cannot be
defined as a group of bounded linear operators (see Remark 15).

For the sake of completeness we brigfly consider the discrete-time c?se, that
is, the case where the parameter set of the process is the set of all integers.
Suppose for a stochastic process x: Z — L3(£2, #, P) a condition analogous to
(1) is satisfied for some constant M >0. In this case there exists a bounded
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linear operator T:sp {x} — sp {x} for which |T*|<M for all he Z (T°=1);
and for any h € Z we have

Th<,~i ajx(kj)) = i ax(k;+h)

=1 j=1

for all elements X7, a;x(k;) € sp {x}.

It follows from Theorem 1 in Tjostheim and Thomas [12] and Theorem 1 in
Sz.-Nagy [10] that the results stated in Remark 2 are valid in the discrete-time
case. Moreover, Theorem 4 is valid in the discrete-time case with an obvious
modification.

3. On the linear prediction problem of uniformly bounded linearly stationary
stochastic processes.

Let x:R — L3(Q, s, P) be a stochastic process. For t € R we denote by
sp{x;t} the closed linear subspace in L2(Q,./,P) spanned by the set
{x(s) | s<t}. Moreover, we use the notation

sp {x; —o0} = Qﬁ{x;t}-

We recall that a stochastic process x: R — LZ(Q, /, P) is called purely non-
deterministic, if sp {x; —oo}={0}; and deterministic, if sp {x; —oo} =sp {x}.
The proof of the following lemma is obvious and is therefore omitted.

LemMa 6. Let x:R — L3(Q,,P) and y:R — L§(2, o', P') be stochastic
processes. Suppose there exists a bounded linear operator A:sp {y} — sp {x}
with a bounded inverse A~":sp {x} — sp{y} such that

x(t) = Ay(t) forallteR.
Then for any t € R one has
spi{x;t} = Asp{y;t}, sp{y;t} = A7 sp{x;t};
and
sp{x; —oo} = Asp{y; —oo}, sp{y; —oo} = A7'sp{x; —oo}.
The following theorem is a direct consequence of Lemma 6.
TueoreM 7. Let x:R — Li(Q,s4,P) be a uniformly bounded linearly

stationary stochastic process. If there exists such a stationary similarity (y, B) of
X that y is purely non-deterministic (respectively deterministic), then x is purely
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non-deterministic (respectively deterministic). If x is purely non-deterministic
(respectively deterministic), then for all stationary similarities (y,B) of x the
stochastic process y is purely non-deterministic (respectively deterministic).

Let x:R — L3(Q, o/, P) be a stochastic process. By P_, we denote the
orthogonal projection of sp {x} to sp {x; —oo}. Consider the decomposition
x(t) = x, () +x,(1), teR,

where x,(t)=P_x(t) and x,(t)=x(t)—x,(t), t € R. Then

(@) x,:R — L2(2,.,P) is purely non-deterministic,
(i) x;:R — L3(Q, o, P) is deterministic and
(i) (¢, (£)]x,(t))=0 for all t € R.

If x is a (continuous) wide sense stationary stochastic process, then x, and x,

are (continuous) wide sense stationary stochastic processes.

THEOREM 8. Let x:R — L2(Q,%,P) be a uniformly bounded linearly
stationary stochastic process and let T,, t € R, be the shift operator group of x.
Let (y,B) be a stationary similarity of x. If

y(©) = y1(®+y,(0), teR;
where y,(t)=P_  y(t), y1()=y(t)—y,(t), t € R, then the stochastic processes
x(t) = By (t), teR, k=12,
are uniformly bounded linearly stationary; x(t)=x,(t)+x,(t), t € R;
X (t+h) = Tx (), theR, k=1,2;
(yw, B) is a stationary similarity of x,, k=1,2; x, is purely non-deterministic and
X, is deterministic. If x is continuous, then x, and x, are continuous.

Proor. Since T, t € R, is the shift operator group of x the group U,
=B“!TB, t € R, (of unitary operators) is the shift operator group of y. Since
y2() = P_,y(t) and y,()) = y()—y.(1), teR,
the stochastic processes y, and y, are wide sense stationary and

Vi(t+h) = U, y(), theR, k=1,2
(Rozanov [9; pp. 54-55]). It follows that the stochastic processes
x(t) = By(t), teR, k=12,

are uniformly bounded and linearly stationary. Furthermore, T,, ¢t € R, is the
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shift operator group of x, and x,. Clearly, (y,, B) is a stationary similarity of x,,
k=1,2.

