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ON SOME GENERALIZATIONS
OF THE MALMQUIST THEOREM

EINAR HILLE

To the m y of Johannes Malmquist

1. Introduction.

We shall be concerned with the existence of non-rational meromorphic
solutions of certain first order non-linear differential equations (abbrevi-
ated DE) and the limitations which the existence of such solutions
impose on the form of the equation. The prototype for this range of
ideas is a theorem proved by Johannes Malmquist [12] in 1913:

If R(z,w) is a rational function of z and of w and if the DE

(1.1) w' = R(z,w)

has a meromorhic transcendental solution then (1.1) is a rational Riccati
equation, i.e.
(1.2) w'(z) = Ao(2)+ A4, (2Jw(z) + A5(2)[w(z)]*

where the A4’s are rational functions of z.

This theorem has inspired a large literature. An alternate proof and
an extension to more general equations were given by Kosaku Yosida
in 1933 [22] using the Nevanlinna value distribution theory. A system-
atic examination of the implications of this theory for linear and non-
linear DE’s was undertaken by Hans Wittich [14-18] in the 1950’s. In
particular, for equation (1.1) he found that Malmquist’s assumptions
implies that the solution is of finite Nevanlinna order and the proximity
functions

(1.3) m(r,00; w) = O[logr], m(r,c0;w') = Oflogr].

He based the polar statistics on the notion of polar neighborhood, a
concept which goes back to Pierre Boutroux [4, pp. 47-54]. These con-
cepts were made more precise by the present author [7 and Chapters
4, 11 and 12 of 8] who showed that the polar statistics could be
based on an elementary geometric problem: if overlapping is not al-
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lowed, what is the closest packing of small circular disks in a large disk
or on its rim?

Very far-reaching generalizations of the Malmquist—Yosida theorems
were given by A. A. Gol’dberg [6] in 1956. See further Sections 4 and 7
below.

Generalizations with a different mode of approach appeared in the
early 1970’s. Ilpo Laine [9-11] and Chung-Chun Yang [19-21] studied
non-linear DE’s where the coefficients are meromorphic functions of
lower order than the considered solution so that for each coefficient
C,(z) in the numerator or denominator of R(z,w)

(1.4) Tlr; Cy(2)] = ofT[r; w(2)]} .

This leads to generalizations of the Malmquist—Yosida theorem and also
of Yosida’s extension to DE’s

(1.5) (w')* = R(z,w)
with the reduced equation (below called a hyper-Riccati DE)
(1.6) (W) = IV, Adz)w!, n+1sN=2n.

The poles of such meromorphic solutions are (if located at non-singular
points of the DE) all of the same order « which is a divisor of » and

2. Remarks and preliminary observations.

These interesting generalizations raise a number of questions some of
which will be answered in the present paper. It is assumed that the DE,
(1.1) or (1.5), has a solution meromorphic in the finite plane. This is
reasonable if the coefficients are entire functions, but if some are tran-
scendental meromorphic, then the DE has infinitely many fixed singular
points which cluster at infinity (poles of the C,’s or zeros of the coeffi-
cients of the highest powers of w in the numerator and the denominator
of R(z,w).) The special Lamé equation

(2.1) w = w?—[m(m+ 1)p(z)+ B]

shows that such a profusion of singularities is still compatible with the
existence of meromorphic solutions. It should be noted that condition
(1.4) is not satisfied by this equation. The trivial example

(2.2) w' = jmwsec?(Inz)[1+w?] with w(z)=tan[tan(}nz)]

shows what may happen with meromorphic coefficients. Here the fixed
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singularities are double poles at the odd integers and are clusterpoints
of the poles of the solution.

The author likes to know to what extent the methods used by Wittich
and himself can cope with the more general cases studied by Gol’dberg,
Laine and Yang. Having once emphasized the importance of the finite-
ness of the order of the solutions [7], he now wants to show the un-
importance of finiteness under suitable restrictions on the coefficients.
Actually they may be so general that only locally meromorphic solutions
can exist.

For n=1 the equation is

. P(z,w)
23) | = 2w
with
(2.4) P(z,w) = ;-;0 Pi2yw!, Q(z,w) = Df_o Qu(z)w* .

Throughout the study of this case the coefficients will be holomorphic
in the open unit disk. Further restrictions will be imposed later.

We note first that if (2.3) has a solution with a pole at a point 2=z,
not a fixed singularity of the equation, then the pole is necessarily simple
and p=gq+ 2. For suppose that

(2.5) w(z) = a(z—2z)~*[1+0(1)]

then

(2.6) w(z) = —oaa(z—2z)~* Y 1+0(1)],
(2.7) R[z,w(2)] = aP‘qu—(z—O) (2—25)~ =241 +0(1)] .

