MATH. SCAND. 89 (1976), 5—-18

NEW APPLICATIONS OF DIOPHANTINE
APPROXIMATIONS TO DIOPHANTINE EQUATIONS

T.N. SHOREY and R. TIJDEMAN

In recent years several papers on diophantine equations have been
published, in which the Gel’fond-Baker method on linear forms of lo-
garithms of algebraic numbers formed the main tool. We might mention
papers on Thue’s equation f(x,y)=m (e.g. Baker [3], Feldman [5]), on
the equation y™=P(x) where P € Z[x] (Baker [2], Schinzel and Tijde-
man [15]) and on Catalan’s equation ™ —y"=1 (Tijdeman [17]). In this
paper we give such applications to the diophantine equation in integer
variables x,y,m,n,

ar™—by® = k, a,b,k fixed ,
and to the equation in integers »,q,%,y,

-1

= by?, a and b fixed,
z—-1

a

(see Theorems 4 and 5). In both cases we give conditions under which
there are at most finitely many solutions. For example, there are only
finitely many solutions of the last equation if z is fixed. In Theorem 6
we state that this equation has no solution at allif a=b=1, =10, ¢ < 23.
To prove this result we need a theorem of Baker [1] on the rational ap-
proximation of (a/b)™/™ and the results of Nagell and Ljunggren as stated
by Obléth [11, Théoréme 5]. The theorems 1, 2 and 3 are of a different
character, at least in shape. They all boil down to some assertion that
if b and by?+! are both composed of fixed primes, then [=0 or || is not
very small. Corollary 2 of Theorem 3 asserts that if d is a non-zero fixed
integer, then the greatest prime factor of " +d tends to infinity uni-
formly in integers x> 1, as n tends to infinity. We note that this last
result can also be obtained from a recent result of Van der Poorten, [18].
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2.

In this section we collect those results that we shall use from other
sources.

Let »>1 be an integer. Let «,, .. .,x, be non-zero algebraic numbers
with degrees at most d and let the heights of «,,...,x,_; and «, be at
most A’ and A (22) respectively. We begin with the following result
of Baker [3].

THEOREM A. There exists an effectively computable number C, depending
only on n, d and A’ such that, for any & with 0<d <}, the inequalities

0 < [b,logoa;+...+b,loga,| < (8/B')°lede—B

have no solution in rational integers by, . ..,b,_, and b,(+0) with absolute
values at most B and B’ respectively.

TarorREM B. Let f(x,y) be an irreducible form of degree =3 with rational
integer coefficients. Then there exist effectively computable constants C, and
C,, depending only on the form f, such that all integral solutions (x,y) of
the diophantine equation

f(x,?/) =m,

where m 18 a non-zero rational integer, satisfy the inequality

max |z, ly]) < Oym®.
This was proved, independently, by Feldman [5] and Baker [3].

TarEOREM C. Let m = 2 be an integer. Denote by P(x) a polynomial with
rational coefficients and at least two simple roots if m = 3, and at least three
simple roots if m=2. Then any integral solution (x,y) of the equation

y™ = P(x)
satisfies
max (|, |y]) < Cg

where Cy i3 an effectively computable constant depending only on m and P.
This is due to Baker [2]. He gives explicit bounds for polynomials

with rational integer coefficients. Since m is fixed, it is sufficient to
require rational coefficients in Theorem C.
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TrEOREM D. If a polynomial P(x) with rational coefficients has at least
two distinct zeros, then the equation

ym = P(z)

wn integers x,y with |y|>1 implies that m < Cy, where Cy 18 an effectively
computable constant depending only on P.

This was proved by Schinzel and Tijdeman [15].

TrEOREM E. The equation
w—yl=1

has only finitely many solutions in integers p>1,9>1,2> 1,y > 1. Effective
bounds for the solutions p,q,x,y can be given.

This is due to Tijdeman [17]. The next result is due to Baker [1]. Its
proof is not based on the Gel’fond-Baker method of estimating linear
forms in the logarithms of algebraic numbers, but on hypergeometric
functions.