Since y, is purely non-deterministic and since y, is a stationary similarity of
the uniformly bounded linearly stationary stochastic process x, we get, by
applying Theorem 7, that x, is purely non-deterministic. In a similar way we
see that x, is deterministic.

Clearly, the continuity of x implies the continuity of x,, k=1, 2.

The theorem is proved.

REMARK 9. Let x:R — L2(2,,P) be a uniformly bounded linearly
stationary stochastic process and let the purely non-deterministic (respectively
deterministic) uniformly bounded stationary stochastic process x; (respectively
X,) be defined as in Theorem 8. In general, we then have

(x1()x,() £ 0, teR.

ReEMARK 10. Let x:R — L2(2,.,P) be a uniformly bounded linearly
stationary stochastic process. For t € R and h>0 we denote by X(t; h) the
projection of x(t+ h) to sp {x; t}, that is, x(¢; h) is the best linear least-square
prediction of x(t+ h) in terms of the development of x up to and including the
time t. Let (y, B) be a stationary similarity of x and let j(¢; h) be defined in the
similar way as x(t; h). Then

I1X(t; H)—x(@+h) = IBY(t; b)—x(t+h)l
< IBIIP(E; h—y+h)]

and
1X(t; By —x@E+h)| 2 1B I15(; B)—y@E+h)] .

Moreover, according to Remark 2, there exists a stationary similarity (y, B) of
x such that

M7H5E B =ye+h)) S 120 D—x@+h)| < MIJ(E; h)~y(+h)

for any M >0 satistying the condition (1).

4. Linear prediction of harmonizable uniformly bounded linearly stationary
sStochastic processes.

In this section we present a method to construct a stationary similarity for
certain uniformly bounded linearly stationary stochastic processes. After that
we show that by applying this method we get a necessary and sufficient
condition for these stochastic processes and especially for harmonizable
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uniformly bounded linearly stationary stochastic processes to be purely non-
deterministic (respectively deterministic).

Following Rozanov [8] we say that a stochastic process x: R — L3(Q, o, P)
has a spectrum, if the scalar function | x(¢)||?, ¢ € R, is integrable on every finite
interval, if the limit

T— oo

T
4) lim lj (x(t+7)|x(@®)dt = S(z)
TJo

exists for all 7 € R and if the limit function S: R — C is continuous. We recall
that the limit function S:R — C is, provided that it exists, positive definite,
that is,

Z Z a;a,S(t;—t) 2 0

j=1k=1
for all t;e R, a;€C, j=1,...,m, me N (Rozanov [8]).
The proof of the following theorem is essentially based on the proof of
Theorem 1 in Sz.-Nagy [10].

THEOREM 11. Let x:R — L3(2,54,P) be a uniformly bounded linearly
stationary stochastic process. If the limit S(t) defined in (4) exists for all T € R,
then there exists a stationary similarity (y, B) of x where y is such a wide sense
Stationary stochastic process that

((s)|y(t) = S(s—1t) for all s,;teR;
and sp {y} =sp {x}. The operator B:sp {x} — sp {x} is self-adjoint and

LoBrsm
M \

Jor any constant M >0 satisfying the conditon (1).

PROOF. Recall that sp {x} stands for the linear span of the set {x(¢) | te R}
We define a mapping K:sp {x} xsp {x} — C by

my

mz .
K(zy,25) = Z Z ay ;028 (t;—ta)

j=1k=1
where

h
z, = Y, apx(ty)espix}, h=12.

j=1
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Clearly,

m  m

. — 1 (7
K(zy,2) = lim ) ) aljaZk—rfj (x(t+1ty;— ) | x(0) dt
0

T— o j=1 k=1

. my  m, o 1 T—ty
im Y } ajay T J (x(t+t )] x(t+1z)dt
T—-oo j=1 k=1 —t

I

1 T
lim T J (T,z, | T,z,) dt .
0

T — oo

Thus K is bilinear and Hermitian.
Let M>0 be a constant for which the condition (1) is satisfied and let
z € sp{x}. Then for all s € R we get

1Tzl = Mjz|; and %IIZIIéIlTsZH,

since |z|| = || T-,T,z|| £ M|| T,z||. Therefore for all z,,z, € sp{x} we have
&) K(zy,2,)| = llm -J [(Tizy | Tzp)ldt £ M|z, |iz,]l -
Moreover, for any z € sp {x}

(6) K(z,2) = Tlln:o—j 1Tzl dt = M’ Izl .

