CONGRUENCES FOR THE FOURIER COEFFICIENTS OF CERTAIN MODULAR FORMS

GUNNAR DIRDAL

1.

Let

$$\varphi(x) = \prod_{n=1}^{\infty} (1 - x^n),$$

$$\varphi(x)^k = \sum_{n=0}^{\infty} p_k(n) x^n.$$

Then $p_{-1}(n) = p(n)$ is the number of unrestricted partitions of n. In this paper we are concerned with congruences to prime moduli, involving p(n) and the Fourier coefficients of certain modular forms of half-integral dimension.

In particular, application of Theorem 1 for the primes q, $13 \le q \le 23$, gives congruences of the form

$$\alpha_1 p \left(qn - \frac{q^2 - 1}{24} \right) + \alpha_2 p \left(\frac{n}{q} \right) \equiv \alpha_3 p_{24k - 1} \left(qn - \frac{q^2 - 1}{24} - k \right) \pmod{q}$$

where α_1 and α_2 are not congruent zero simultaneously.

Finally, we briefly mention the results obtained when p(n) is replaced by c(n), the Fourier coefficients of the modular invariant $j(\tau)$.

2.

Put

$$y = e^{\pi i \tau / 12}, \quad x = y^{24},$$

$$\eta(\tau) = y \varphi(x), \quad \text{Im } \tau > 0.$$

The congruence properties of p(n) modulo q depend on the residue character of 24n-1 modulo q. Therefore we define, as in Kløve [5],

$$U(q; \varepsilon) \sum_{n} a(n)y^{n} = \sum_{\left(\frac{-n}{a}\right)=\varepsilon} a(n)y^{n},$$

for any power series $\sum_{n} a(n)y^{n}$. Here and in the following q always denote a prime > 3.

We shall examine the case $\varepsilon = 0$. Results similar to Theorem 1 below do exist when $\varepsilon = \pm 1$, but this will not be considered here.

Let $\Gamma_0(m)$ denote the subgroup of the full modular group $\Gamma(1)$, defined by those matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 a, b, c, d integers, $ad - bc = 1$,

of $\Gamma(1)$ that satisfy $c \equiv 0 \pmod m$. Further $C^+(\Gamma_0(m), -k, \chi)$ denotes the space of modular forms of dimension -k, regular in the fundamental domain, $\Delta(\Gamma_0(m))$, of $\Gamma_0(m)$, except possibly at $\tau = i\infty$, $\tau = 0$ and with multiplier system χ . We denote by C_q the subspace of $C^+(\Gamma_0(q), 0, 1)$, consisting of all modular functions which are regular at $\tau = 0$. g = g(m) denotes the genus of the Rieman surface $H/\Gamma_0(m)$ (compactified) where H is the upper half plane. At a given point τ_0 of the Rieman surface $H/\Gamma_0(m)$, we say that k is a gap if no function exists with a pole of order k at τ_0 and regular elsewhere on $H/\Gamma_0(m)$. Weierstrass Gap Theorem asserts that there are just g gaps k at τ_0 , and that these satisfy $1 \le k \le 2g - 1$. Moreover, except for finitely many τ_0 , the gaps are just the integers 1 to g. Those exceptional τ_0 for which this is not so are called Weierstrass point of $H/\Gamma_0(m)$ (or, loosely, of $\Gamma_0(m)$).

No value of q is yet found for which $i\infty$ is a Weierstrass point of $\Gamma_0(q)$, hence it seems that the contrary is true. In any case this is so for q < 100 (Atkin [1], [2]).

It is a conjecture that the elements, f_l , in a (polynomial) basis \mathcal{B} for C_q may be taken as

$$f_l = \Omega_l(W_1, \ldots, W_{(q-1)/2}),$$

where Ω_l is a cyclic (q, 0)-isobaric polynomial and

$$W_k = x^{k(6k-q)/q} \frac{C_{4k}(x)}{C_{2k}(x)}, \quad k \equiv 0 \pmod{q},$$

$$C_k(x) = \prod_{n=1}^{\infty} (1-x^{qn-k})(1-x^{qn-q+k}),$$

(see Fine [4]). Hence all elements of \mathscr{B} have integral Fourier coefficients at the cusps $\tau = i\infty$ and $\tau = 0$. The functions W_k were introduced by Atkin and Swinnerton-Dyer [3] and studied by Fine [4]. Since $W_k = W_{-k} = W_{k+q}$, only (q-1)/2 of the W_k are different.

