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ON THE REPRESENTATION OF LAURICELLA
FUNCTIONS BY EULERIAN INTEGRALS

PER W. KARLSSON

The representations of the Lauricella functions of N variables F ),
Fg™, F,™ by multiple integrals of Euler type with elementary inte-
grand, and of F,™ by a similar single integral, are well known; cf. e.g.,
[1, § 38]. Moreover, Erdélyi has shown [4] that F ™ is represented by
a single integral of Euler type (along Pochhammer’s double loop) in-
volving the product F ,N-PF @), and that Fz® is representable in a
similar way. The purpose of the present note is to point out that addi-
tional results exist when the number of variables is even: the functions
FM and Fp@M are represented by M-dimensional integrals of Euler
type whose integrands involve F,™ and F ¥, respectively. In order to
state the results conveniently, we denote an ordered set of M elements
by its mth element enclosed in parentheses; e.g., (x,/8,) means
(¢1/Brs - - - sag/Bar). This symbol does not denote a set if an operation
over the index is implied; in such cases we use u as index. Moreover,
limits 1, M for x4 and 0, for other indices are understood ; and, as usual,
(o, p) =I(oc + p)/I'(x) denotes the Pochhammer symbol.

The representation of the function F 2 reads

(2m3)* M F o®M[a,b; (g,n); (hn) 5 (X)), (Ym)]
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where each contour is a Pochhammer double loop encircling 0 and 1;

cf. e.g., [6, § 12.43]. The representation (1) is valid if the contours can be
so chosen that the inequality
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holds whenever (t,) € C;x ...xCy,; this will certainly be the case if
the norm max, {|z,|, |y,[} is sufficiently small.

For M =1, equation (1) reduces to Erdélyi’s representation [3, equa-
tion (3)] of Appell’s F, function. (For the integrals over the unit square
representing F,, due to Burchnall and Chaundy [2], generalizations in-
volving F, do not appear to exist.)

To prove (1) we expand the F,®0 in the integrand into a power series
in 2M variables, viz.,

t Yu(y [(1—¢ ))in
z(im),(fm) (a, Z/t(iy +j,u)) (b’ Zp(i/x +ju)) HI‘ ( (x”/ ”) (y”/( “))

9u+h,—1,3,+5,)8,15,!

The inequality (2) implies uniform convergence; we may thus invert the
order of summation and integration. Next, utilizing the Beta integral
round Pochhammer’s double loop

J (=0t -1)vdt = @mip)r@HIrE-2-p),
and the elementary identity
(7, —k)(l—%k) = (_l)k’ IGEZ,

we obtain equation (1) without much effort.
In a similar way it is proved that

(27”:)2MFD(2M)[“’ (Im) (hm); C; (xm)’(ym)]

3
® L= g 0 -h)Tg, + )}
= § oo § P (gt 1) 05 (@bt 91—t %
C1 Oy
x TLA(=t,) 4t —1)w"1de )},
provided that
(4) t,eC, = |zt,|+ly1-t) < 1.

The integral in (3) can be transformed to an integral over the M-dimen-

sional unit cube if the real parts of the exponents all exceed —1.
Results equivalent to certain integrals given by Koschmieder [5] are

obtained by taking the y-variables in (1) and (3) equal to zero.

The significance of the g- and h-parameters in the representations is
obvious. The remaining parameters play a rather passive réle, and such
Parameters could in fact be added and/or deleted provided that conver-
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gence is not violated. In terms of the generalized Kampé de Fériet func-
tion F7!;, where p+r<q+s+1, this means that the analogues of the
representations (1) and (3) apply to the functions F;’§‘1’ and Fg§(1,, respect-
ively. In particular, representations of Humbert’s functions ¥, and @,
of 2M variables are obtainable, since these functions are Fg:? and F9:3,
respectively.

The author is indebted to Professors R. Askey and A. Erdélyi for
valuable comments on the subject.
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