From the inequality (5) it follows that the bilinear mapping K: sp {x} x sp {x}
— C is continuous (when sp {x} carries the norm topology). Thus K can be
extended by continuity to a continuous bilinear form K:sp {x} x sp {x} - C.
Since K is Hermitian the extended bilinear form is Hermitian. Thus there exists
a bounded self-adjoint operator A:sp {x} — sp {x} such that

K(zy,2;) = (Azy|z,) for all z,,z, € 5p {x} .
Moreover, by applying (5) and (6) we get

1
—M—Z-IgAgMZI.

Therefore the self-adjoint operator Q= A?* exists and we have

1
—I1 0= MI.
M =0=M

Let the stochastic process y:R — sp {x} be defined by
y(@) = Ox(t), teR.
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Then for all s,t € R we get

(O 1y@®) = (Qx(5)1Qx(1)) = (Ax(s)|x (1)
= K(x(s),x(t) = S(s—1),

which proves that y is a wide sense stationary stochastic process. Denote B
=Q™!; then the pair (y, B) is a stationary similarity of x satisfying the required
conditions.

REMARK 12. Suppose x: R — L3(£2, o/, P) is a continuous uniformly bounded
linearly stationary stochastic process and suppose the limit function S, defined
in (4) exists. Then, by Theorem 11, there exists a stationary similarity (y, B) of x
such that S is the covariance function of y. Thus S is continuous, since y is by
Lemma 2 continuous. Moreover, since S is positive definite (Rozanov [8]),
there exists a uniquely determined bounded positive Radon measure, that is, a
regular Borel measure v, on R such that

) S(t) = Je'”dvo(l) for all teR.

THEOREM 13. Let x:R — L3(2,5,P) be a continuous uniformly bounded
linearly stationary stochastic process such that the spectrum of x exists. Let S be
the (continuous) limit function defined in (4) and let v, be the bounded positive
Radon measure on the right hand side of the representation (7) of S. Let

vo = f.dA+Z

be the decomposition of v, to its absolutely continuous and singular parts. If the
density f vanishes on some set of positive Lebesgue measure or, if

(8a) J‘L?_%Qdi = —00,
then x is deterministic; if

(8b) fl(igf }fj ) di > — o0
and if

x4 (1) ='f e*du(2), teR,
4
and

x3(t) =f ¢du(d), teR;
4o
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where i is the spectral measure of (the continuous V-bounded stochastic process)
x and A, is the set of Lebesgue measure zero on which the measure X is
concentrated and 4, is its complement. Then x(t)=x, (t)+ X,(t), t € R; x, and X
are uniformly bounded linearly stationary; x, is purely non-deterministic and x,
is deterministic.

Proor. Since the spectrum of x exists, there exists, by Theorem 11, a
stationary similarity (y, B) of x such that the (continuous) limit function S
defined 1n (4) is the covariance function of y.

If the density f vanishes on some set of positive Lebesgue measure or, if (8a)
holds, then y is deterministic (Rozanov [9; pp. 115-116]). Thus, in this case, it
follows from Theorem 7 that x is deterministic.

