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ON CONFORMAL MAPS WITH STARLIKE IMAGES

P. C. FENTON

1. Introduction.

For any positive number r, let 4(0,r) be the open disc with centre O and
radius r. If fis a starlike univalent function; which, for the purpose of this paper,
is to say that f'is a regular univalent function defined on 4(0, 1) for which both
f(0)=0 and f(4(0,1)) is a set starlike with respect to O; then, according to a
classical result of Study [5], the set f(4(0,r)) is also starlike with respect to O
for any positive number r less than one. Analogously, if f is a convex univalent
function, by which will be meant that fis regular and univalent on 4(0, 1) and
f(4(0,1)) is a convex set, then f(4(0,r)) is convex for any positive number r
less than one, a result once again due to Study [5].

Pommerenke [4] and Heins [2] have given, independently, a complete
answer to a question suggested by this latter result of Study, namely: what
property characterizes the sets in the disc which are always mapped onto
convex sets by convex univalent functions? In part the aim of this paper is to
show that the intimate connection existing between convex and starlike
univalent functions, together with the result of Pommerenke and Heins, which
will be stated below, is a key to the characterization of the subsets of the unit
disc which are always mapped onto sets starlike with respect to O by starlike
univalent functions, and to describe this characterization; the other partial aim
is, following Heins (see [3]), to establish'a theorem concerning the
representation of such subsets.

Before stating the theorem of Pommerenke and Heins we shall have need to
introduce the notion of D-convexity (the name is due to Heins) which may be
formulated as follows. Given two distinct points a and b in the open unit disc
there are exactly two circles C, and C,, called oricycles, which lie in the closure
of 4(0, 1), pass through both a and b and have a tangent in common with the
unit circle. We denote by D(a, b) the intersection of the two closed discs which
have C, and C, as frontiers. A subset E of 4(0, 1) is then said to be D-convex
provided that D(a, b) is contained in E whenever a and b are distinct points in
E. The theorem of Pommerenke and Heins is:
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Suppose that E is a subset of 4(0, 1). Then f (E) is a convex set for every convex
univalent function f if and only if E is D-convex.

The statement of the first of the theorems to be proved here requires a
similar introductory notion which, for the sake of uniformity, will be called D-
starlikeness. A set E contained in 4(0, 1) will be called D-starlike if, given any
non-zero point z, in E, the set

1.1 D(z,) = {z: z=tzye" and

6] < 0,(l2, |z) = 2 Arsin <'—z°'—_—'2—') and 0§t§1}

1—|zzy)

is contained in E. Our result is then

THEOREM 1. Let E be a subset of A(0,1). Then f(E) is starlike with respect to
the origin for every starlike univalent f if and only if E is D-starlike.

Now it happens that the set D(z,) of (1.1) is not itself D-starlike for any non-
zero number z, in 4(0,1). On the way to obtaining a representation of a
general D-starlike set, it is helpful to know what is the smallest D-starlike set
containing z, and to this end we make the following definition.

Let z, be a non-zero number, of modulus r, less than one. For ¢ in the
interval [0,r,], let R(r,) be the solution, if it exists, of the equation

l 1+r0.1"‘t —
8 1—ry 14+tf 7

otherwise, let R(r,)=0. For r in the interval [R(ry),r,], we define ¥ (r,7,) by

I4+ry 1-1|.
(1.2) Y(rro) = lOg{l—rO 1‘;}
and we define a set E(z,) by
(1.3) E(zg) = {zo} U {z: z=tz¢" and
R(|zol)

6] < ¥ (tlzol, |zo]) and §t<1} U {lzl <R (2o}

|Zol
Our second theorem, together with an immediate corollary which provides

the representation we are seeking, is then

TueorEM 2. For any non-zero number z, in 4(0,1), E(z,) is the smallest D-
starlike set containing z,.
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CoRrOLLARY. Every D-starlike set in A(0,1) is of the form U, ¢ E(z), where
S is a subset of 4(0,1); conversely, given any non-empty subset S of A(0,1),
U, .s E(2) is D-starlike.

2. Preliminaries.

The connection between starlike and convex univalent functions alluded to
previously may be gleaned from the following two results (see [1, pp. 166-

167)):

(i) A function f(z), regular in 4(0,1) and satisfying both f(0)=0 and f'(0)
=1, is starlike univalent if and only if

7f’(2)
Re{f(z)} =0 for ze 4(0,1).