Suppose that $i\infty$ is not a Weierstrass point of $\Gamma_0(q)$. Then a basis ${\mathscr B}$ for C_q ,

$$\mathcal{B} = \{ f_l \mid g+1 \le l \le 2g+1 \},$$

is called perfect if all the elements of \mathcal{B} has a zero at $\tau = 0$ and

(2.1)
$$f_l(\tau) = q^{\psi_1(l)} \sum_{i=-l}^{\infty} a_{i,l} x^i,$$

$$f_i\left(-\frac{1}{q\tau}\right) = q^{\theta_1(i)} \sum_{i=1}^{\infty} a_{i,i}^* x^{i^*},$$

(2.3)
$$\theta(l) = \theta_1(l) - \psi_1(l) > 0,$$

where $a_{i,l}$, $a_{i,l}^*$ and $\theta_1(l)$, $\psi_1(l)$ are integers, and

$$0 = \pi_a(a_{-l,l}).$$

 π_a is a valuation, defined by

$$q^{\pi_q(a)} \mid a, \quad q^{\pi_q(a)+1} \not\mid a$$
,

integer a.

To each perfect basis \mathscr{B} for C_q , we associate an integer $\xi, 0 \le \xi \le g+1$. If $\theta(2g+1) > 1$, ξ is given as the smallest integer such that $\theta(l) > 1$ when $l > \xi + g$. Otherwise we put $\xi = g+1$.

We also need the following definitions to formulate the results;

$$\sigma = \frac{12}{(12, q - 1)},$$

$$\varrho = \frac{q - 1}{(12, q - 1)},$$

$$v = \left[\frac{q + 11}{24}\right],$$

$$\lambda = \frac{(12, q - 1)(q + 1)}{24},$$

$$\gamma_k = \begin{cases} 0 & \text{if } -(\lambda - 1) \le k \le \lambda - 1\\ p_{2q - 2\sigma(\lambda + k)}(-\varrho(\lambda + k)) & \text{if } -(\lambda + (12, q - 1)) \le k \le -\lambda \end{cases},$$

$$\lambda^* = 3\lambda - \frac{(12, q - 1)}{6} & \text{if } q \equiv 1, 7 \pmod{12},$$

$$\zeta_k = \begin{cases} (-1)^{(q - 1)/2} & \text{if } 6(\lambda - k) = (12, q - 1)\\ 0 & \text{otherwise}. \end{cases}$$

Further we put $\delta_q = 0, 0, 1, 0, 6, 2, 4, 1$ if $q \equiv 1, 5, 7, 11, 13, 17, 19, 23 \pmod{24}$ and

 $\mu_q = 3, 1, 2, 1$ if $q \equiv 1, 5, 7, 11 \pmod{12}$ respectively. A rational number is called q-integral if the denominator is not divisible by q.

THEOREM 1. Let q be a prime > 3 and \mathcal{B} a perfect basis for C_q . Then there exist integers a_k , not all congruent zero, such that

$$\begin{split} &U(q;0)\left\{a_0\eta^{-1}(\tau)+\eta^{-1}(q^2\tau)\sum_{i=1}^{\xi}a_{k_i}\gamma_{k_i}\right\}\\ &\equiv U(q;0)\sum_{i=1}^{\xi}a_{k_i}\{\eta^{24\varrho k_i-1}(\tau)+\zeta_{k_i}\eta^{24\varrho\lambda^*-1}(\tau)\}\pmod{q}\;, \end{split}$$

where $-(\lambda+(12,q-1)) \leq k_i \leq \lambda-1$.

If, in particular, we choose all the k_i in Theorem 1 such that

$$-\delta_{a} \leq k_{i} \leq \lambda - \mu_{a}$$

then there always exists a congruence similar to the one in Theorem 1. In fact

THEOREM 2. Let q be a prime > 3. Then there exist integers a'_k , not all congruent zero, such that

$$a'_0 U(q; 0) \eta^{-1}(\tau) \equiv U(q; 0) \sum_{i=1}^{\nu} a'_{ki} \eta^{24\varrho k_i - 1}(\tau) \pmod{q}$$

where $-\delta_q \leq k_i \leq \lambda - \mu_q$.

