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CONGRUENCES FOR THE FOURIER COEFFICIENTS
OF CERTAIN MODULAR FORMS

GUNNAR DIRDAL

Let

ot = ] (1=

Il
itz 3

@ (x)* Pe(n)x" .

Then p_,(n)=p(n) is the number of unrestricted partitions of n. In this paper
we are concerned with congruences to prime moduli, involving p(n) and the
Fourier coefficients of certain modular forms of half-integral dimension.

In particular, application of Theorem 1 for the primes g, 13<9=<23, gives
congruences of the form

21 n q* -1
axp(qn—%“>+azp<a> Eaapm-l(qn— o4 k) (modg),

where «, and a, are not congruent zero simultaneously.
Finally, we briefly mention the results obtained when p(n) is replaced by c(n),
the Fourier coefficients of the modular invariant j(z).

2.
Put

y = em’t/ll’ x = y24
"(T) = y(p(x), Imt>0.

The congruence properties of p(n) modulo g depend on the residue character of
24n—1 moduloe q. Therefore we define, as in Klove [5],
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Ug;e) L amy" = Y amy”,
T (e
for any power series X, a(n)y". Here and in the following g always denote a
prime > 3.
We shall examine the case ¢ =0. Results similar to Theorem 1 below do exist
when ¢= +1, but this will not be considered here.
Let I'y(m) denote the subgroup of the full modular group I'(1), defined by

those matrices

(: Z) a, b, ¢, d integers, ad—bc=1,
of I'(1) that satisfy ¢c=0 (mod m). Further C* (I'y(m), —k, x) denotes the space
of modular forms of dimension —k, regular in the fundamental domain,
A(Io(m)), of I'y(m), except possibly at T=ico, 1=0 and with multiplier system
x- We denote by C, the subspace of C*(I'4(g),0, 1), consisting of all modular
functions which are regular at t=0. g=g(m) denotes the genus of the Rieman
surface H/I'y(m) (compactified) where H is the upper half plane. At a given
point 7, of the Rieman surface H/I'y(m), we say that k is a gap if no function
exists with a pole of order k at t, and regular elsewhere on H/I'j(m).
Weierstrass Gap Theorem asserts that there are just g gaps k at 1,, and that
these satisfy 1 <k <2g— 1. Moreover, except for finitely many z,, the gaps are
just the integers 1 to g. Those exceptional 1, for which this is not so are called
Weierstrass point of H/I'y(m) (or, loosely, of I'y(m)).

No value of q is yet found for which ico is a Weierstrass point of I'y(q), hence
it seems that the contrary is true. In any case this is so for ¢ <100 (Atkin [1],
2D.

It is a conjecture that the elements, f, in a (polynomial) basis # for C, may

be taken as _
fi = {W,,..., We_1y2)»

where @, is a cyclic (g, 0)-isobaric polynomial and

—aq Car(X)
W, = xk(6k q)/qL, k%0 (modg),

G = [ (1=x k(1 —xwm-a+¥),

n=1
(see Fine [4]). Hence all elements of # have integral Fourier coefficients at the
cusps t=ivo and t=0. The functions W, were introduced by Atkin and
Swinnerton-Dyer [3] and studied by Fine [4]. Since W,= W_,= W,,, only
(g—1)/2 of the W, are different.
Suppose that ico is not a Weierstrass point of I'y(g). Then a basis & for C,,
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B ={fil g+1=5152g+1},

is called perfect if all the elements of # has a zero at 1=0 and

@.1) fi@) = " Y a0,
i=-1
1 ® .
22) ﬁ(—E) - 0 5 atat
23) 0() = 6,()—y1() > 0,

where a; ;, a*; and 0, (]),y, () are integers, and

0=nmya_,).
=, is a valuation, defined by

e, g }a,

integer a.

To eacn perfect basis # for C,, we associate an integer {,0s¢<g+1. If
0(2g+1)>1, € is given as the smallest integer such that (/)>1 when I>¢+g.
Otherwise we put é=g+1.

We also need the following definitions to formulate the results;

L1
T W24-1)°
__9-1

¢=W2,q-1)"

_ e+l
s e

1= (12,q—1)(q+1),

24
0 if —(A—1)Sksi-1
Te = {qu—26(1+k)(—Q('l+k)) if “‘(}»+(12,q_1))§k§—}» ,
a* = 3,1—93’%'—1) if g=1,7 (mod12),
_ f(=nebiz o if 6(A—k)=(12,9-1)
b= 0 otherwise .

Further we put 6,=0,0,1,0,6,2,4,1if g=1,5,7,11,13, 17,19,23 (mod 24) and
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u,=3,1,2,1if g=1,5,7,11 (mod 12) respectively. A rational number is called
g-integral if the denominator is not divisible by g.