(ii) A function f (z), regular in 4(0, 1) and satisfying both f (0)=0 and f'(0)=1,

is convex univalent if and only if

4" (2)
Re{f,(z)} = —1 for ze 4(0,1).

Using (i) and (ii), we readily see that, if f is starlike univalent, then

@.1) g@2) = j zf—g—)dc for z € 4(0,1)

o

is convex univalent. For if f (2) is starlike univalent, then f(0)=0, f'(0)=c, ¢#0,
so with f; (z)=c~!f (z), we have, by (i), Re {zf(2)f;(z) '} 20 for z in 4(0,1).
With g, (z) defined by

g2 = fz%@dc, e 40,1,
0

if follows that g, (0)=0, g;(0)=1 and
Re{zg{(2)g1(2)""} 2 —1, for z€ 4(0,1),

and so, by (ii), g,(z) is convex univalent. Thus, by our definition, so is g(z)
=cg(2). .

3. Proof of Theorem 1: Sufficiency.

We begin the proof of Theorem 1, considering first the sufficiency of the D-
starlikeness condition.

Suppose that E is a D-starlike set contained in 4(0, 1), and let z, be any fixed
non-zero point in E. Let f(z) be a starlike univalent function and let g(z) be
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defined by (2.1), so that g is convex univalent. Let I': z={(t), 0=t <1, be the
curve in 4(0, 1) defined by f ({ () =1tf (z,), 0= ¢t £ 1, which certainly exists since f
is starlike; we aim to show that I' is contained in E.

Let us first note that, since f is starlike univalent,

d

i loglé()) > 0 for O<t=1,

so that any circle about the origin intersects I" at most once. For we know that
Re (zf"(z)f (z)™')20 and consequently, since f ({(£))=tf (zo),

4 e fro 1 _J’M}
4 oglt 0l = Re{((t)} - tRe{C(l)f'(C(t)) ~ 0

Let r be a fixed positive number less than r,=|z,| and let 7 be the number for
which |{(t)]=r, 0<t<1. Then

(@ [fe) @ g
G.1) ‘“g{“z’o_} = a’g{ 20 f(C(r))} - arg{g’(cm)}’

where “arg” denotes the many-valued function. (We denote the principal value
by “Arg”.) Now, let y: z=£(2), 025t =1, £(0)=z,, £(1)={(7), be the curve in
4(0,1) joining z, to {(r) which is mapped by g onto the line segment joining

g(zo) to g({(r)). Then
arg { lim g@(_t))_—_g_go_)}

(3.2 argg'(zo) F0—E(0)

_ g(c(r))—g(za}
= arg{ £(0)

since arg (g(¢(1))—g(zo)) is the same for all ¢, 0<t<1; and similarly

, _ . g(¢ (T))-—g(é(t))}
(3.3) argg'({(r)) = arg{}jfg F=20
g({(1))—g(zo)
= arg{———————é,(l) } .
Taking (3.1), (3.2) and (3.3) together, we obtain
(@ _ ¢
(3.4) arg{z—} = arg { z (0)} )

and we set about to estimate the right hand side of (3.4). As one case we

suppose that (@)
0= Arg{ } Sm.

Zp
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(The remaining case, of —7 < Arg{{(1)/zo} <0, admits of a precisely similar
treatment.) From the result of Pommerenke and Heins we know that y is
contained within the intersection D({(t),z,) of the closed discs the frontiers of
which are the oricycles C, and C, passing through {(t) and z,. Of these two
oricycles, one of them, say C,, is such that the argument of the anticlockwise
tangent vector increases as we pass from z, along C, N D({(z), z,) to {(7). Let
the centre of this oricycle be O, and let 6, be the angle subtended by
C,ND({(x),z,) at O,. Let the centre of C, be O, and let 0, be the angle
subtended by C,ND({(z),zy) at O,. If 0<Arg{{(t)/zo} <m, then C, is the
circle which touches |z|=1 at a point within the half-plane which contains O
and has {(7) and z, on its frontier, and consequently 0< 6, <=; also 0< 0, <2n
and 0<6,+0,<2n. These inequalities obviously continue to hold in the
extreme cases, and therefore hold for 0<Arg {{(7)/zo} <m.