TuEOREM F. Let m and n be integers such that n=3 and 1 Sm <n. Put

Hp = lenpll(p_l)°
Let a,b be positive integers for which ja<b<a and suppose that a—b is
divisible by n. Suppose also that 1=4b(a—b)~2u, 1> 1. Then &=/ (a/b)™
satisfies
| —plg] > elg”
for all integers p,q (¢ >0), where x and ¢ are given by
=2y .(a+d), ¢! = 2¢2a+b).

The last theorem of this section can be found in a paper of Oblath,
[11, Théoréme 5]. These results are immediate consequences of results
by Nagell and Ljunggren. See also Inkeri [6].

THEOREM G. If the equation 10n—1=y? is fulfilled by the integers
n>1,q>1,y>1, then 2¢n,3tn and 31q.

3.

In this section we show that if b and by?+1 (y>1,¢> 1) are composed
of fixed primes, then either I=0 of |/| is not very small. Let M(22)
be a real number. In this section we shall denote by ¢,,c,, . . . effectively
computable positive constants depending only on M.
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TeEOREM 1. Let 8 be the set of all positive integers composed of primes
not exceeding M. Then there exists an effectively computable constant ¢,
depending only on M such that if

be8, a=0by+lel,
with l,q,ye Z,140,9>1, y>1, then
i > (bye)t-osose,

Proor. Put z=>by? Without loss of generality, we assume that
(1) Il < 3=.

Let a=p,"...p,% and b=p%...p.* be prime factorisations of ¢ and b.
Hence s< M and p;= M for =1, ...,s. Notice that, by (1),

a; < 2loga < 3logz and b; £ 2logh £ 3logz
fori=1,...,s. From 0<|a—2z|=|l| £ }z, it follows that
0 < |(@,—b,) logp, + . . . +(as—b,) logp,—g logy| = 2|l|/z .

We apply Theorem A to the linear form in logarithms with B=3 logz,
B'=q, A'=M, 6=(3¢)}, n=8+1<M+1 and d=1. Hence there exists
a constant ¢, such that

(@, —b,) logp, + .. . +(a,—b,) logp, — g logy|
> exp(—c, logg logy —g~1logz) .

It follows that
|l| 2 zexp(—gq—*logz—c,logg logy —1)
2 zexp(— (g7 +cyg" logg +27)logz)
= 2l—c1logglg

for some constant c,.

Of course, the assertion of Theorem 1 is trivial if ¢ <¢, logq. Theorem
2 gives a lower bound for |!|, which is non-trivial for every ¢ = 3. Schinzel
[14, p. 219] proved that

2] 2 exp(cs(log(byq))”")

for ¢=2,3. Theorem 2 provides a considerable improvement if ¢=3.
We are not able to derive a similar improvement for ¢=2. However, &
recent result of Van der Poorten enables one to replace the exponent
1/7 by 1—¢ for any &> 0.
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THEOREM 2. Under the assumptions of Theorem 1, there exists effectively
computable numbers c, and c5 such that

[l > cq(by?)®™ ,
for gz 3.

ProorF. It is no loss of generality to assume that g is prime, (a,0)=1
and that a/b is not a g-th power of a rational number. Moreover, by
Theorem 1, we can restrict ourselves to the finitely many values of ¢
with ¢ < 2¢, logg.

We write a=a'x? and b=10b"r? where a’,b’,x,r are positive integers and
o’ and b’ are g-free. We note (a’,b’)=1, that o’ and b’ are bounded by
some constant c; and that

a'z?—-b'(yr)e = 1.

We further observe that (a’/b')'/2 can not be a rational number. Thus

the binary form
f(X,Y) = a'X1-b'Y1

is irreducible over Z and of degree at least 3. This follows for example
from the irreducibility criterion of Dumas. See [19, §27]. On applying
Theorem B, we obtain constants ¢, and cg such that

max(z,yr) < c,|l|%®.
Hence for certain constants c,,c;

[l 2 e, Xyr)!* 2 e M (ry?)™ 2z cy(by?)™ .

4.

In this section, it is proved that the greatest prime factor of the ele-
ments of certain sequences of integers tend to infinity. We denote by
P[a] the greatest prime factor of the integer a.