Qq(zo)

Since z, is not a fixed singularity, neither P,(z,) nor @,(z,) can be zero
or infinity. Equating (2.6) and (2.7) we get

(2.8) (p—q—1)x =1

and since « is a positive integer we must have

(2.9) a=1 p=q+2

as asserted.

We can also compute a, the residue of the pole, but we shall find it
advantageous to impose the conditions

(2.10) Pyz) =1, g2)=1.

The immediate effect is to make all residues (at points which are not
fixed singularities of the DE) equal and equal to —1. Other and more
important consequences will appear later.
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At this stage we disregard the case of meromorphic coefficients, for
which see Section 6, and restrict ourselves to the following two cases.

I. All coefficients are entire functions of z and at least one of the coef-
ficients P,(2) and P,,,(2) is transcendental.

I1. All coefficients are holomorphic in the open unit disk and at least
one of the coefficients P,(z) and P,,,(z) has a singularity on the unit
circle such that

(2.11) (L=r)M(r; Cy)
has a positive lower bound for 0<r<1.

Here M(r; C;) is the maximum modulus of Cj(z).

Admissible solutions of (2.3) are in case I meromorphic transcendental
functions in the finite plane with poles clustering at infinity while in
case IT w(z) shall be meromorphic in the open unit disk with infinitely
many poles which cluster at the fixed singularities on the unit circle.

We shall use a majorant method. Let

(2.12) Cy(z) = Zooo Ciu2™
and set
(2.14) C, = max;le;,|, Cz) = 33.,C,2".

For the discussion of the polar neighborhoods we need a restriction on

C(r), namely if
Clr+1/6C(r

(2.15) Q(r) = Clr+1/6C(n)]

C(r)

In case I Borel’s Lemma shows that @(r) < 2 outside a set of finite measure.
In case IT (2.15) requires that the lower bound in (2.11) exceeds } in
order that Q(r) be definable. If C(r) satisfies these various conditions it
is rated as an acceptable majorant of the coefficients.

then sup@(r) £ B<oo.

3. The pseudo-Riccati equation.

Consider equation (2.3) and divide the numerator by the denominator
to obtain the pseudo-Riccati equation
(3.1) w = w4+ A (w+ 4y(2) + Py(2,w)] Q(z,w) .

That the coefficient of w? is identically 1 follows from (2.10) and is the
main reason for this assumption. The degree of P,(z,w) as a polynomial
in w is at most ¢—1. Since p=g+2

(3.2) Al = Pq+1"Qq-—1: Ao = Pq"Qq-—l— (Pq+1_Qq—1)Qq-—1 ’
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(3.3)  Pyz,w) = X¥ [Py y—Qujoa— (Pos— Qqo1)@qmyJu? 7 .

Following the prescripts of Wittich we divide (3.1) by w? and aim to
get an estimate of the form

(3.4) wlw? = 1+h(z) with |h(z)| <}

in some neighborhood of the poles. It is supposed that C(r) is an accept-
able majorant for all the coefficients. Let B stand for the supremum of
@(r) in (2.15). Then for C(r)>1

(3.5) [4o(2)] < 4[C(n)P,  [4:(x)] < 20(r), z=re,
where 0 <r<1 in Case II but not in Case I. Now

(3.6) Qz,w) = 291+ 3123 Qy(2)uw~]

the absolute value of which exceeds

|w|—1-C(r) ]2+t

(61) (el =0lr) Sy 0l = ol o] — 1

if |w(z)| >2C(r)+2. On the other hand, by (3.3)

(3.8) |Py(z,w)] < 4[C(n)]? |w]|?/(jw|—1)
80 that
(3.9) |Py(z,w)|/|Q(z,w)| < 8[C(r)]|w|?

provided |w(z)| > 2C(r) + 2.
It follows that

h(z) = Ay(z)w2+ A (z)wt + P,(2,w)[w?Q(z, w)
satisfies
(3.10) [R(2)] < 20(r)|w|~2+ 4[C(r)]?|w|~*[1 + 2|w|~1] .

