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POLYNOMIAL APPROXIMATION
IN CERTAIN WEIGHTED HILBERT SPACES
OF ENTIRE FUNCTIONS

SIDNEY L. HANTLER
Abstract.

Estimates for reproducing kernels are used to prove polynomial
approximation results in weighted Hilbert spaces of entire functions. The idea
is to show that the polynomials are dense in those spaces whose weight
functions are nearly a function of |z| alone. Theorem 4 shows that if ¢ is
plurisubharmonic and

lp—lzP’| < e(1+[z*)?,

where ¢ is a constant, then the polynomials are dense in the Hilbert space of
entire functions f with {|f|? exp (—¢)dA<oo (dA is the Lebesgue measure on
C"). Applications to a problem of D. J. Newman and H. S. Shapiro are also
discussed.

1. Introduction.

Our aim is to apply estimates for reproducing kernels to prove polynomial
approximation results in certain weighted Hilbert spaces of entire functions.
The basic idea is that the linear span of the reproducing kernels is dense in the
Hilbert space of functions. Thus, to prove that the polynomials are dense in the
Hilbert space, it suffices to show that their closure contains the reproducing
kernels.

In particular, suppose that ¢ is a real valued measurable function on C" and
let A%(p) denote the set of entire functions f for which

flfl2 exp (—¢)di < o0,

where dA denotes the Lebesgue measure on C". If ¢ is upper semicontinuous,
then 4%(¢) is a Hilbert space with norm

IF13 = jlfl’ exp (—@)di .
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We will assume for the remainder of this paper that ¢ denotes an upper
semicontinuous function. When ¢ is a function of radius alone (ie. ¢(z)
=¢(|z|)), we say that ¢ is radial.

The motivation for our work derives from the fact that when ¢ is radial, the
polynomials are easily seen to be dense in A2(¢). For example, the set of
monomials, z¥, where k is a multi-index, in 4%(p) is a complete orthogonal
system in A?(¢) and consequently the Taylor series of f € 42(¢p) converges to f.
When ¢ is not radial, however, there does not seem to be an analogous
complete orthogonal system of polynomials.

A particularly important example is ¢(z)=|z|?, the Fischer space, which has
been studied because of its intimate connection with quantum mechanics. (See
[1].) In [8], D. J. Newman and H. S. Shapiro studied the related question of
polynomial approximation in 42(|z]* —21log|P|) when P is an entire function of
order less than two. Newman and Shapiro were able to show that the
polynomials are dense in A2(|z[*—2log|P]) when P is an exponential
polynomial or a function without zeroes. No examples are known, however, in
which the polynomials fail to be dense in 4%(|z|> —2log|P)).

We will show, as a special case of Theorem 4, that if ¢ is plurisubharmonic
and there is a constant ¢ so that

lp—lz?| £ c(1+zP)?,

then the polynomials are dense in A?(¢). Informally, then, the polynomials are
dense in A%(¢) whenever ¢ is plurisubharmonic and sufficiently near the
weight function of the Fischer space. In Section 4 we indicate how to recover
from Theorem 4 a suitable analogue of the Newman-Shapiro result for
exponential polynomials. In Theorem 8 we obtain an analogous extension of
the Newman-Shapiro result to functions of exponential type.

ACKNOWLEDGMENT. I am very grateful to B. A. Taylor for introducing me to
this problem and for a series of illuminating discussions. In particular, the basic
idea of the proof of Theorem 5 is due to Professor Taylor.

2. Preliminaries.

We recall first an estimate for reproducing kernels in weighted Hilbert
spaces of entire functions from [5]. To each { € C" there corresponds an
element K, in A%(¢p) with the property that f({)=(f,K)), for each feA*(¢).
This entire function, K, is the reproducing kernel at { of A*(¢). (For the general
theory of reproducing kernels, see [2].) For example, the reproducing kernel at
¢ in the Fischer space (¢(z)=|z|?) is

K,(z) = n""exp (z'() .
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While we know that K, belongs to A%(¢) for each { in C", the reproducing
kernels of the Fischer space actually satisfy a much stronger condition. They
belong to A%(¢ — ¢lz|?) for each e < 1. Theorem 8 of [5] generalizes this result to
a class of plurisubharmonic funections.