Let w,(zy) be a complex number with the direction of the anticlockwise
tangent vector of C, at z,, and let w,({(7)) be a complex number with its
direction at {(7). Similarly, let w,(z,) be a complex number with the direction of
the clockwise tangent vector of C, at z,, and let w,({()) be a complex number
with its direction at {(r). Elementary geometry reveals that both

gn {W1(C(T»} = ¢, sgn {WZ(C(T))} = e i

wy(zo) w3 (20)
and we therefore deduce that

é’(l)} ;
3.5 sgn<——» = €%  where —0,<¢p=<80,.
( ) g { f, (0) 2 @ 1
Let us review what we have obtained. The numbers 6, and 6, of equation (3.5)
are uniquely determined by {(z) and z,, which means, since we are considering
zo and |{(7)| fixed and restricting ourselves to those functions f for which

O§Arg{£(—t—)}= 0=nmn,

Zo

that 6, and 6, depend only on 6. Thus equation (3.5) establishes the possible
range of values of ¢ for each 6, and the problem now is to determine those
values of 6 for which (3.4) (which may be rewritten as: 8=¢) and (3.5) are
compatible.

4. A Lemma.

Let r, be a fixed positive number less than one and let { =re'®, where r is a fixed
positive number less than r, and 0£0=<n. Let C({) be the oricycle passing
through ry and { which touches the circle |z|=1 at a point in the half plane which
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contains O and has { and r, as boundary points. (In case 0=0 or m, C({) is the
oricycle with centre in the lower half plane.) Let ¢ ({) be the angle subtended at its
centre by the arc of C((), obtained by passing anticlockwise from r, to {. Then

o) > 0 for 056<0, = Oy(r,ro) = 2 Arsi“{lro_r: }
—TTy

@) =0 for 6=0,,

o) < @ for ,<6<m.

It is certainly the case that ¢(r)>0 and also that ¢ (—r) <. Since ¢ ({)— 6 is
a continuous function of § for 0< 60 <=, the Lemma will be proved when it is
shown that ¢({)—60=0 implies that

0 =2 Arsin{ro—r}.
L—ror

Suppose that ¢({)—0=0 when 6=6,, for some 0, satisfying 0< 60, <n. Let
{o=re'% and let us consider the circle K determined by O, {, and r,. Since ¢ ({,)
=40, it follows that the centre, say 7, of C({,) lies on K. Further, an elementary
geometrical argument shows that the order of the points, passing around K
anticlockwise from ry is: rg, {o, O, ,. (Since O and 1, both lie on the same side
of the line through {, and r,, the only alternative is ry, {o, 114, 0. This, however,
is impossible: for 5, must lie on the perpendicular bisector of the line segment
(o,7o), and this cuts the real axis at a positive point.) Since #, is the centre of
an oricycle passing through {, and r, we find, on setting |5o| =x, that

4.1) fro—tol = 1—x = |{o—no .

The triangle ({,, 70, 7o) being isosceles, angle (79, {o, 7o) =37 —30,. Also, since r,,
(o> O and n, all lie on a circle it follows that

4.2) angle (1o, 0,7,) = angle (10,0, 7o) = n—10, ,
from which we conclude further that
4.3) angle (,,0,{,) = 0, +angle (15,0,7,) = in+36, .

We apply the cosine rule to the triangle (10, O,7,) and obtain, making use of
(4.1) and (4.2),

x2+r2—2ryx Cos 3n—48,) = (1-x)*,
which gives, on simplification,

2
1—7‘0

4.4) 2x = m .
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Likewise, on applying the cosine rule to the triangle (n,, 0, {,) and making use
of (4.1) and (4.3) we obtain
1-r2

4.5 =
“3) > = 147 sin6,
Taken together, (4.4) and (4.5) imply that

r3—r? _ ro—r
r(d=r)+ro(1=r?)  1—rry’

Sinif, =

and the Lemma is proved.