Consider now the point set
(3.11) S = [z; |w(z)]|>6C(r)]

where z is restricted to the unit disk in Case II but not in Case I. Since
by assumption the solution has infinitely many poles in the domain
under consideration, S is not void. Now for ze 8

(3.12) ) < B <

so that (3.4) holds in 8. In general S has infinitely many maximal com-
ponents. Each component contains a pole of w(z) and if the component
is convex, one and only one pole. This follows from (3.4) by integration
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from z, to z,, two points in the same component of 8. The integration
gives
(313)  w(zg)—w(z)? = §} [1+h(s)]ds = (2,—20)9(20,%1)

where %< |g(24,2;)| < §. In particular, this shows that no component can
contain two poles, one visible from the other, for if z, and 2, were the
two poles then the first member of (3.13) would be zero while the third
member cannot be zero.

4. Polar neighborhoods and polar statistics.
With Wittich we introduce for each pole z=z, a corresponding polar

nesghborhood
(4.1) U, = {z; lz—2,| <[9BC(lz,])]7"}

where in Case II z is restricted to the open unit disk and B=sup@(r).
It should be shown that U, =S8. To this end consider the auxiliary

neighborhood
(4.2) D, = {z; |z—2,| <[6C(|z,])]7} -

If this set is already in S, we are though since B> 1. If D, is not wholly
in 8, then we can shrink it to a concentric disk D,, which lies entirely
in 8 and its boundary passes through a point z=¢ where

(4.3) lw(t)] = 6C(|t]) .

A lower bound for [t—z,| is obtainable from (3.13) with (4.2). Thus
(4.4) t—2a] > &w() = [9C(¢)]1

where

[t < l2nl +[E—2,] < |24] +[6C(|2,]17, «
O(lt)) < Cflzal +[6C(12,D11} < BC(|z,l) -

This combined with (4.4) shows that U, <8 and gives the desired polar
neighborhood. Two such neighborhoods cannot overlap for if they did
then the corresponding poles would be visible one from the other in §
and this would contradict (3.13).

We can now proceed with the polar statistics as in the author’s paper
[7]. The number of poles of w(z) in the disk |2| < R equals the number of
polar neighborhoods with centers in the disk. The radii of the polar
disks are a decreasing function of the distance of the disk from the
origin, It follows that an upper bound for the number of polar neighbor-
hoods is given by the solution of the closest packing problem: how many
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disks of radius [9BC(R)]-! can be placed in the disk |2|]<R without
overlapping? A comparison of the areas of the disks shows that the
desired number is at most

(4.5) 81[BRC(R)]?

and this bound is quite generous. It shows that the Nevanlinna enumer-
ative function satisfies

(4.6) N(r,o0; w) < 41[BrC(r)]?.
The estimate of the corresponding proximity function
(4.7) m(r,00; w) = (2n)~* {7* log+{w(re®)| do

also leads to a packing problem. For a given 7, the more polar neighbor-
hoods are intersected by |z| =r, the larger is the integral. We get a gener-
ous upper bound by assuming that the circle |2|=r is packed with polar
neighborhoods with centers on the circle. The number of such disks is
at most 9zBrC(r). If there is a pole at z=2, =re, then on the arc I,
of the circle |z|=r which belongs to U, we have by (3.13)

(4.8) log*|w(re®)| < logt(xm/r)+1log*|0—06,|-!

where 6 goes from 0, — to 6, +7 and n=[9BrC(r)]*. It follows that I',
contributes

1p7 1 n, e
=\ log- = ‘logZ4+0
nSO og_ du+0(y) nogn+ (n)

to the proximily function. Since there are at most 92BrC(r) such contri-
butions it is seen that

(4.9) m(r,o0; w) < logC(r)+ O[logr] .

A slightly smaller estimate is obtainable if the circle |z| =7 manages to
avoid all polar neighborhoods.

Combining we get
(4.10) T(r; w) < K[rC(r)]?

for a suitable constant K. This estimate, poor as it may be, leads to
extensions of the Malmquist theorem.

Let us first note that the estimate agrees with a special case of Gol’d-
berg’s Theorem 2 which deals with the DE

(4.11) (w')ym+ Py(z,w)(w' )1+ ...+ Pp(2,w) = 0

where the P’s are polynomials in w with coefficients which are entire

Math. Scand. 89 — 5
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functions of z of finite order g. Then for every single-valued solution
w(z) in |2| < oo we have
T(r; w) = Ofexp(re*)]

where ¢ > 0 is arbitrarily small. Here take m =1 and consider case I with
C(z) an entire function of order g. Then C(r) < exp(re+¢) if g is finite and
we have also

[rC(r)]* < exp(re¥)

in agreement with Gol’dberg’s result. Actually it is not necessary to

assume g to be finite: (4.10) is still valid.
The Riccati equation

F'(2)

2
F’(z) w+w

(4.12) w = [F'(z)*+

has among its solutions w(z)=F'(z) tan[F(z)]. Let F'(z) be holomorphic
in the unit disk, real positive together with all its derivatives on (0,1).
We have then C(r)=[F'(r)]2. Formula (4.10) gives

(4.13) T(r; w) = O{r?[F'(r)]*}

which is normally vastly exaggerated though it is not too bad in case I.