ProrosiTION 1. Suppose that ¢ is locally bounded, and that ¢ —¢|z|* is a
plurisubharmonic function on C" for some positive &. Then the reproducing
kernels of A*(p) belong to A*(¢ —1(e)(1 +|z|*)?), where t(¢) is a positive constant
depending only on e.

As a final remark about reproducing kernels, notice that if fe A2(¢p) is
orthogonal to the reproducing kernels of 4%(¢), then f vanishes identically.
Thus, the linear span of the reproducing kernels of A%(¢p) is dense in A%(p).

We will also require an estimate of L. Hormander for the d-operator. The
Hilbert space of (classes of) functions u which are square integrable with
respect to the measure exp (—¢@)dA is denoted by L?(¢) and

lully = Jlul2 exp (—@)di .
Proposition 2 is a special case of Theorem 4.4.1 of [6].

PROPOSITION 2. Suppose that ¢ —é&|z|? is a plurisubharmonic function on C" for
some positive &. Then for every (0, 1) form g=X" g,dz, with g; € L*(¢), and dg =0,
there exists u € L*(¢p) such that du=g and

lul? £ (2/8)j|g|2 exp (—)dA .

ReMark. Theorem 4.4.1 of [6] requires that ¢ be of class C*(C"), but as
noted in the text, this hypothesis can be removed.

3. Nearly radial plurisubharmonic weight functions.

In this section we prove the main results of this paper. We begin by proving
a density result which is central to the polynomial approximation theorems
which follow.

THEOREM 1. Suppose that v is locally bounded, that ¢ —¢&lz|* and Y —elz|* are
plurisubharmonic functions on C" for some positive ¢ and that
05 o—y £ e+l

where c is a constant. Then A*(y) is dense in A*(¢).
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Proor. Choose an integer N greater than c/z(e), and write w,=y + (k/N)(¢
—y), for k=0,1,... N. We proceed by induction to show that 42 () is dense in
wy for each k. The result then follows since wy = A%(¢p). We begin by observing
that A2(y) is dense in w,= A%(). Now suppose that 4%(y) is dense in w, and
0<k<N.

Since both ¢ —¢|z|*> and Y —¢|z|? are plurisubharmonic, it follows that

Wsy—elzl? = (1= (k+1)/N)W —elzl’)+ ((k +1)/N)(@ — elz?)

is plurisubharmonic. We conclude from Proposition 1 that the reproducing
kernels of 4%(w,,,) belong to A%(w,,,—1(e)(1+]|z|*)*). Moreover, since

{Opr =T @ +12)} -0 = A/N)@—y) -1+ < 0

it follows that the reproducing kernels of 4%(w, ) belong to A2(w,). By the
inductive hypothesis, the closure of A2(y) in 4%(w,) contains the linear span of
the reproducing kernels of 4%(w,,,). Since w, < w, ., convergence in A2(w,)
implies convergence in A%(w,. ) and thus, A%() is dense in 4%(w,,,).

In our applications we actually need a slightly stronger version of Theorem
1.

CoROLLARY 1. Suppose that  is locally bounded, that ¢—¢lz|* is
plurisubharmonic on C" and that  — ¢|z|* is plurisubharmonic on the complement
of a compact set K for some positive e. Suppose also that y+ M|z|* is
plurisubharmonic on C" and that

0= -y = c(l+z)?

for constants ¢ and M. Then A2 () is dense in A%(o).

ProoF. Let g be a negative, bounded function such that g+ (g/2)|z)? is
plurisubharmonic on C" and g— (M + (¢/2))|z|> is plurisubharmonic on a
neighborhood of K. Then, applying Theorem 1 to ¢ and y +g, we conclude
that A2(y +g) is dense in 4%(¢). Since g is bounded, it follows that A%(y) is
derise in A%(@).