In [6] Kolberg proved Theorem 2 when $k_i = i$, using an identity of Ramanujan [12]. Our proof of Theorem 2 is just a slight modification of that of his.

3.

In this section we will apply Theorem 1 for the primes $q, 5 \le q \le 23$. The details in the construction of a perfect basis \mathcal{B} for C_q where

(3.1)
$$\xi = \begin{cases} 0 & \text{if } q = 5, 7, 11 \\ 1 & \text{if } q = 13, 17, 19, 23 \end{cases}$$

will not be considered here, but the construction, may easily be carried out. Hence, for q = 5, 7, 11 we obtain the well-known result

$$U(q;0)\eta^{-1}(\tau) \equiv 0 \pmod{q}.$$

This was first discovered and proved by Ramanujan [13], [14]. Further, when q = 13, 17, 19, 23 Theorem 1 and (3.1) gives

$$U(13; 0)\eta^{-1}(\tau) \equiv U(13; 0)\{\eta^{119}(\tau) + \eta^{455}(\tau)\} \pmod{13}$$

and

(3.2)
$$U(q; 0)\{\alpha_{q, k, 1} \eta^{-1}(\tau) + \alpha_{q, k, 2} \eta^{-1}(q^{2}\tau)\}$$

$$\equiv \alpha_{q, k, 3} U(q; 0) \eta^{24qk-1}(\tau) \pmod{q},$$

where the integers $\alpha_{q,k,i}$, i=1,2,3, are given by the tables 1-4.

Table 1.

k	$\alpha_{13, k, 1}$	$\alpha_{13, k, 2}$	$\alpha_{13, k, 3}$
6	1	0	11
4	1	0	12
3	1	0	5
2	1	0	3
1	1	0	6
-1	1	0	11
-3	1	0	4
-4	1	0	9
-5	1	0	9
-6	1	0	3
-8	1	9	2
-9	0	1	7
-10	0	1	4
-11	0	1	5
-12	0	1	10
-13	0	1	6
-14	0	1	1
-16	0	1	11
-17	0	1	2
-18	0	1	2
-19	0	1	5

Table 2.

k	$\alpha_{17, k, 1}$	$\alpha_{17, k, 2}$	$\alpha_{17, k, 3}$
1	1	0	1
-1	1	0	9
-2	1	0	8
-4	0	1	13
-5	0	1	16
-6	0	1	16
-7	0	1	12

Table 3.

k	$\alpha_{19, k, 1}$	$\alpha_{19, k, 2}$	$\alpha_{19, k, 3}$
1	1	0	1
-2	1	0	8
`-3	1	0	15
-4	1	0	11
-6	0	1	12
-7	0	1	18
-9	0	1	10
-10	0	- 1	18
-11	0	1	11

Table 4.

k	$\alpha_{23, k, 1}$	$\alpha_{23, k, 2}$	$\alpha_{23,k,3}$
-1	1	0	9
-3	0	1	16
-4	0	1	1

Some of these results are known. When q=13, k=6 (3.2) was proved by Zuckermann [15]. Kolberg [6], [7] proved (3.2) when q=13, k=1; q=17, k=1,-1,-2; q=19, k=1,-2,-3,-4; and q=23, k=-1. The other results seem to be new.

Note that not all values of k, $-(\lambda + (12, q - 1)) \le k \le \lambda - 1$, are included in the tables above. k = 0, $-\lambda$ are excluded since (3.2) is trivial in these cases. For the other excluded k-values we have

$$\alpha_{q,k,i} = 0, \quad \alpha_{q,k,3} = 1, \quad i = 1,2,$$

except if q = 19, k = 4 where

$$U(19; 0)\{\eta^{287}(\tau) - \eta^{1007}(\tau)\} \equiv 0 \pmod{19}.$$

When applying Theorem 1 to the primes q > 23 further results are obtained, but ξ is probably >1 in these cases. In particular, there exist a perfect basis \mathcal{B} for C_a , q = 29, 31, where $\xi = 2$.

4.