5. Conclusion of the proof of sufficiency.

We write as before 8= Arg {{(1)/z,}. If 6 belongs to the interval [0, 0, (r,7,)],
then (3.4) and (3.5) are compatible since in this range 6 also belongs to the
interval [0,0,], (by the Lemma) to which ¢ may also belong; that is, 0 =¢ is
possible. If 6 was slightly larger than 6,(r,r,), however, we know from the
Lemma that 6> 0,. We know also that 6, + 0, <2r always and it would be,
therefore, possible to choose 0 satisfying 6, <0 <2n—0,; but then (3.4) would
imply 0, < ¢ <2rn—0,, which contradicts (3.5). We thus conclude that 8 can
belong only to one or other of the intervals

Il (ra rO) = [0’ 00 (r, rO)]’ 12 (r, rO) = [00 (ra rO) + 6(7’, "o)y ﬂ] s

where d(r, r,) satisfies 0<d(r,ro) Sn—0,(r, 1) for 0<r<r,. The case of —n <0
<0 is dealt with in a precisely similar way and combining the two results we
find that, if | (z)] =r, then 6 = Arg {{(r)/z,} must belong to one of the following
intervals:

~

[=6o(, "’o)s Oo(r,r0)l,  [Oo(r,ro)+6(r,ro), 7],
[ -7n, — 00 (r’ rO) - 5(7‘, rO)] .

The first interval defines the region D(z,) of (1.1) as r varies between zero and
ro, and the remaining two intervals together define a second region F(z,) which
can have at most two points in common with D(z,), namely z, and O. Let us
observe that, given r,, 6 must lie in D(z,) for small values of r. For if r is small, 0,
(the angle introduced in Section 3) is less than n no matter what the value of 0,
and therefore if 6 belongs to [0, 7] it must also belong to [0, 6,4(r,r,)] and if 6
belongs to (—m,0) it must also belong to [ —6,(r,r,),0]. That I is contained
in D(z,) now follows at once: for I' is a continuous curve which lies in
D(zo) UF(z,), begins at O and has its initial section in D(z,), ends at z, and
crosses each circle about the origin at most once. Thus I' lies completely in
D(z,) and so by hypothesis, in E, the D-starlike set with which we began. Since
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this is true for each non-zero z, in E, f (E) is starlike with respect to the origin
for every starlike univalent function f. The proof of sufficiency is thereby
concluded.

6. Proof of Theorem 1: Necessity.

Suppose that E is a set in 4(0,1). E£{0} or &, which is such that the set
f(E) is starlike with respect to O for every starlike univalent f. Then E is a
starlike set with respect to the origin and so, since D(z,) is also starlike with
respect to the origin, we will have proved that D(z,) = E once we have shown
that dD(z,)<E, for any non-zero z, in E.

Given a non-zero z, in E, let {=r sgn (zo)e'®"™ " be a boundary point of
D(z,), where ry=|z,| and O<r<r,. Let C be the oricycle passing through z,
and { which touches the circle |z]=1 at a point 5 within the half-plane
containing O and having z, and { as frontier points. For some real number R
and some number n with |¢|=1, then, C is described by the equation

Re{"+z} _
n—z

Let

a convex univalent function, and let f(z)=zg'(2), a starlike univalent function.
We consider

FO1 . (&
(6 Arg {f(zo)} = Arg {zog'(zo)}

( . /
= Arg ieloo(r,ro) gg’T(zco)j}

It follows from the definition of 8,(r,7,) that the angle subtended by the minor
arc ({, z,) at the centre of C is 0,(r,r,). From this, together with considerations
similar to those leading to (3.2) and (3.3), it follows that

g’(C)} —i0,y(r, rg)
6.2 Ar = ¢ Yo"
€2 g{g'(zo)
We deduce from (6.1) and (6.2) that

SO _
Arg{f(zo)} =0
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Since |{| <|zo|, it follows that { lies on the curve I':z={(t) defined by f({(¢))
=tf(zo), 0=t=1, which lies in E by hypothesis. Hence ¢D(z,)cE and the
Theorem is completely proved.

7. Proof of Theorem 2.

We show first that, for any non-zero z, in 4(0,1), E(z,) is D-starlike. We
assume without loss of generality that 0 <z,=r,<1 and observe that, since
D(2) > D(tz) for any ¢t in [0, 1], it is sufficient to show that D(z)\{z} = E(z,) for
any z on the boundary of E(z,). With this in mind, let r and r; be positive
numbers such that R(ro) Sr<r, <ro, and let z, =r "7, where Y (r, ro) is the
function of (1.2). We aim to show that

(7.1) 4@ = ¥(r,r))— (6o (r,r)+Y(r,79) > 0,  for R(ro)Sr<ry;
for, if (7.1) holds then evidently D(z,)\{z,} < E(r,).