As an application of Corollary 1, we now prove a polynomial approximation
theorem.

THEOREM 2. Suppose that Y is a locally bounded radial function, that ¢ —&lz|®
and y — &|z|? are plurisubharmonic functions on C" for some positive ¢, and that |¢
—y|Sc(1 +]|z|%)* where c is a constant. Then the polynomials are dense in A% ().
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ProoF. Since ¥ is radial, the polynomials are dense in 42 (). Our technique
will be to adjust Y so that we can apply Theorem 1, to conclude that the
polynomials are dense in A%(¢p). Let ' =y —c(1+]|z/*)* and notice that vy’
+clz|? is plurisubharmonic on C" and ' — (¢/2)|z)? is plurisubharmonic on the
complement of a compact set. We conclude from Corollary 1 that A2(y’) is
dense in 4 (¢). The result follows by observing that the polynomials are dense
in A2(y') since Y’ is radial, and ¥’ < ¢.

Theorem 2 is a result of the type in which we are interested. Our main
application of theorems of this type will be to the Fischer space, in which we
have Y (z)=|z|>. The major weakness of Theorem 2 is that it requires that ¢
—&|z|? as well as i — ¢|z|? be plurisubharmonic. In order to relax this restriction
we require a density result which allows us to approximate certain
plurisubharmonic functions by functions ¢ for which ¢ —¢|z|* is plurisubhar-
monic.

THEOREM 3. Suppose that ¢ is plurisubharmonic on C" and that ¢, — (1/N?)\z|
is plurisubharmonic on C" for k=1,2,..., where N, — 0o. Suppose also that
—cZ<@—¢@, on C" and that ¢ —@,=<c on the ball 0<|z|SN,, where c is a
constant independent of k. Then U A%(p,) is dense in A*(¢).

Proor. Choose o € C2(C") with 0<a <1, a(z)=1 when |z|<4 and a(z)=0
when 1<z Let o,(z)=a(z/N,), and denote by A(k) the annulus
{z:4N, £|zl £ N,}. Then notice that da, is supported in A4 (k) and |0e,)* < a/N7,
where a is a constant, depending on .

Now suppose that f € 42(¢). Then it is clear that fa, converges to fin L*(¢).
According to Proposition 2, we can find u, € L*(p,) with du, = fox, and

lull3, < 2N% Jlfaaklz exp (- di .

We write f, = fa, — u, and observe that f, € 4%(¢,) for each k, since df, =0. We
complete the proof by showing that u, converges to zero in L?(¢), and thus
that f, converges to fin A%(¢).

Since p,<¢@+c we have

lulZ < exp (@)llwll3,

< 2 exp (N; J | fOuf* exp (— i) dA

S 2exp (C)ij |/ (a/N7) exp (— ) exp (¢ — @) dA

A(k)

< 2a exp (20) |fI? exp (—@)dA .

A(k)



118 SIDNEY L. HANTLER

It follows, by the dominated convergence theorem, that u, converges to zero in
L* (o).

THEOREM 4. Suppose that  is a locally bounded radial function, that ¢ and
—&|z|? are plurisubharmonic on C" for some positive ¢, and that

lo—yl = cQ+|z)?,

where c is a constant. Then the polynomials are dense in A*(p).

Proor. We shall construct ¢, which satisfy the conditions of Theorem 3, so
that the polynomials are dense in A2(¢p,). Write

@ = o+ (/)Y —9@—(e/2)z’) and N, = (2/e)k.
Then
@— (NDlzl* = (1=1/k>)+ (1/k*) (Y —elz)
1s plurisubharmonic on C". Moreover, we have
o= = (1/k3)((/lzl* +o—¥) 2 (1/k*)((e/Dlz]* —c(1+]21*)?)

so that ¢ — ¢, is bounded below by a constant independent of k. Similarly, we
have

o=@ = (1/K)((e/lzl* +c(1+1217)) < 1+c(1+2/e)

on 0=|z| £ N,. Thus, by Theorem 3, U A(¢,) is dense in 42(¢). Now, since ¢
— ¢, is bounded below by a constant, the proof is completed by showing that
the polynomials are dense in A2(¢p,) for each k.