5. Two Laine-Malmquist-Wittich-Yang-Yosida type theorems.

To complete the discussion of the pseudo-Riccati equation we use the
methods of Wittich. Set

(6.1) Py(2,w)[Q(z,w) = F[z,w(z)] = F(2)
so that
(5.2) ' F(z) = w'(z) — [w(2)]2— 4, (2)m(z) — 4o(2) .

We seek conditions which will ensure that F(z) does not depend on w.
Every pole of w(z) is a zero of F(z) since the degree of P,(z,w) as a poly-
nomial in w is lower than that of @(z,w). It follows that F(z) is holo-
morphic in the unit disk and in case I F(z) is an entire function of z.
By the classical relations of Nevanlinna for proximity functions, omit-
ting the reference to infinity, we have

(6.3) m(r; F) < m(r; w')+3m(r; w)+m(r; Ay)+m(r; 4,) .
Here
m(r; w') £ m(r; w)+m(r; w' [w)+log2

where the second term on the right is dominated by an expression
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(5.4) Ollogr]+O[logT(r; w)] incaseI,

(5.5) O(log(1—r)-1)+O[logT(r; w)] in case I .

These estimates hold for r outside of exceptional sets which in case I
are of finite linear measure while in case II the total variation of (1 —r)-1

is finite. Since
[4o(2)] = 4[C(n)]%  144(2)] £ 2C(r)

we have
(5.6) m(r,o0; Ay) < 2logC(r)+0(1),
(5.7) m(r,o0; 4;) < logC(r)+0(1).

Combining these estimates one obtains
(5.8) m(r,00; F) < 71ogC(r)+S(r)

where for r outside of the, possibly void, exceptional sets, S(r) is domi-
nated by (5.4) in case I and by (5.5) in case II. Since N(r,00; F)=0

(5.9) T(r; F) < 7logC(r)+8(r) .
By R. Nevanlinna’s First Fundamental Theorem
T(r;1/F) = T(r; F)+0(1)
so that
(5.10) N(r,00,1/F) < 7logC(r)+8(r)

for a sequence of r-values which tend to co in case I and to + 1 in case II.
But if F(z,w) actually depends upon w then every pole of w(z) is also
a pole of 1/F so that we must have

(5.11) N(r,o0; w) < 71logC(r)+8(r) .
Since we have m(r,c0; w) <logC(r) +O(logr) we get
(5.12) T(r;w) < 8logC(r)+8(r) .

But now in the expression for S(r) we have 7'(r; w)=O[logC(r)] so that
(6.11) may be sharpened to

(5.13) N(r,00; w) < [T+0(1)]logC(r) .

In the case considered by Malmquist and by Wittich C(r) would be
a polynomial in r and w(z) would have to be a rational function against
the hypothesis. This type of contradiction does not work in the cases
here considered; it is not enough to assume infinitely many poles, some
additional information about their frequency is called for if this method
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is to permit the conclusion that the equation is a Riccati DE. The
obvious assumption is

(5.14) N(r,o0; w) > 7logC(r)

for large values of r in case I and for r close to +1 in case II. This leads
to the following two theorems of the L-M-W-Ya-Yo type.

TeEOREM 1. In equation (2.3) let p=q+2, let (2.10) hold and let the
coefficients be entire functions of z such that at least one of P,(z) and P,.,(z)
18 transcendental. Let C(r) be an acceptable majorant of the coefficients
satisfying (2.14) and (2.15). If the equation has a solution which is mero-
morphic in the finite plane with infinitely many poles and if the enumerative
Junction N(r,c0; w) satisfies (5.14), then the equation is a Riccati DE.

THEOREM 2. Suppose instead that the coefficients are holomorphic in the
open unit disk and at least one of the functions P(z) and P,.,(z) has a
singularity on the unit circle such that (2.11) holds. Let the majorant C(r)
satisfy (2.14) and (2.15) for 0<r<1 and let the infimum in (2.11) exceed
3. If the equation has a solution which is meromorphic in the open unit disk
with infinitely many poles and an enumerative function N(r, oo ; w) satisfying
(5.14) then the equation is a Riccati DE.