If $h(\tau)$ is any function in the complex variable τ , the operator L_m , introduced by Lehner [9] for each positive integer m, is given by

(4.1)
$$L_{m}h(\tau) = m^{-1} \sum_{k=0}^{m-1} h\left(\frac{\tau+k}{m}\right).$$

It is immediately seen that L_m is linear and

$$L_m \sum_n a(n) x^n = \sum_n a(mn) x^n.$$

Hence we easily obtain

LEMMA 1. If
$$f(\tau) \in C^+(\Gamma_0(q^2), 0, 1)$$
 then $L_a f(\tau) \in C^+(\Gamma_0(q), 0, 1)$.

From Newman [10], [11] we have

LEMMA 2. If

$$\Phi_{q^i}(\tau) = \left(\frac{\eta(q^i\tau)}{\eta(\tau)}\right)^{24/(12i,q^i-1)}, \quad i=1,2,$$

then

$$\Phi_{q^i}(\tau) \in C^+\left(\Gamma_0(q^i),0,1\right)\,,$$

and

$$\Phi_{q^i}(-1/q^i\tau) = q^{-12/(12,q^i-1)}\Phi_{q^i}^{-1}(\tau).$$

Put

(4.2)
$$h_{u,v}(\tau) = \Phi_a^u(\tau) L_a \Phi_{a}^v(\tau), \quad u \ge 0,$$

then

LEMMA 3.

$$h_{u,v}(\tau) \in C^+(\Gamma_0(q),0,1)$$
,

and $h_{u, v}(\tau)$ has a zero of order $\varrho u - [-\varrho \lambda v/q]$ at $\tau = i\infty$ and a pole of order $\varrho \kappa$ at $\tau = 0$ where

$$\varkappa = \begin{cases} u + \lambda v & \text{if } v \ge 0 \\ u & \text{if } v < 0 \end{cases}.$$

PROOF. From the definition, $h_{u,v}(\tau)$ is seen to be regular for $\text{Im } \tau > 0$, and from Lemma 1 and 2 we conclude that $h_{u,v}(\tau)$ is invariant on $\Gamma_0(q)$.

Now, $\Delta(\Gamma_0(q))$ has only two inequivalent cusps, viz. $\tau = i\infty$ and $\tau = 0$ with the uniformazing variables x and $e^{2\pi i(-1/q\tau)}$ respectively.

(4.2) gives

$$h_{u,v}(\tau) = \varphi(x)^{-2\sigma u} \varphi(x^q)^{2\sigma u + v} \sum_{n} p_{-v}(qn - q\varrho u - \varrho \lambda v) x^n,$$

which shows that $h_{u,v}(\tau)$ has a zero of order $\varrho u - [-\varrho \lambda v/q]$ at $\tau = i\infty$.

Subjecting (4.2) to the transformation $\tau \to -1/q\tau$, and applying Lemma 2 and (4.1) we obtain after some calculation

(4.3)
$$h_{u,v}(-1/q\tau) = q^{-\sigma u} x^{-\varrho u} \varphi(x)^{2\sigma u + v} \varphi(x^{q})^{-2\sigma u} \cdot \{q^{-(v+1)} x^{-\varrho \lambda v} \varphi(x^{q^2})^{-v} + d(x)\}$$

where

$$d(x) = \begin{cases} (-1)^{(v+3)(q-1)/4 + [q/4]} q^{-(v+1)/2} \sum_{n=0}^{\infty} \left(\frac{n + \varrho \lambda v}{q} \right) p_{-v}(n) x^n & \text{if } v \text{ is odd} \\ (-1)^{v(q-1)/4} q^{-v/2 - 1} \left(-\varphi(x)^{-v} + q \sum_{n=0}^{\infty} \left(1 - \left(\frac{n + \varrho \lambda v}{q} \right)^2 \right) p_{-v}(n) x^n \right) & \text{if } v \text{ is even} \end{cases}$$

in observing that

where $k'k \equiv -1 \pmod{q}$, $1 \le k' \le q-1$ and $\omega = e^{2\pi i/q}$. Hence (4.3) completes the proof of Lemma 3.