Suppose (8b) holds and suppose p, is the spectral measure of y. Define

y() = J e*dp,(3), teR,

4o

and

hm=féwma teR.
4,

Then y(t)=y,(t)+y,(t), t € R; and y,, y, are wide sense stationary stochastic
processes satisfying the conditions stated in Theorem 8, that is,

yat) = P_oy(®),  yi()) = y(®)—y,(0), teR
(Rozanov [9; pp. 115-116]). It then follows from Theorem 8 that the stochastic
processes

xk(t) = Byk(t)’ te R’ k=132 s

are uniformly bounded linearly stationary. Moreover, x, is purely non-
deterministic and x, is deterministic.
As in the proof of Theorem 4 we get

mm=wm=fé%mmatem

4o

anci

x3(t) = By,(1) = J‘ e"*dBop,(4), teR,

4

which proves the theorem, since y=Bop, is the spectral measure of x.
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Next we consider harmonizable uniformly bounded linearly stationary
stochastic processes. We show that in this case the results stated in Theorem 13
can be improved. Our result is essentially based on a result of Rozanov [8]
concerning the existence of the spectrum and the representation of the limit
function S defined in (4) in case of a harmonizable stochastic process.

First we recall that a stochastic process x:R — LZ(Q, o/, P) is called
harmonizable, if the covariance function r(s,t), s,t € R, of x can be represented
as

r(s;t) = J‘e“"e““" av(A,0), steR,

where v is 2 bounded Radon measure on R x R for which v(f®7)=0 for all
f€ Cy(R). Here

(f®f)st) = f&)f@, steR.

Every harmonizable stochastic process is continuous. Moreover, every
harmonizable stochastic process is V-bounded (Bochner [1]).

THEOREM 14. Let x:R — L2(8, o, P) be a harmonizable uniformly bounded
linearly stationary stochastic process and let

r(s,t) = Jei“e‘i“’dv(l, 0, steR,

be its covariance function. Then (the spectrum of x exists and) the results
stated in Theorem 13 are valid for x with

©) vo(f) = J fDxs(2,0)dv(A0),  fe CoR);

here y, is the characteristic function of the main diagonal A={(A,2) €
RxR|4eR}

PRrooF. It follows from a result of Rozanov [8] that the spectrum of x exists
and the limit function S, defined in (4), can be represented as

S@) = J ¢dvo(), teR,
where v, is defined as in (9).

To complete the proof we show that v, is a bounded positive Radon
measure,
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Clearly,
vo(f)l < sup|f] JdIVI for all fe Co(R);

thus v, is bounded.
To show that v, is positive, it is enough to show that vy(f)=0 for all

fe Co(R), f20.
Let fe Cy(R), f=0, be given. Let ¢>0. Then there exists a compact set K <
R xR and open set G R xR such that KcA4<G and

(10) JXG\K ay| < e,

where ¢« is the characteristic function of G\K.
Denote

K = {seR| (5,59 €K} .

Since K’ =R is compact we can find a finite collection G;, j=1,.. ., L, of open
subsets of R such that

i=1 Jj=

L
K<clJG and Kc | G;xG;=G.
j=1

Moreover, there exist continuous functions g;: R — [0,1] such that the
support of each g; is contained in G;, j=1,...,L, and

L L
Y g =1, teR; gi) =1, tekK' .
i=1 =1

J

Denote

h = _; (f4gi®figh) and V= v(h).

It then follows from the properties of v that

L

V=) v(f1gi®figh 2 0.

i=1
Moreover, a straightforward calculation shows that for all s,t € R
h(s,s) = f(s)xa(s,2)

and

L

h(s, t) = ) S (P g; (1 f (g0

j=
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= -; (/($)8,(9)+1 (g; (1) < f()+ () -

Thus, by using (10), we get

vo(f)— V] U (Xa(s,00f ()= h(s, 1)) dv(s, 1)

IIA

jIXA (5,01 (s)=h(s, 0l d]VI(s, 1)

IIA

~[XG\K (S, t)h (57 t) dIVI (Sa t) é 28 Sup f 3

which proves that vy (f)=0.
The theorem is proved.

RemARrk 15. There exist harmonizable stochastic processes which are not
uniformly bounded linearly stationary. Consider for example the stochastic
process x: R — L%(Q, s, P) defined by

x(t) = (e"—e ™ teR,

where ¢ e L3(Q, o, P), £+0. Moreover, there exist continuous stochastic
processes for which the spectrum exists and which are not V-bounded.
Consider for example the stochastic process x(¢f)=f(t)¢, t € R, where

© sinnt
- R,
7o ,,;2 nlogn’ Le
and ¢ € L3(Q, o, P), (0.
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