Condition (5.14) is merely sufficient for the result. The DE (4.12) is a
Riccati equation. If here we take F(z)=tan(4n2) and the solution

w(z) = 4n sec?(}nz) tan[tan (3n2)]
we have C(r)=}n?sect(dnr) and N(r,oo; w)~n—2logClr) for 0<r<1.
Obviously n-2<7. It would seem possible that N(r,co; w)=o0[logC(r)]
can hold for a Riceati equation.

There are Riccati equations which do not satisfy the Laine-Yang
condition (1.4). The equation

(5.15) w = wi+ A(w+Q'(2) - [Q(2)]> - A(2)Q(z)

is a case in point. If A(z) and Q(z) are single-valued analytic functions
with a common domain of existence, then w=)(z) is a solution and (1.4)
cannot hold.

6. Meromorphic coefficients.

The majorant method used above has to be modified if we wish to
cope with coefficients and solutions which are transcendental mero-
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morphic functions in the finite plane. The poles of the solution are now
of two different types, regular and singular, according as the pole occurs
at a regular or a singular point of the equation. All the poles of the solu-
tion may be singular. An example is furnished by equation (5.15) where
we specify ¢(z) to be a meromorphic function with infinitely many poles
clustering at infinity. Here every pole of Q(z) is a fixed singular point of
the equation and the solution w(z) has only singular poles.

We exclude such cases from further consideration and suppose that
the solution w(z) has infinitely many regular poles. Then the discussion
in Section 2 applies and we have (2.9), i.e. these poles are simple and
p=qg+2. To simplify matters we also assume (2.10). Then the corre-
sponding pseudo-Riccati equation is

(6.1) w' = wi+ A,(2)w+ 4y(2) + Py(2,w)/Q(2,w)

where the coefficients are given by (3.2) and (3.3).

To each coefficient C;(z) corresponds a Nevanlinna characteristic
T'(r; C;). Suppose that D(r) is a positive, increasing, logarithmically
convex function and that

(6.2) T(r;C;) < D(r) Vj.
We set
(6.3) 8 = {z; |w(z)|>D(lz])}

and assume that the sets
(6.4) U, = {z; |2—2,| <[D(|2,])17*}

are non-overlapping polar neighborhoods for the poles z,.
As in Section 4 we see that

(6.5) N(r,00; w) < 3[rD(r)]? .

The proximity function m(r,co; w) presents more of a problem if the
solution has singular poles. To handle this case and the discussion of
the function z » F[z,w(z)]= F(z) of (5.1) we find it desirable to introduce
some restrictive hypotheses:

H,. No function Q,(z) has a distant pole.

H,. The functions P;(z) may have distant poles at most of the second
order and the numerical coefficients of the corresponding principal parts
are uniformly bounded.

H,. At least one of the functions P,(z) and P,,,(2) has infinitely many
poles which are simple in the case of P,,;, at most double for P,.
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These conditions are inspired by the requirement that they be satis-
fied by the Riccati equation
(6.6) w = wi+ A (2)w+ Ay(2)

in the case that it admits a transcendental meromorphic solution. For
the solutions of (6.6) are of the form

(6.7) w(z) = —v'(2)fo(z)
where v(z) is a solution of the linear second order DE
(6.8) v — A4, +Ay(z)v = 0.

If the logarithmic derivative of v(z) is to be a meromorphic function
equation (6.8) can only have regular singular points. By formulas (3.2)
this requirement leads to Hj.

Since all the @, with k<g are expected to be zero H, is a natural
simplification. H, hails from similar considerations as H; and H,.

Now a pole of one of the P,’s is not necessarily a pole of w(z) but it is
a possibility which must be taken into account in the discussion.

After these remarks let us return to the proximity function. To fix
the idea suppose that the circle |z|=r is packed with polar disks corre-
sponding to singular poles of order 1 (no pole can have a higher order).
Suppose that for z on the arc I, of the circle |z|=r in U, we have

(6.9) lo—z] [w(e)| s M
for a fixed constant M, the same for all poles. Then on I',
(6.10) logt|w(re®)| < log*(Mr/27x)+log*|0—6,|*

so that this arc contributes at most
e )
Tlog 2 +0(m), n = [rD(I.
noon

Since the number of contributing arcs is at most arD(r) we get

(6.11) m(r,o0; w) < logD(r)+O[logr] .
It follows that
(6.12) T(r; w) < K[rD(r)]?

for a suitable constant K.
‘We have now to discuss

(6.13)  F(z) = Flz,w(2)] = w'(2) —[w(2)]*— A (2) W (2) — Ao(2) -
This function is holomorphic save for poles. Now the regular poles of w
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make F(z)=0 and the same is true for singular poles. We do not have
to pay any attention to poles of a P;(z) with j<g which are not poles
of w, P, or P,,,, they have to be regular points of . On the other hand
we must pay attention to those poles of P, and P,,; which are not singu-
lar poles of w(z). It follows that