Now, suppose that

$$\mathscr{B} = \{ f_l(\tau) \mid g+1 \leq l \leq 2g+1 \},$$

is a perfect basis for C_q where $f_l(\tau) = \Phi_q^{-1}(\tau)$ if $l = \varrho$. Let t = k(g+1) + l, $k \ge 0$, and

(4.4)
$$F_{t}(\tau) = f_{q+1}^{k}(\tau) f_{t}(\tau) .$$

Hence from this and (2.2)

$$F_t(-1/q\tau) = q^{\theta_2(t)}F_t^*(\tau),$$

where

$$\theta_2(t) = k\theta_1(g+1) + \theta_1(l) .$$

Further, if $j = k\varrho + r \ge g + 1$, $r = 0, \dots, \varrho - 1$, put

(4.5)
$$S_{j}(\tau) = \begin{cases} \Phi_{q}^{-k}(\tau) & \text{if } r = 0, \ k \ge 1 \\ F_{r+\varrho}(\tau)\Phi_{q}^{-k+1}(\tau) & \text{if } 0 < r \le g, \ k \ge 1 \\ F_{r}(\tau)\Phi_{q}^{-k}(\tau) & \text{if } g < r < \varrho, \ k \ge 0 \end{cases}$$

and

(4.6)
$$S_i(-1/q\tau) = q^{\theta_3(j)}T_i(\tau),$$

where

$$\theta_3(j) = \left\{ \begin{array}{ll} k\sigma & \text{if } r = 0, \ k \ge 1 \\ \theta_2(r + \varrho) + (k - 1)\sigma & \text{if } 0 < r \le g, \ k \ge 1 \\ \theta_2(r) + k\sigma & \text{if } g < r < \varrho, \ k \ge 0 \ . \end{array} \right.$$

In particular we notice that θ_3 satisfies the recursion formula

$$\theta_3(j+\varrho) = \theta_3(j) + \sigma$$
.

From Lemma 2, (2.1), (2.2), (4.4)-(4.6) we obtain

LEMMA 4.

$$T_i(\tau) \in C^+(\Gamma_0(q), 0, 1)$$

and $T_j(\tau)$ has a pole of order j at $\tau = 0$ and is otherwise regular.

Now, Lemma 3, 4 and Weierstrass Gap Theorem assert that there exist constant b_i such that

(4.7)
$$h_{0,1}(\tau) = \sum_{j=q+1}^{\varrho \lambda} b_j T_j(\tau) .$$

Subjecting this to the transformation $\tau \to -1/q\tau$, we obtain

(4.8)
$$q^{2}h_{0,1}(-1/q\tau) = \sum_{i=a+1}^{\varrho\lambda} b_{i}q^{2-\theta_{3}(i)}S_{j}(\tau).$$

From (4.3) we see that $q^2h_{0,1}(-1/q\tau)$ has integral coefficients in the Fourier expansion at $\tau=i\infty$. In particular

$$b_{\varrho\lambda}q^{2-\theta_3(\varrho\lambda)}=1,$$

so that

$$(4.9) b_{\rho\lambda} = q^{(q-3)/2}.$$

(4.3) also gives

$$q^2 h_{0,1}(-1/q\tau) \equiv \Phi_{q^2}^{-1}(\tau) \pmod{q}$$
,

and since

$$\varphi(x^q) \equiv \varphi(x)^q \pmod{q} ,$$

we obtain

$$\Phi_{a^2}^{-1}(\tau) \equiv \Phi_a^{-\lambda}(\tau) \pmod{q}.$$

Together with (4.5) this gives

$$q^2 h_{0,1}(-1/q\tau) \equiv S_{\varrho\lambda}(\tau) \pmod{q}.$$

Hence there exists a function $h(\tau)$ with integral Fourier coefficients at $\tau = i\infty$, such that

$$q^2 h_{0,1}(-1/q\tau) = S_{\rho\lambda}(\tau) + qh(\tau)$$
.

Thus by (4.8) and (4.9)

(4.10)
$$h(\tau) = \sum_{j=g+1}^{\varrho\lambda-1} b_j q^{1-\theta_3(j)} S_j(\tau) .$$

Put

$$\psi_2(t) = k\psi_1(g+1) + \psi_1(l) ,$$

$$\psi_{3}(j) = \begin{cases} 0 & \text{if } r = 0, \ k \ge 1 \\ \psi_{2}(r + \varrho) & \text{if } 0 < r \le g, \ k \ge 1 \\ \psi_{2}(r) & \text{if } g < r < \varrho, \ k \ge 0 \ , \end{cases}$$

and

$$\theta(j) = \theta_3(j) - \psi_3(j) ,$$

where t = k(g+1) + l and $j = k\varrho + r$. Note that the last identity agrees with (2.3) when $g+1 \le j \le 2g+1$.