THEOREM 1. Let q be a prime>3 and # a perfect basis for C,. Then there exist
integers a, not all congruent zero, such that

4
U(g;0) {ao'l L) +n"'(g*D) Z ak.»)’k.}

i=1
8
=U@;0 Y a{r** 7 (0 +{n*** (1)} (modg),
i=1
where —(A+ (12,q—1))Sk;<i—1.
If, in particular, we choose all the k; in Theorem 1 such that

"—541 é ki g A_”'q’

then there always exists a congruence similar to the one in Theorem 1. In fact

THEOREM 2. Let q be a prime>3. Then there exist integers a;, not all
congruent zero, such that

apU(g; O~ (1)

I

U(g; 0) ¥, ain**®™'(1) (modg)
i=1
where—6,<k;<A—p,.

In [6] Kolberg proved Theorem 2 when k;=i, using an identity of
Ramanujan [12]. Our proof of Theorem 2 is just a slight modification of that
of his.

3

In this section we will apply Theorem 1 for the primes q,5<¢=23. The
details in the construction of a perfect basis # for C, where

0 if g=5,7,11
c={ 1

3.1 1 if ¢g=13,17,19,23

will not be considered here, but the construction, may easily be carried out.
Hence, for g=15,7,11 we obtain the well-known result

U(g;Om~'() =0 (modg).
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This was first discovered and proved by Ramanujan [13], [14]. Further, when
q=13,17,19,23 Theorem 1 and (3.1) gives

U(13; 0~ (1) = U(13; 0){n (@) +7**5(@)} (mod 13)
and
(32 U(q; 0{og 11~ () + g 1,21~ (D)}
= o,,3U(g; 0)p*** "' (r)  (modg),

where the integers o, , ;, i=1,2,3, are given by the tables 1-4.

Table 1.

ka3 %sk2 %k
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Table 2.

k %17,6,1 %17,6,2  %17,k,3

1 1 0 1
-1 1 0 9
-2 1 0 8
—4 0 1 13
-5 0 1 16
-6 0 1 16
-7 0 1 12

Table 3.

k941 %okz ®iok3

1 1 0 1
-2 1 0 8
-3 1 0 15
-4 1 0 11
-6 0 1 12
-7 0 1 18
-9 0 1 10
-10 0 -1 18
-1 0 1 11
Table 4.

k ®23,k,1  %23,k,2 ®23,k3

-1 1 0 9
-3 0 1 16
-4 0 1 1

Some of these results are known. When g=13, k=6 (3.2) was proved by
Zuckermann [15]. Kolberg [6], [7] proved (3.2) when q=13, k=1; q=17,k
=1,-1,-2; ¢=19, k=1,-2,-3,~4; and q=23, k=—1. The other results
seem to be new.
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Note that not all values of k, — (A+ (12,¢g— 1)) Sk S A—1, are included in the
tables above. k=0, — 4 are excluded since (3.2) is trivial in these cases. For the
other excluded k-values we have

Uk =0, a3 =1 i=12,

except if g=19, k=4 where
U(19; 0){n**"(r)—n'°°"(z)} = 0 (mod19).

When applying Theorem 1 to the primes g>23 further results are obtained,
but £ is probably >1 in these cases. In particular, there exist a perfect basis #
for C,, =29,31, where {=2.

4.

If h(z) is any function in the complex variable 7, the operator L,,, introduced
by Lehner [9] for each positive integer m, is given by

4.1) Lh(z) = m™! Z h(”k>

m

It is immediately seen that L,, is linear and

L, Y a(mx" =Y a(mn)x
Hence we easily obtain

Lemma 1. If f(1) € C*(Fo(q?),0,1) then L f(z) € C*(I'o(g),0,1).

From Newman [10], [11] we have

LemMma 2. If
i 24/(12i,qi—-1)
@qi(-t) _ (M) , i= 1,2 ,
n(7)
then
®(1) € C*(To(g),0,1),
and

Pu(~1/g'7) = g~ V2THEF().
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Put
4.2) hy, (1) = @4(r)L,Py2(7), u20,

then

Lemma 3.
hu,v(r) € C+(F0(q)30, 1) ’

and h, ,(7) has a zero of order gu—[ —gAv/q] at T=ico and a pole of order gx
at 7=0 where

_ Jutiv if v20

T |u if v<0.

Proor. From the definition, h, ,(t) is seen to be regular for Imt>0, and
from Lemma 1 and 2 we conclude that h, ,(7) is invariant on I'4(g).

Now, 4(I',(g)) has only two inequivalent cusps, viz. T=ico and 7 =0 with the
uniformazing variables x and e?™(~1/99 respectively.

(4.2) gives

h, () = @(x)"* @ (x9**** Y p_,(gn—qou—giv)x",

which shows that h, ,(7) has a zero of order gu—[ —gAv/q] at T=ioo.