(6.14) N(r,0; F) < N(r,00; P)+N(r,00; Pyyy) < 2D(r).
Further we have

m(r,co; F) < dm(r,00; w)+8(r)+m(r; co,4,)+m(r,00; A;)

< TlogD(r)+8(r) < 9logD(r)+ O[logr]
so that

(6.15) m(r,o0; w) < 9logD(r)+O[logr]
outside an exceptional set of finite linear measure. Thus
T(r;w) < [2+0(1)]D(r) .
The First Fundamental Theorem of R. Nevanlinna gives
(6.16) T(r;1/F) < [2+0(1)]D(r),N(r,00; 1/F) < [2+0(1)]1D(r) .
But if F actually depends upon w, every pole of w is pole of F so that
N(r,o0;w) S N(r,00; 1/F) < [2+0(1)1D(r).
If this relation is false, that is if
(6.17) N(r,c0; w) > (2+¢€)D(r)
for large values of r, then the DE is a Riccati equation. This gives
THEOREM 3. In the equation (2.3) let p=q+2 and assume (2.10). Let
the coefficients be meromorphic functions satisfying H,, Hy, and Hg. Let

w(2) be a transcendental meromorphic solution of (2.3) with infinitely many
poles {z,}. Let r > D(r) satisfy

(1) D(r) 1s positive, increasing and logarithmically convew.
(2) T[r,C4(2)]1 < D(r) for all j.
(8) The sets (6.4) are mon-overlapping polar neighborhoods.

Then if (6.17) holds (2.3) 18 a Riccati equation.
The constant ’2” in (6.17) may not be the best possible but at least

there exist equations for which we have equality. The Lamé-Riccati
equation (2.1) with m=1, B=2 has the solution
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p'(2)
piz)—e’
Here the poles are given by the two nets 2jw,+ 2kw; and (2j + 1)w, +
2kw,. Here the first set is the singular poles, the latter the regular ones
and for D(r) we can take Ar2 where A exceeds n divided by the area of
the period parallelogram of p(z). We have N(r,oco; w)~ 2D(r).

(6.18) w(z) = —}

7. The case n> 1. Preliminaries.
Take equation (1.5), that is,

(7°1) (w’)‘n = P(z,w)/Q(z,'w)

where n>1 and P and @ are given by (2.4). Here the substitution (2.5)
with 2=z, non-gingular gives

(7.2) (p—q—n)x =n.

Here again « is a positive integer, obviously a divisor of n. If n=/kx we
see that
(7.3) p=gq+n+k, 1=k=mn, n+k=N.

All regular poles of the equation are of the same order x. We assume

(2.10). '
The equation (6.1) is now brought to the form

(7.4) (W) = wV+ Ay ()1 4+ Ay_o(Z)wN-2+ ... +
+ Ay(2) + Py(2,w)[Q(2, )

where P,(z,w) is. a polynomial in w of degree.<q. Here

(7.5) Ay, =P, g+N-1"" Qq-—l ’
AN - = P g+N-2™— Qq-—z - (P, g+N-1" Qq—1)Qq—1

and 4y_, is & multinomial in the P’s and the @’s of total degree j and
numerical coefficients +1, involving 2/ power products. Similarly for
the coefficients of P,(z,w) which look like 4,.

For the coefficients we consider two cases.

Case IV. All coefficients are entire functions of z and at least one P;
with j = ¢ shall be transcendental.

Case V. All coefficients are holomorphic in the open unit disk and at
least one of the P,’s with j2 g shall have a singular point on the unit
circle such that
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(7.8) (L=r)M=M(r; Py)

has a lower bound >1 on O<r<1.

In case IV the solution to be considered shall be a transcendental
meromprhic function in the finite plane with infinitely many poles. In
case V w(z) shall be meromorphic in the open unit disk with infinitely
many poles that cluster at one of the fixed singularities on the unit circle.

As in case I we define a common majorant C(r) of the maximal moduli
of the coefficients by formulas (2.12) and (2.13). We replace (2.14) by
the condition that if

(7.7) Q(r) = C{r+[C(r)]-*}/C(r) then sup@(r) =B < co.

In case V it is required that the lower bound in (7.6) exceeds 1 in order
that @(r) be definable.