THEOREM 3. Let b be a positive integer and N> 0. Let E={E, (x)}3.,
be a sequence of functions with E,(x) € Z for all x € N, n e N. Then there
exists an effectively computable constant co=cy(b) > 0 such that if

(2) 0 < |E,(z)] < an~%len
for all > 1 and n= N, then

lim,, , ,,P[b2"+ Ey(@)] = oo
uniformly in x e N, z> 1.
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Proor. Suppose that there exists a constant M = M(b)=b such that
for every N > 0, there exist integers =2 and n= N with

Plban+E, (x)] < M .

Then we have an infinite sequence of pairs (z;,n;) with z,>1, n;2¢
such that
Plbz+E,(x)] = M .

On applying Theorem 1 with y==;, ¢=n; and k=E, (), we find a con-
stant ¢; =c,;(M)=c,(b) such that

[Bp(@)] > aMclosn,

Without loss of generality we may assume that ¢y >c,. Hence, in view of
(2), ;= N, for all s. However, this is impossible since n;=¢ for all 2.
This completes the proof of Theorem 3.

Remark. It follows from the proof that the limit is also uniform in
the sequence of functions E. Theorem 3 can easily be generalised to the
cage that b is not a constant itself, but composed of fixed primes.

We give two corollaries of Theorem 3. The first is an improvement
of a recent result of Langevin [7].

CoroLLARY. Let {a,} be a sequence of integers with a,>1 for all n.
Let {b,} be a sequence of positive integers tending to infinity with n. Let
{d,} be a sequence of non-zero integers. Then there exist absolute constants
10> 0 and N, > 0 such that if

l dnl § a"b,,- cy0log by
for n=N,, then
lim,_, Pla,’+c,] = o

N—> 00

uniformly in the sequence {a,}.

CorOLLARY. Let d be a non-zero fixed integer. Then

lim, , Pla"+d] = o
uniformly in x e N, x> 1.

5

It has been conjectured by Pillai [13] that if a, b and % are fixed in-
tegers, k%0, then the diophantine equation az™—by"=%k has only fini-
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tely many solutions in integers m>1, n>1, >1, y>1 with mnz=6.
Many special results of this type have been obtained. We mention some
general ones. The assertion of Pillai’s conjecture is true if m and n are
fixed (Siegel [16]), z and y are fixed (Pillai[12]),a =b=Fk =1 (Tijdeman[17]).
The more general result for @ =b=1 has been announced by Cudnovskii
[4. p. 52]. Mahler [9] proved that P[az™—by"] - oo if max(z,y) - oo,
(z,y)=1 and m, n are fixed. Theorem 4 gives some conditions under
which Pillai’s assertion is valid.

THEOREM 4. Let a, b and k=0 be integers. The diophantine equation
(3) ax™—by™ =

has only finitely many solutions in integers m>1, n>1, z>1, y>1 with
mn Z 6, if af least one of the following conditions is satisfied:

(i) m s fixed,
(i) min,
(iii) x 48 composed of fixed primes.

Proor. We may assume that ¢ and b are positive.

(i) Suppose that m is fixed. Observe that all zeros of the polynomial
ax™—k in x are distinct. If follows from Theorem D that there exists
a constant C,=C,(a,b,k,m) such that n<C, for every solution n,z,y
of (3). Our assertion now follows from Theorem C.

(ii) If m=2, then the assertion is valid because of (i). Therefore we
can assume, without loss of generality, that m =n2=3. Further we can
assume that k> 0. In view of (i), it suffices to prove that n is bounded.
We have

0 < log(a/b)+nlog(xly) < ab~Y(x[y)*—1 < k[by™ .

On applying Theorem A we obtain a constant ¢;; such that
log(a/b)+n log(z/y) > exp(—cyy logn logH),

where H=max (x,y). We can assume that H <2y, otherwise it follows
from (8) that n is bounded. Hence, for some constants c,,=c,,(a,b,k)
and ¢,3=¢y5(a,b,k),

Yr S Cppytien.

Since y>1, it follows that n is bounded. This completes the proof of
(ii).

(iii) In view of (i) it suffices to prove that n is bounded. Let Plx]< M.
Put M*=max(a,b,M) and let S* be the set of all positive integers



12 T. N. SHOREY AND R. TIJDEMAN

composed of primes not exceeding M*. Since be S* byn+k e S*, it
follows from Theorem 1 that y"~ 18" js bounded. Hence, n is bounded.