Subjecting (4.2) to tne transformation © — —1/gt, and applying Lemma 2
and (4.1) we obtain after some calculation

@3 b (14D = g7 (P (x)
{qm @ Ux T (x?) 0+ d (%)}

where

n+Av

(__ 1)(v+3)(q-l)/4+[q/4]q—(v+l)/2 E ( )p_,,(n)x" if v is odd
d(x) = n=0 q

(__1)v(q—l)l4q—v/2'—1(_¢(x)—v+q i (1_<n+qelv>2>p—u(n)xn>
n=0

if v is even ,

in observing that

k(t+k'/g)— (1 +k'k
bel~ 1/ +k) = ‘p"’( R )/q)

= q‘*(Ié—"—')l*"'”'Zw*'%(x)w(w*’x)-1 :
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where k'k=—1 (modq), | <k'<q—1 and w=e?""4. Hence (4.3) completes the
proof of Lemma 3.

Now, suppose that
2 = {0 g+1=Is28+1},

is a perfect basis for C, where f(©)=@, (1) if I=¢. Let t=k(g+1)+1, k=0,
and

(44 Fi(1) = for 1040 .
Hence from this and (2.2)

F(-1/qr) = ¢"YF¥(),
where

0,(t) = k0, (g+1)+0,() .
Further, if j=ko+r=g+1, r=0,...,0—1, put

@, 1) if r=0, k=1
4.5) Si(t) = { Fou @, ' (x) if O0<r=g, k21
F,(1)®,%(x) if g<r<p, k20
and
(4.6) Si(—1/q7) = ¢*VTj(v),
where
ko if r=0, k=1
0;(j) = 1 0,(r+o)+(k—10c if O<r=g, k21
0,(r)+ko if g<r<g, k=0.

In particular we notice that 6, satisfies the recursion formula
0:(j+0) = 0;(j)+0 .
From Lemma 2, (2.1), (2.2), (4.4)-(4.6) we obtain

Lemma 4.
T;(t) € C+ (FO(q)! 0’ 1)
and T;(t) has a pole of order j at =0 and is otherwise regular.

Now, Lemma 3, 4 and Weierstrass Gap Theorem assert that there exist
constant b; such that
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0A
47 ho,1 (1) = Z b;T(x) .
j=g+1
Subjecting this to the transformation T — —1/gt, we obtain
eA
4.8 a*ho, i (—1/qr) = Y big> %US,(0).
j=g+1

From (4.3) we see that g*h, ,(—1/qt) has integral coefficients in the Fourier
expansion at T=i00. In particular

byud? 5 = 1,

so that
(4.9) by, = qu 32 .
(4.3) also gives

q*ho,1(—1/g7) = ®2'(r) (modg),
and since

o(x%) = ¢(x)* (modg),
we obtain
®3l(r) = &7%(1) (modg).

Together with (4.5) this gives

@*ho,1(—1/q7) = S,;(x) (modq).

Hence there exists a function h(r) with integral Fourier coefficients at 7=ioo,
such that

qzho,l(— 1/g7) = S,;(1)+4qh(1) .
Thus by (4.8) and (4.9)

(4.10) h(z) = My:l byt ~%9S () .

j=g+1
Put
Ya(t) = kY (g+1)+y, (),

0 if r=0, kz1

V() = { Yalr+o) if O<rsg, k21
¥, () if g<r<g, k20,
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and
0(j) = 0;(N—¥3()),

where t=k(g+1)+1 and j=kg +r. Note that the last identity agrees with (2.3)
when g+1<5j<2g+1.
If

o 0]
Siv) = Y a, ;x, a; integers,
i=—j
and
a_j; = q4ila_;;,
then (4.10) asserts that all the
qul ‘—03U)a._j'j = qul-o(j)a,_j.j, _]=g+ 1,. . .,QA.— 1 N

are g-integral.
Now, 6(j)>0 when g+1<j<2g+1, thus 0(j)>0 for all j=g+ 1. Hence we
conclude that

4.11) b, = @97, j=g+1,...,04—1,

where b are g-integral.
Together with (4.7), (4.9), and (4.11) this gives

ei—1

(4.12) ho,1 (1) = Y b0 T(D)+49" VT, ().
j=g+1

Let
. 0 if g=1 (mod12) and u=1
= (—1)a-1zgou=2 otherwise ,
(4.13) H,(7) = hy, —20u+2(0)+ (S (7}
and

4, = {k| 1sk=24+(12,9-1} .

If ue 4, Lemma 3, 4, (4.3) and Weierstrass Gap Theorem assert that there
exist constants b; , such that

Qu
Hu(t) = Z bj,uT:i(T)+y).—u .
j=g+1
When subjecting this to the transformation 7 — —1/gt and observing from
(4.3) that the coefficients in the Fourier expansion of gH,(—1/gt) at t=io0 are
integers, we conclude that
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b;, = ¢*0 ',
where b , are g-integral. Hence

Qu

(4.14) H@=7-,= Y b 49 'Ti(x), ifued,.

j=g+1
From the definition of 6(j) and ¢, it is clear that

0(j) > 1 for all j>¢+g.