We have seen that ¢, — (1/N32)|z|? is plurisubharmonic on C" and

o= (W = /2kM)2?) = (1=1/kA —o| < c(L+]z)*.

Since (¥ — (¢/2k?)|z|*) — (¢/2k?)|z|* is plurisubharmonic, and ¥ — (¢/2k?)|z|* is
radial, it follows from Theorem 2 that the polynomials are dense in 4%(¢,) for
each k.

In certain of our applications, we will not have a uniform estimate of the
form | — | <c(1+|z*)%. Rather, we will have a uniform lower bound of the
form —c(1+|z]*)* <@ —y and an upper bound of the form ¢ —y <c(1+|z[*)*
on circles whose radii tend to infinity. We can generalize Theorem 2 to this
situation.

THEOREM 5. Suppose that  is continuous and radial, and that ¢ —¢|z|*> and
—¢&|z|? are plurisubharmonic functions on C" for some positive ¢. Suppose also
that
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—c(l+|z2)t < o—y

and that there exists a sequence of circles |z|=R,, with R, — 00, on which we
have

o=y < c(l+z)?,

where c is a constant. Then the polynomials are dense in A%(gp).

Proor. Let w=max (¢, ¥ +c(1+]z|*)?*). Then w—¢|z|* is plurisubharmonic
and

0L w—0 < 2c(1+|zP)*.

Moreover, since ¢ — (y +c(1 +|z/*)?) is upper semicontinuous and is negative
on |z|=R,, we conclude that m =y +c(1 +|z|*)* on a neighborhood of |z|=R,.
Now let

22) = 0(2)=2c(1+21)?

and observe that y+2c|z|* is plurisubharmonic on C", and yx— (&/2)|z? is
plurisubharmonic on the complement of a compact set. In addition, we have

0 -y < 2c(1+zP)*.

We conclude from Corollary 1 that A%(y) is dense in 4%(p). Thus, to
complete the proof it suffices to prove that the polynomials are dense in A% (y).

Let g be a bounded function such that g+ (¢/4)|z|? is plurisubharmonic on C"
and g—c|z|? is plurisubharmonic on |z| <4c/e. Now, write

_fx+e when |z|SR,
T W —c(+12)*+g  when |zZ|>R, .

Note that in a neighborhood of |z|=R,, the function ¢, is equal to ¥ —c(1
+|z[2)* + g. Moreover, both @, — (¢/2)|z|* and x +g— (¢/2)|z|* are plurisubhar-
monic. We also have y+g—¢,=0 on |z| SR, and

18— = —W)+c(l+z)F = (@=¢)—c(l+lz)* 2 0

on |z|>R,.

We conclude from Theorem 3 that U 42(¢,) is dense in A%(x +g), and, since
g is bounded, in A2(y).

The proof is completed by observing that, for each k, @, is plurisubharmonic
and |, —y/| is bounded above by a constant multiple of (1 +]z|*)*. Hence, it
follows from Theorem 4 that the polynomials are dense in 4%(¢,) for each k.

We conclude this section by using Theorem 3 to extend Theorem 5 to a
more general class of plurisubharmonic weight functions.
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THEOREM 6. Suppose that \ is continuous and radial and that ¢ and y —é|z)?
are plurisubharmonic for some positive &. Suppose also that

—c(l+z)* < o=y < c(1+2?)
and that there exists a sequence of circles, |z|=R,, with R, — 00, on which
p—y < c(l+|z*,

where c is a constant. Then the polynomials are dense in A%(¢p).

ProoOF. As in the proof of Theorem 4, we let

o = ¢+ 1)WY -0 (e/2)2) .