6.
The rest of the paper will be devoted to the diophantine equation

a(xz"-1) = byd(x—1)

in integers a,b,n,q,x,y with a,b fixed, n>2, ¢>1, 2> 1, y > 1. This equa-
tion arises from the problem which perfect powers have digits that are
all identical. In certain special cases all solutions of the diophantine
equation have been determined, for example, if (i) a=b=1, 4|n (Nagell
[10]), (ii) e=b=1, ¢=2 (Ljunggren [8]), (iii) a=b=1, 3|n (Ljunggren
[8]), (iv) 1<a<x <10, b=1, (Inkeri [6]). We shall give some conditions
under which there are only finitely many solutions.

THEOREM 5. Let a and b be fized integers, (a,b)=1, a g-free. Then the
equation

in integers n>2, ¢>1, >1, y>1 has only finitely many solutions, if at
least one of the following conditions is satisfied:

(i) = s fized,
(i) n has fized divisor d > 2 with dq > 6,
(iii) » s even and q is fixed,
(iv) » isevenand a=b=1,
(V) n is even, a>1 and x+ 1 s [q[2]-free,
(vi) n is odd, by? has a fixed prime divisor and ¢> 2,
(vii) n ¢s odd, ab>1 and ¢> 2.

Proor. (i) We have ax®—b(x—1)y?=a. Hence the assertion is an
immediate consequence of Theorem 4 (iii). Note that in this case n>1,
q > 1 suffices.

(ii) Put

L | an—1 gnd—1

= =.AB.
z—1 ani—1 gz—1

It is easily seen that the greatest prime factor d, of 4 and B divides d.
Indeed .
A =1+4amMiy , 4onne =d (moddy) .
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Hence, by aAB=>by?, there exist positive integers a,,b,,%,, such that
a, and b, are bounded and a,4 =b,y,%. Put z=2"/2. We obtain

z4—1
z—1

o = byy?.
It is, therefore, sufficient to prove assertion (ii) when n is fixed, n>3.
It follows from Theorem D, applied to the polynomial (a/b)(x™— 1)/(x — 1)
that ¢ is bounded. The full assertion then follows from Theorem C.
(iii) We have

xn/2 1
(4) o

(xn2+1) = by?.
x—1

Since (z*/2— 1,272+ 1)|2, we obtain bounded positive integers a, and b,
and an integer y, such that

ay(@z"?+1) = byy,?.

Hence (b,/a,)y,2—1=a2. On applying Theorem D to the polynomial
(b1/a,)y,2—1, we find that » is bounded. The assertion now follows
from (ii).

(iv) In this case, the formula (4) reads

xn/2 1

r—1 (@*24+1) = y2.

Suppose ((z"/2—1)/(x—1),2*/2+ 1)=2. Then z is odd and hence 4|z™/2—1,
If n is an even multiple of 2, then there are finitely many solutions in
view of (ii) with d=4. If n is an odd multiple of 2, then it follows that
z=1 (mod4). We have

an—-1 221

z2—1 z—1

Since x + 1 contains only one factor 2 and ¢ > 1, we see that (z* —1)/(z%—1)
is even. On the other hand

xr—1

x?—

n
= 142%+... 422 = 3 (mod 2)

as z is odd. It follows that 4|n which is a contradiction. We now suppose
that

(xn/Z__ 1

1 x”/2+1) = 1.
x_—
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Then there exists a positive integer y, such that
2241 = 2.

Now we apply Theorem E to this equation and (iv) follows immediately.

(vi) Suppose that by? has a fixed prime divisor p. Since (@,b)=1 and
a is g-free, we see that p|(z" — 1)/(x — 1). We distinguish the cases pt(z—1)
and p|(x—1). If pt(x—1) then put ¢{=ord,(x). Since ¢|n and ¢|(p—1),
t is a bounded divisor of n. Furthermore ¢> 2, as n is odd. In this case
the assertion follows from (ii). On the other hand, if p|(x— 1), then

ar—1

z—1

=1+z+...+2* 1 =2 (modp).

Since p|(z®—1)/(x—1), we again obtain that » has a fixed prime divisor
p(>2). Now we can apply (ii).

(vii) It is a direct consequence of (vi).