By (4.12) and (4.14), we thus have

ctyg
ho,1(7) = Z b}Tj(T) (modgq),
i=g+1
ctyg
Hu(t)_y1~u = Z b;',u'ri(T) (mOd q)9 ue Aq >
j=g+1

where bj and bj , are g-integral. Hence, by suitable choice of the integers a, we
obtain

13

4
aghy, 1 (1) = az—h:{Hk:(T) —Yi-k} (modg),
=1

where k; € A,. This together with (4.2) and (4.13) gives
agL,® (1)

a- k§{¢:§ (1)L, Q;zhkg (1) +{a- ki ng (©)—7i-1) (modq),

X
M

]

i=1

so that

a,p(x)* Y. p(gn—gA)x"

[
= Y a; 4 {@(x)*T72% Y prgrs-2(gn+oki—204)x" +
i=1 n

+ (i ip(x)**i—y, 4} (modg).

Theorem 1 follows immediately if we put k;=A—k; and observe that
P()Y. pelgn+m)x" = Y prsglgn+mx" (modg),

and

(4.15) U(g; On*(z) = xM2* 3" py(gn+koA)xonther |
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Now, we turn to the proof of Theorem 2. Let

00
E,p(x) = Y u%®x*,
1

u,v=

Q
D

14+240E, 5, R = 1-504E, ,,
12°F = Q®*-R?%,  j =123 = Q*F!.
Kolberg [6] has shown

It

fU) g=1 (mod12)
p-lan2 = 2f(J) 4¢=5 (modl2)
~ Rf() g¢=7 (modl12)

QRf(J) g¢=11 (mod12),

where f(J) is a polynomial in J of
degree [g/12] and with integral coefficients. Further

4.16) D*~s = ViG,(J)dJ (modgq),
where 24s=1 (modg), 0<s<gq,
d
0= x—
Yix’

and for q=1,5,7,11,13,17,19,23 (mod 24) respectively

Q-—ZR—IDv

Q—IR—IDV
Q—ZR—1D3v+1(J__1)f(J)
Q—lR—1D7v+3J(J_1)2f(J)3
-V = Q—-2R—-1Dv

Q-IR-IDV

Q7 *RTID*(J-1)f ()

Q 'R™IDTI(J-1)*f(J)

J16v(J_ 1)12vf(J)12v—2—-k
J12v+1—k(J_ 1)12v+2f(J)12v—3k
J16v+4(J_ 1)6v—kf(J)12v+1 -2k
J12v+4—2k(J__ 1)6v+1 —3kf(J)12v+3—6k
Gk(J) = J16v—s(J_1)1zv—6f(J)12v—s—k
J12v—5—k(J_ 1)12v—4f(J)12v-—6-—3k
J16v—4(J_ l)évés—kf(J)lzv—s—zk
J12v—2~2k(J_ 1)6v—2—3kf(J)12v—3-6k
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If
B, = {k| —0,Sksi—p,}

and k € B, it is easily seen that the degree of G,(J) is less than (v+1)g—1.
Hence

G,())oJ = 51»,‘(J)+__i1 ¢ J9718]  (modg),

where k € B, and P,(J) is a polynomial with integral coefficients. Thus, by
suitable choice of a;, we obtain

v

Y. @G, (J)3J = 6P(J), k,e€B

i=0

q°

and by (4.16)
Y aiD*e* = V45P(J) (modg) .
i=0
Hence with aj=12%3%"3g/ and k,=0 we get
ax*p(x)"!

= Z a;quge-sq,(x)zt&k;e—l +(P(x)24s—1Vq‘SP(J) (modq),
i=1

and Theorem 2 follows from this and (4.15) in observing that
U(q; 0)p(x)***~*VISP(J) = 0 (modg) .

s,
In [8] Kolberg proved a result akin to Theorem 2 when k;=i involving
U(q; 0)j(z) instead of U(q; 0)n~!(r). Here we mention the results obtained
with this change. Let

I

j (T) Z cix‘ ’
1

i=-

M, = {k| —(12,q-1)Sks2i-1},
N, = {k| —(12,g-1)SkS2i—p,} .

If # is a perfect basis for C, we may prove quite similar as for Theorem 1 that
there exist integers e,, not all congruent zero, such that
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(5.1) eoU(g; 0)(ji(r)—co)
¢
= U(g; 0) X e+ _n*“ ()=, (modg),
i=1 g

where k; € M,

In particular, if we choose all k; € N, and £=[g/12] then (5.1) is always
satisfied.
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