Then (1/k?)((e/2)|z|2 — c(1 +|21*)*) < @ — ¢, so that ¢ — ¢, is bounded below by
a constant independent of k. We also have

oo < (K} ((e/D+ )iz

which insures that ¢ —¢, is bounded from above by a constant on
0=|z| < (2/e)*k. Since

o= (€2k)|z1* = (1/k*) (Y —elzl)+ (1 - 1/k%)p
is plurisubharmonic, it follows from Theorem 3, with N, = (2/e)*k, that

U A42(¢,) is dense in 4%(p).
Now, we have

o= (W= (E/2)z?) = 1-1/k%)(@—¥) > —c(+|z??

and on |z]=R,, we have

o — (W — (/2)lz) < 2c(1+121)* .

In addition, we have (Y — (¢/2)|z|?>) — (¢/2)|z|* is plurisubharmonic. It follows
from Theorem 5 that the polynomials are dense in A2(¢,) and consequently in

A% (o).

4. A problem of Newman and Shapiro.

In this section we restrict our attention to the case n=1. In [8], D. J.
Newman and H. S. Shapiro proved that the polynomials are dense in A%(|z|*
—2log|P|) when P is an exponential polynomial. Inasmuch as our interest is in
polynomial approximation is spaces whose weight functions are plurisubhar-
monic, (i.e. subharmonic since n= 1) we shall study this problem in 42(¢) when
¢ is subharmonic and A%(¢) is very nearly equal to 4%(|z|>—2log|P)).

In order to motivate our approach to this problem we begin by studying the
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situation when P is an exponential polynomial. That is, we assume that

P(z) = ;Pk(Z) exp (a2) ,

where p; is a polynomial and a, € C for k=1,2,... m. Let gsm (|z|> —2log|P))
denote the greatest subharmonic minorant of |z]? —2log|P|. (See [7] for
details.) We begin by showing that the polynomials are dense in A%(gsm (|z|?
—2log|P))), when P is an exponential polynomial.

THEOREM 7. If P is an exponential polynomial then the polynomials are dense
in A*(gsm (|z|*> —2log |P|)).

Proor. Inasmuch as P is of order 1, it is clear that there is a constant, c,,
such that 2log|P(z)| <c, (1 +|z/*)?, and thus that

|z1> —21og|P| > |z* —c, (1 +]z1}) .
Hence, it follows that there is a constant, c,, so that
(1) gsm (|z|* ~2log |P|) > |z|* —c,(1+]z*)* .

In addition, by Theorem 1 in [10], there is a constant M so that each disk of
radius 2 contains fewer than M zeroes of P. We denote by 4 the set of points in
C whose distance to at least one zero of P does not exceed 1/3M. Then there is
a circle of radius less than 1 about each point C which does not meet 4.

By Theorem 3 in [4] there is a constant, ¢, so that if z is not in 4, then
—2log|P|<c5(1+]z|*)*. Hence, it follows that

|zl —2l0g |P| < |zI* +c5(1+]2%)* ,

for such z, and by the subaveraging principle for subharmonic functions that
(2) gsm |z —2log|P|) < |z +c,(1+]z%)?,

for all z € C. The result now follows by Theorem 5, in view of (1) and (2).

Theorem 7 is the polynomial approximation result which corresponds to the
result of Newman and Shapiro. We can now extend this theorem to a more
general class of weight functions.

TueorEM 8. Suppose that  is continuous and radial, that Y —elz|* is
plurisubharmonic, and that

Y(w) < Y(2)+clzl>  when [w—z|<l|z|,
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where ¢ is a constant. If P is an entire function of exponential type, then the
polynomials are dense in A*(gsm (¥ —2log |P))).

PRrOOF. As in the proof of Theorem 7, it is clear that there is a constant, ¢,, so
that

©)] gsm (y —2log|P) > y—c;(1+21°)* .

Furthermore, by (3.7.2) of [3], there are constants ¢, and R such that whenever
|z] >R, there is a circle of radius g(z)<2|z| about the origin such that
—2log|P(w)| S c, (1 +|wl?) if [w|=g(2). It follows that there is a constant c; so
that

@ gsm (Y —2log|P)) < ¥ +cs(1+]z])

for all z e C.
Moreover, by (3.3.1) of [3], there exist circles of radii R, and a constant ¢, so

that R, — oo and
—2log|P(@)| < ca(l+1z?,

if |z}=R,. We conclude that, when |z|=R,,
©) gsm (Y —21og|P)) < Y +cy(1+]z)*.
The result now follows from Theorem 6, in view of (3), (4) and (5).