We imitate the procedure for the case n=1. Equation (7.4) is divided
by w¥. The result is
(7.8) wNw'y = 1+h(z)

and we want to determine an open set in the z-plane where |h(z)| < 1.
We have

(7.9) |[Ay_j(2)] < [2C(n)} if 1<C(r).
Further

(7.10) IPyfz,w)| < [200r)¥ hold/(jw] - 1) ,
while |Q(z,w)| is still dominated by }|w|?+Y/(|w|—1)
so that

(7.11) |Py(2,w)[|Q(z,w)| < 2[2C(r)]¥|w|* .
This gives

[(2)| < 355" (2C0(r)/lwl) + 2[20(r) |-V .

J=0

Consider now the set

(7.12) S = {z; |w(z)|>40(|2|)} .
Then for ze 8
(7.13) Ih(z)] < 3750 (3Y < 1.
Thus for ze 8
(7.14) w-N(w')* = 1+h(z) with |h(z)] < 1.

Here we extract the mnth root with (1)Y= +1 and note that N/n=
14+kn=1+1]x=1+p so that

(7.16) wl-tw' = 1+ho(s)  with [ho(2)| <1/n<}.
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For any two points z; and z, in the same component of S

(7.16) [w(z)]# = [w(z)]* = B [1+ho(s)]ds
= (23—21)9(21,2,)

where

(7.17) B(L=1[n) < Ig(er,25)| < B(1+1/nm).

If in particular z, =z, is a pole of w(z) and z,=z lies in the same compo-
nent of 8 as z,, then

(7.18)  pA—1fn)la—z2]| < lw(@)|? < B1+1/n)z—z] .

8. Polar neighborhoods and polar statistics.
We can take
nex

oy 1) [T

(8.1) U, = {z; l2—2,] <
as the specific polar neighborhood of the pole z,,. In this case the auxili-
ary neighborhood may be

(8.2) Dy = {z; le—2,| <[C(lzm])]} -

If D,, lies entirely in S we are through. If D,, is not entirely in S we
shrink D,, to a concentric neighborhood in § the perimeter of which
passes through a point z=¢ where

lw(t)| = [C(lt)]~.
We have then

on xn
(8.3) [t—z, > n—_HIw(t)I b= m[C(Itl)] !

ne
(n+1)B

oan
> mo{lzml +[C(lzu)]} > [C(lzmD]™?
and U, <8 as desired.

The number of polar neighborhoods in the disk |z|<r is at most
O{[rC(r)]?} as in the case n=1. Here, however, each polar neighborhood
comtributes « units to n(r,o; w). For the proximity function we also get

(8.4) m(r,00; w) < logC(r)+Oflogr] .
Thus as for n=1
(8.5) T(r; w) = O{[rC(r)]*} .
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In case IV this is in agreement with the results of Gol’dberg for equa-
tion (4.11). Here m=n and the P,’s are identically zero for 1<j<h—1.
If the degree with respect to w of P,(z,w) is N, n <N < 2n and if the co-
efficients of the powers of w are entire functions of finite order ¢ and if
w(z) is a meromorphic solution then according to Gol’dberg

T(r; w) < exp(ret®) for any positive ¢ .
Here we have

C(r) < exp(rete) and [rC(r)]? < exp(ret?).

The discussion of the remainder in (7.4) follows the same pattern and
we shall find that

(8.6) N(r,oo; w) < [R+ NN +1)+0(1)]logC(r) .
For we have

F[z>w(z)] = (w')"—Zf’:o Aj(z)wj’AN(z) =1,
whence

m(r,00; F) S [n+3N(N +1)]m(r,c0; w) + §N(N +1) log C(r) + S(r)

since by (7.5)
m(r,00; Ay_;) < jlogC(r)+0(1).

Combining this inequality with (8.4) we get the stated inequality for w
replaced by F. As in Section 5 we see that

N(r,00; 1/F) < [n+N(N +1)] logO(r)+8(r) .

If F depends on w, then every pole of w is also a pole of 1/F of the same
multiplicity and this means that (8.6) holds for w as stated. Hence in
order to conclude that (7.1) reduces to polynomial form (becomes a
hyper-Riccati equation) it is enough to assume that

(8.7) N(r,o0; w) > [n+N(N+1)+¢] logC(r) .
This gives two more L-M-W-Ya-Yo type theorems.

TaEOREM 4. With assumptions and notations as above suppose that the
coefficients of (7.1) are entire functions of z and at least one of the P;’s with
J 2 q is transcendental. Let C(r) be a majorant of the coefficients with proper-
ties as stated. Let the equation have a single-valued solution, meromorphic
in the finite plane, whose enumerative function N(r,o0; w) satisfies (8.7).
Then the equation is a hyper-Riccati DE

(8.8) (w')* = wN+ 370 A=) .
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THEOREM 5. The same conclusion holds in case V if the equation has a
solution meromorphic in the unit disk where it has infinitely many poles
and an enumerative function satisfying (8.7).