If

$$S_j(\tau) = \sum_{i=-j}^{\infty} a_{i,j} x^i, \quad a_{i,j} \text{ integers },$$

and

$$a_{-j,j} = q^{\pi_q(a_{-j,j})}a'_{-j,j}$$
,

then (4.10) asserts that all the

$$b_i q^{1-\theta_3(j)} a_{-i,j} = b_i q^{1-\theta(j)} a'_{-i,j}, \quad j=g+1,\ldots,\varrho\lambda-1$$

are q-integral.

Now, $\theta(j) > 0$ when $g + 1 \le j \le 2g + 1$, thus $\theta(j) > 0$ for all $j \ge g + 1$. Hence we conclude that

(4.11)
$$b_{j} = q^{\theta(j)-1}b'_{j}, \quad j = g+1, \dots, \varrho \lambda - 1,$$

where b'_i are q-integral.

Together with (4.7), (4.9), and (4.11) this gives

(4.12)
$$h_{0,1}(\tau) = \sum_{j=q+1}^{\ell^{\lambda-1}} b'_j q^{\theta(j)-1} T_j(\tau) + q^{(q-3)/2} T_{\ell^{\lambda}}(\tau) .$$

Let

$$\zeta_u^* = \begin{cases} 0 & \text{if } q \equiv 1 \pmod{12} \text{ and } u = 1\\ (-1)^{(q-1)/2} q^{\sigma u - 2} & \text{otherwise} \end{cases},$$

(4.13)
$$H_{u}(\tau) = h_{u,-2\sigma u+2}(\tau) + \zeta_{u}^{*} \Phi_{q}^{u}(\tau),$$

and

$$A_q = \{k \mid 1 \le k \le 2\lambda + (12, q - 1)\}$$
.

If $u \in A_q$, Lemma 3, 4, (4.3) and Weierstrass Gap Theorem assert that there exist constants $b_{i,u}$ such that

$$H_{u}(\tau) = \sum_{j=g+1}^{\varrho u} b_{j,u} T_{j}(\tau) + \gamma_{\lambda-u}.$$

When subjecting this to the transformation $\tau \to -1/q\tau$ and observing from (4.3) that the coefficients in the Fourier expansion of $qH_{\mu}(-1/q\tau)$ at $\tau = i\infty$ are integers, we conclude that

$$b_{j,u} = q^{\theta(j)-1}b'_{j,u}$$
,

where $b'_{j,u}$ are q-integral. Hence

(4.14)
$$H_{u}(\tau) - \gamma_{\lambda - u} = \sum_{j=q+1}^{\varrho u} b'_{j,u} q^{\theta(j)-1} T_{j}(\tau), \quad \text{if } u \in A_{q}.$$

From the definition of $\theta(j)$ and ξ , it is clear that

$$\theta(j) > 1$$
 for all $j > \xi + g$.

By (4.12) and (4.14), we thus have

$$\begin{split} h_{0,1}(\tau) &\equiv \sum_{j=g+1}^{\xi+g} b'_j T_j(\tau) \pmod{q} \;, \\ H_u(\tau) - \gamma_{\lambda-u} &\equiv \sum_{j=g+1}^{\xi+g} b'_{j,u} T_j(\tau) \pmod{q}, \quad u \in A_q \;, \end{split}$$

where b'_{j} and $b'_{j,u}$ are q-integral. Hence, by suitable choice of the integers a_{k} we obtain

$$a_0 h_{0,1}(\tau) \equiv \sum_{i=1}^{\xi} a_{\lambda-k_i} \{ H_{k_i}(\tau) - \gamma_{\lambda-k_i} \} \pmod{q} ,$$

where $k'_i \in A_q$. This together with (4.2) and (4.13) gives

$$a_0 L_q \Phi_{q^2}(\tau)$$

$$\equiv \sum_{i=1}^{\xi} a_{\lambda-k_i} \{ \Phi_q^{k_i'}(\tau) L_q \Phi_{q^2}^{-2\sigma k_i'+2}(\tau) + \zeta_{\lambda-k_i'} \Phi_q^{k_i'}(\tau) - \gamma_{\lambda-k_i'} \} \pmod{q} ,$$