We emphasize, in the following Corollary, that the most important special
case of Theorem 8 is ¥/ (z)=|z|2

CoroLLARY 2. If P is an entire function of exponential type then the
polynomials are dense in A*(gsm (|z|> —21og|P])).

Corollary 2 provides information about the closure of the polynomials in
A*()z|> —2log|P|) when P is of exponential type.

THEOREM 9. If P is an entire function of exponential type, then the closure of
the polynomials in A*(|z|* —2log|P|) contains A*(|z|*—2log|P|—log (1+|z[?).

ProoF. Suppose that fe A%(jzl2—2log|P|—log(l1+|z?) and write ¢
=gsm (|z]>—2log|P|). By (3) and (4) there exists a constant ¢ so that
—c(1+z)* < o—|z> < c(1+]2)?) .

Let g be a bounded function such that |z|? —c(1 +|z|?)* + g is plurisubharmonic
and let
o = @+ (1/k) (|2 —c(1+ 1z +g—9) .
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Then, with Ny =k and «, as in the proof of Theorem 3, we can find u, € 4%(¢,)
so the du, = foa, and

Jlukl2 exp (— @) di < 2k? jlfaaklz exp (=@ di .

Proceeding as in the proof of Theorem 3, we find that [ |u,?exp (—@)dA is
bounded above by a constant multiple of [, |f|>exp (—)dA.

By the defining property of the reproducing kernels in the Fischer space and
the fact that zf e A%(|z|> —2log|P]) it follows that |zf (z)|? is bounded above by
a constant times exp (|z|* —2log|P|) for each z € C. Moreover, inasmuch as
log|zf| is subharmonic it also follows that |zf(z)]> is bounded above by a
constant times exp (). Thus, the sequence |u,|, is bounded and hence u, has a
weakly convergent subsequence in L?(p), which we continue to denote by u,.
Writing the weak limit of u, as u, we observe that fa, —u,+u is a sequence in
A?(¢p) which converges weakly to fin 4%(|z|* —2log|P]). It follows that fis in
the closure of 4%(p) in the Hilbert space 42(|z|>—2log|P]). The result follows
by Corollary 2, since ¢ <|z|>—2log|P|.

5. Conclusion.

We have shown that the polynomials are dense in 4%(¢) when ¢ is nearly
equal to a radial function ¥, with y —¢|z|® plurisubharmonic. We remark that
the polynomials are not always dense in A2(¢). In order to illustrate this point,
we consider some weight functions of one variable.

If @ (z) = x%(z=x+1iy), then A%(p) is not empty, but contains no polynomials.
In this case, ¢ —1|z|? is plurisubharmonic, but ¢ is not sufficiently near a radial
function for the polynomials to be dense in 42(¢).

In [9], B. A. Taylor showed that the polynomials are not dense in A%(¢)
when ¢ = (1+x?)%. In this case, ¢ is nearly radial, since

lo—(L+1zP} < (L+121)*,

but there is no positive constant ¢ for which (1+|z]%)*—¢lz]* is
plurisubharmonic.

We know of no example in which the polynomials fail to be dense in A4%(¢)
when ¢ is plurisubharmonic and

lo—|z?| < c(1+]z|*)*** when 0<d<}.

However, we have been unable to prove this result, except under the additional
conditions of Theorem 6. We remark that the estimates we have used for the
reproducing kernels are not known to be sharp. Suitable improvements in
those estimates would lead to corresponding improvements in our results.
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Finally, we considered an appropriate analogue of a problem of D. J.
Newman and H. S. Shapiro. We were able to prove more general analogous
results, but our methods seem to give slightly less precise answers to the
original question of Newman and Shapiro.
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