A few words should be added about the case of meromorphic coeffi-
cients. Here we assume H, as is but H, and H, have to be replaced by

H*,. The functions P;(z) may have distant poles of order at most
n(x+1) and the numerical coefficients of the principal parts are uni-
formly bounded.

H*;. At least one of the functions P; with j=q¢ has infinitely many
poles which in the case of P,,y_,, are at most of order m«.

We assume that D(r) is an increasing logarithmically convex majorant
of the characteristics T'(r; C;) and that the sets U, defined by (6,3)
form a set of non-overlapping polar neighborhoods of the poles {z,,} of
the solution w(z). We have then

THEOREM 6. If the equation (7.1) under the stated conditions has a
meromorphic solution such that

(8.9) N(r,00;w) > (N +¢)Dir),
then the equation is hyper-Riccati.

9. Concluding remarks.

If the condition (2.10) is not assumed, the pseudo-Riccati equation
takes the form
(9.1) W = Ayt + Ay(eho+ Ao2) + Pl

This may be reduced to the normal form _
(9.2) v = 0¥+ B(2) + F*[z,v]
by the transformation

03)  w=fEwrel), f=g, 9= -ty
2 2

The expression for B is quite complicated and is omitted. It involves
Ay, A,, Ay, Ay, A) and A, and if the A’s are meromorphic so is B.
The zeros of A,(z) are fixed singularities of (9.2). This may serve as a
justification for the simplifying assumption (2.10).

Similar transformations may be used to reduce the pseudo-hyper-
Riccati equation to the form used above. In this case an nth root of

l
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Ap(z) is introduced so the new coefficients are normally not single-
valued unless A4y(z) is the nth power of a single-valued function. The
zeros of A,(z) are fixed singularities of the equation.

The following simple example is instructive. Take

(9.4) (w')? = 2mCp(w® —gyw —gs)

where m is an integer and C,, is to be chosen so that a solution is
2zim+1

(9.5) w=yp m—+E+K; J2:9s(, ME=—2,

(9.6) w = 'p{logz'*‘K > 92’93}’ m=-2,

where K is an arbitrary constant. If m is zero or a positive even integer
the solution is a meromorphic function in the finite plane and z=0 is
not singular. It is a singular point of all non-constant solutions, if m is
an odd integer m > — 1, in which case the origin is an algebraic branch
point. The singularity is severe if m is a negative integer < —1 for then
the origin is a cluster point of poles and if m= —2 or is odd the origin
is also a branch point. Note, however, that if m= —2, K=0 and 2x:
is a period of p(u | 2ew;,2w,) then the solution is meromorphic in the
plane punctured at z=0 and z=oo. In a forthcoming paper S. Bank and
R. P. Kaufman have proved a result which implies that

p{log[z+ (22 +1)¥] | 1,2ni}

is meromorphic in the finite plane.

Thus the presence of a multiplier 4 y(z)=1 may introduce fixed singu-
larities and may prevent the equation from having solutions mero-
morphic in the finite plane or in the unit disk. This is why condition
(2.10) was imposed.

The methods used in this paper are tailored to the needs of first order
equations. But they may also be used, for instance, to estimate the
order of the meromorphic functions which are solutions of the Painlevé
second order equations. Take the first Painlevé equation in the normal
form of Boutroux [5]

(9.7) w' = 6w?—6z.

It is easy to show that the movable singularities are double poles with

the expansion
(9.8) w(z) = (2—2)2+O0[(2—2,)"] .

Painlevé showed at the beginning of the century that the solutions are
meromorphic functions in the finite plane and Boutroux showed
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(1913-14) that the solutions are asymptotic to elliptic functions
Y(Z —Zy; 12,9,) with Z =4zt with a multiplier z-t. Boutroux’s results
imply that the distance between nearby poles is O(|z|~1). From the last
result one may show that the sets

(9.9) U, = {z; le—2,| <1lz,]7}}

form non-overlapping neighborhoods of the poles. The polar statistics
now gives

(9.10) N(r,oo;w) < 3, m(r,w;w) < logr, T(r;w) < 6r3,

This estimate is too high; the results of Boutroux show that the true

order is 2.
We have better luck with the second Painlevé equation

(9.11) w' = 2uwt—2z2w+a.

Here we can use the same polar neighborhoods and hence find that
T(r; w)< 6r3 and here 3 is the correct order.
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