so that

$$a_0 \varphi(x)^q \sum_n p(qn - \varrho \lambda) x^n$$

$$\equiv \sum_{i=1}^{\xi} a_{\lambda - k_i} \{ \varphi(x)^{2q - 2\sigma k_i'} \sum_n p_{2\sigma k_i' - 2} (qn + \varrho k_i' - 2\varrho \lambda) x^n +$$

$$+ \zeta_{\lambda - k_i} x^{\varrho k_i'} \varphi(x)^{24\varrho k_i'} - \gamma_{\lambda - k_i} \} \pmod{q}.$$

Theorem 1 follows immediately if we put $k_i = \lambda - k'_i$ and observe that

$$\varphi(x)^{s} \sum_{n} p_{k}(qn+m)x^{n} \equiv \sum_{n} p_{k+qs}(qn+m)x^{n} \pmod{q},$$

and

$$(4.15) U(q;0)\eta^k(\tau) = x^{k/24} \sum_n p_k(qn+k\varrho\lambda)x^{qn+k\varrho\lambda}.$$

Now, we turn to the proof of Theorem 2. Let

$$E_{a,b}(x) = \sum_{u,v=1}^{\infty} u^a v^b x^{uv} ,$$

$$Q = 1 + 240E_{0,3}, \quad R = 1 - 504E_{0,5} ,$$

$$D = 12^3 F = Q^3 - R^2, \quad j = 12^3 J = Q^3 F^{-1} .$$

Kolberg [6] has shown

$$D^{-[q/12]} \equiv \begin{array}{c} f(J) & q \equiv 1 \pmod{12} \\ Qf(J) & q \equiv 5 \pmod{12} \\ Rf(J) & q \equiv 7 \pmod{12} \\ QRf(J) & q \equiv 11 \pmod{12} , \end{array}$$

where f(J) is a polynomial in J of degree $\lceil q/12 \rceil$ and with integral coefficients. Further

$$(4.16) D^{kq-s} \equiv V^q G_k(J) \delta J \pmod{q} ,$$

where $24s \equiv 1 \pmod{q}$, 0 < s < q,

$$\delta = x \frac{d}{dx},$$

and for $q \equiv 1, 5, 7, 11, 13, 17, 19, 23 \pmod{24}$ respectively

$$-V = \begin{cases} Q^{-2}R^{-1}D^{\nu} \\ Q^{-1}R^{-1}D^{\nu} \\ Q^{-2}R^{-1}D^{3\nu+1}(J-1)f(J) \\ Q^{-1}R^{-1}D^{7\nu+3}J(J-1)^{2}f(J)^{3} \\ Q^{-2}R^{-1}D^{\nu} \\ Q^{-1}R^{-1}D^{\nu} \\ Q^{-2}R^{-1}D^{3\nu}(J-1)f(J) \\ Q^{-1}R^{-1}D^{7\nu}J(J-1)^{2}f(J) \end{cases}$$

$$G_k(J) = \begin{cases} J^{16\nu}(J-1)^{12\nu}f(J)^{12\nu-2-k} \\ J^{12\nu+1-k}(J-1)^{12\nu+2}f(J)^{12\nu-3k} \\ J^{16\nu+4}(J-1)^{6\nu-k}f(J)^{12\nu+1-2k} \\ J^{12\nu+4-2k}(J-1)^{6\nu+1-3k}f(J)^{12\nu+3-6k} \\ J^{16\nu-8}(J-1)^{12\nu-6}f(J)^{12\nu-8-k} \\ J^{12\nu-5-k}(J-1)^{12\nu-4}f(J)^{12\nu-6-3k} \\ J^{16\nu-4}(J-1)^{6\nu-3-k}f(J)^{12\nu-5-2k} \\ J^{12\nu-2-2k}(J-1)^{6\nu-2-3k}f(J)^{12\nu-3-6k} \end{cases}$$