By definition,

1+ry 1—r l+rg 1-r; =T
=1 . —1 .
A(r) Og{l—ro 1+r} og{l_ro Tor, —2 Arsin 1_

1+r, 1~r —r
—log{l__rl 147 } 2Arsm{1_rrl}

and consequently

14rf -1 1—r d L -t
4@ = - 2% A
) 1——r{1+r (1+r)2} 2 rsm{l—rrl}
2 2 {1-r})?
- zt J r;
1-r 1——rr,ll—r

____i__
(A-rr)(1—

!

i

{(1 rr)— (1 =12 =r2 +rir?)t};

and this is negative, as is seen by squaring each term within the bracket. Thus,
since 4(r,)=0, we have 4(r)>0 for R(r,) <r<r,, for any r, in the open interval
(R(ro),7o); similarly A(r)>0 for R(ry)<r<r,. E(z,) is therefore D-starlike.

Let, now, H be a D-starlike set containing z,, where z, is an arbitrary non-
zero number in 4(0, 1). We will show that H 5 E(z,), which will complete the
proof of Theorem 2.

Suppose, on the contrary, that there is an angle ¢, satisfying 0 < ¢, <7, (the
case of — 1 < ¢, <0 is'approached in a precisely similar way) and a number ¢, 0
<to < T(@o,|2ol) (Where t=T(y,|z,|) is the inverse function of Y =y (¢, |z,|) of
(1.2)) for which tqe'® does not belong to H. If H E(z,), some such ¢, must
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exist. Moreover, since H is at least starlike, it follows that z=te'? ¢ H for any ¢
2ty, in particular for T(@g,|z5|)=t=t,. From the D-starlikeness of H, it
follows that the points z= T (@, |zo|)e"“c = are outside H, for any ¢ satisfying

14+ T(@o, |zol) - lo}
1=T(@o,l20l) 1+

>

0s¢p=<¢p, = log{

for D(z) > {toe'?} for all such z, so if one of these z were in H, we would have
H > D(z)> {tye'?}. Therefore all points z=te'@® =90 for T(po—@y,|zo)) 2t
2 T (@, 120]), lie outside H and consequently, from the D-starlikeness of H, all
points z=T(po— @1, |zo])e" @ ~?1~? are outside H, for any ¢ satisfying

14+ T (90— @15120) 1—T(@o, |20|)}
1=T(po—@4,|2z0l) 1+ T(eo,l20))

We are faced with two possibilities: either this process may be repeated
indefinitely with ¢, — X7 ¢;>0 for every m; or, for some positive integer M,

0§<P§(Pz=1°g{

M-1 M

(7.2) L0 <P =Y.
1 1

Suppose that the first possibility holds. We readily deduce the recurrence
equation

k k-1
1+ T(‘Po “z ?j |20|> 1- T(‘Po - Z ?j |Zo|>
1
Pr+1 lOg )1‘ ' k-1 s k=2,
1- T(‘Po - Z ?j |Zo|) 1+ T(‘Po =Y 9, |20|>
1 1
from which it follows that, for any positive integer m,

m-1
1+ T((Po_ z Pjs |Zo|> 1—t
1 . 0
1+t,

(7.3 i(pj = log

m—1
! 1—T(<po— Y o, IZol)
1
If we set y =Z{ ¢, then 0<y < ¢, and, from (7.3),

_ 14+ T(po—W,20l) . 1 "‘to}
v =l {1 “T(oo—vlzo) 1160

- - 1 1—t
—lo L+zo| 1=T(po—¥, |ZOD}+log{ +1zol | o}
1—|z| 1+ T (90— ¥,lz0l) L—|zol 1412

1+ 1-t
l/l—(po-HOg{__lzll.____Q} .

]

1—|zo] 1+t
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We deduce that

1 + IZO‘ 1 - tO
= lo . ,
o g{1—|z0| 1+t
which contradicts the hypothesis that t, < T'(@,, |z,|). Consequently the second

possibility must hold; that is, there is a positive integer M for which (7.2) holds.
This, however, would imply that the set

M-1 M-1
{z: z=T<<po— ) fpj,lzol) expi(%— > (pj—fp) and 0§¢§¢M}
1 1

lies outside H, which in turn implies that z, lies outside H, a contradiction.
Theorem 2 is thus completely proved.
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