If

$$B_q = \{k \mid -\delta_q \leq k \leq \lambda - \mu_q\}$$

and $k \in B_q$, it is easily seen that the degree of $G_k(J)$ is less than (v+1)q-1. Hence

$$G_k(J)\delta J \equiv \delta P_k(J) + \sum_{i=1}^{\nu} c_{i,k} J^{iq-1} \delta J \pmod{q}$$
,

where $k \in B_q$ and $P_k(J)$ is a polynomial with integral coefficients. Thus, by suitable choice of $a_{k_i}^{\prime\prime}$ we obtain

$$\sum_{i=0}^{\nu} a_{k_i}^{"} G_{k_i}(J) \delta J \equiv \delta P(J), \quad k_i \in B_q,$$

and by (4.16)

$$\sum_{i=0}^{\nu} a_{k_i}^{\prime\prime} D^{k_i \varrho - s} \equiv V^q \delta P(J) \pmod{q}.$$

Hence with $a'_k = 12^{3kq-3s}a''_k$ and $k_0 = 0$ we get

$$a'_0 x^{-s} \varphi(x)^{-1}$$

$$\equiv \sum_{i=1}^{\nu} a'_{ki} x^{k_i \varrho - s} \varphi(x)^{24k_i \varrho - 1} + \varphi(x)^{24s - 1} V^q \delta P(J) \pmod{q},$$

and Theorem 2 follows from this and (4.15) in observing that

$$U(q; 0)\varphi(x)^{24s-1}V^q\delta P(J) \equiv 0 \pmod{q}.$$

5.

In [8] Kolberg proved a result akin to Theorem 2 when $k_i = i$ involving $U(q; 0)j(\tau)$ instead of $U(q; 0)\eta^{-1}(\tau)$. Here we mention the results obtained with this change. Let

$$j(\tau) = \sum_{i=-1}^{\infty} c_i x^i ,$$

$$M_q = \{k \mid -(12, q-1) \le k \le 2\lambda - 1\} ,$$

$$N_q = \{k \mid -(12, q-1) \le k \le 2\lambda - \mu_q\} .$$

If \mathcal{B} is a perfect basis for C_q we may prove quite similar as for Theorem 1 that there exist integers e_k , not all congruent zero, such that

(5.1)
$$e_0 U(q; 0) (j(\tau) - c_0)$$

$$\equiv U(q; 0) \sum_{i=1}^{\xi} e_{k_i} (\eta^{24\varrho k_i}(\tau) + \zeta_{k_i - \lambda} \eta^{4q(q-1)}(\tau) - \gamma_{k_i - \lambda}) \pmod{q},$$

where $k_i \in M_a$.

In particular, if we choose all $k_i \in N_q$ and $\xi = [q/12]$ then (5.1) is always satisfied.

REFERENCES

- 1. A. O. L. Atkin, Weierstrass points at cusps of $\Gamma_0(n)$, Ann. of Math. (2), 85 (1967), 42-45.
- 2. A. O. L. Atkin, Explicit gap series at cusps of Γ(p), Math. Comp. (22), 102 (1968), 416-419.
- A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106.
- N. J. Fine, On a system of modular functions connected with Ramanujan identities, Tôhoku Math. J. (2) (1956), 149-164.
- 5. T. Kløve, On a class of partition congruences, Univ. Bergen Årb. Mat. Nat. R. 1969, No. 11.
- O. Kolberg, Some remarks on a class of partition congruences, Univ. Bergen Årb. Mat. Nat. R. 1961, No. 18.
- O. Kolberg, Congruences involving the partition function for the moduli 17, 19 and 23, Univ. Bergen Årb. Mat. Nat. R. 1959, No. 15.
- 8. O. Kolberg, Congruences for the coefficients of the modular $j(\tau)$, Math. Scand. 10 (1962), 173–181.
- J. Lehner, Ramanujan identities involving the partition function for the moduli 11^a, Amer. J. Math. 65 (1943), 492-520.
- M. Newman, Construction and application of a class of modular functions, Proc. London Math. Soc. 3 (1957), 334–350.
- M. Newman, Construction and application of a class of modular forms II, Proc. London Math. Soc. 7 (1959), 373-387.
- S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159– 184
- S. Ramanujan, Some properties of p(n), the number of partition of n, Proc. Cambridge Philos. Soc. 19 (1919), 207-210.
- 14. S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), 147-153.
- 15. H. S. Zuckerman, Identities analogous to Ramanujan's identities involving the partition function, Duke Math. J. 5 (1939), 88-110.

ROGALAND DISTRIKTSHØGSKOLE STUDIESENTRET NORWAY