(v) In view of (ii) we assume that 4{n. Let p be a prime factor of a.
Since (a,b)=1, we have p|y. Hence

(5) 2| q @f/z___l (z+1)

Pl e -1 '
If p|((x®)™2—1)/(z*—1), then we can apply the argument of (vi). We
conclude that 3n has a fixed divisor >1 and then we apply (ii). We now
assume that pf(2®—1)/(2?—1). The number of factors p in a is bounded,
while the number of factors p in z+1 is at most [4¢]. Hence, by (5), ¢
is bounded. We now apply (iii) to complete the proof of (v).

7.

It follows from Theorem 5 (i) that there are only finitely many perfect
powers whose digits in the decimal scale are identical. In fact, Oblath
[11] has shown that a number of » digits @, i.e. a+10a+ ...+ 10" 1a,
is never a perfect power if n 22 and 1<a < 10. For a=1, the problem is
still open. By a combination of results by Nagell, Ljunggren, V. A.
Lebesgue and Maillet, Oblath [11, Théoréme 5] proved that if 1+ 10+
... +10"1, n>1, is a perfect power y4, then (i) 2¢n, (ii) 3tn, (iii) 31q
(iv) 64n if 6|g, (v) T¢n if 7|g. Furthermore it is easily seen that 2t¢ and
6tq, since every odd square is =1 (mod4) and every fifth power is
=0,11 or +7 (mod25). We shall prove that if a number 11...1 with
n digits 1 in the base 10 is a perfect power y? with ¢> 1, y > 1, then ¢ = 23.
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TarOREM 6. Suppose that the integers n> 1, > 1, y > 1 satisfy the equation

10" -9y = 1.
Then q = 23.

Of course it is no loss of generality to assume that ¢ is a prime. In
view of the remarks at the beginning of this section we further assume
that ¢=7. In the proof we have to distinguish the cases n=1 (modgq)
and n==1 (modg). In section 8, we prove that there are no solutions with
n=1 (modg) by applying Theorem F of Baker on the rational approxi-
mation of numbers (r/s)™/™, In section 9, we prove that there is no solu-
tion with n==1 (modgq) using congruences modulo p for primes p with
p=1 (modg). At least in principle, both methods are applicable for other
bases. For example, Baker’s theorem is applicable for bases x with
4logxz <gq <22, 2 8. Both proofs involve some calculations which were
carried out on an electric calculator.

8.

Proor oF THEOREM 7 IN CASE n=1 (modgq). Put n=1+rq. Without
loss of generality we may assume that y2= 107. We have

10 (y)‘l 1
9 \10r/ 9x1o0r’

, —
3-(5) = (V5-) e
9 \1or/ =\V 9 10

q_
/oy

9 107| =~ 9gqy’

Since

we obtain

(6)

We apply Theorem F with a=10g, b=9q, m=1, n=g subsequently for
¢=1,11,13,17,19. By this we obtain an inequality

c
> —
10m™

e v e

5+
9 1o

(7)

where it will turn out that » <g. The combination of (6) and (7) yields

1 —log(9cq)

8
®) § g—» loglo

A
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We found the following bounds for u,, 4, » and ¢-1:

J73 Az %S cls
q= T 1.3831 3.7183 5.64 26.100
g =11: 1.2710 2.5749 7.69 2 x 105
q = 13: 1.2384 2.2361 9.04 6 x 105
q=17: 1.1938 1.7738 13.38 2x 107
q = 19: 1.1778 1.6087 15.30 7% 107

In all cases the condition » < ¢ is fulfilled and the inequality (8) implies
r<2. It follows that r=1. However, the equation 1021 —9y?=1 has
no solutions ¢ = 2.

9.

Proor oF THEOREM 7 IN CASE n =1 (modg). We recall that by Theorem
G both 2tn and 3tn. We use this in the proof without reference. We
work out the argument for the case ¢="7. For the other cases we give
only some essential data. Here ord, (10) denotes the smallest positive
integer e such that 10¢=1 (mod p).

g="7. We consider p=29 and p=43.

p=29. Suppose 29|y. Then 10*=1(mod29). Since n is odd and ord,,
(10) = 28, this is impossible. Hence 29ty and

((10"—1)/9)* = y* = 1 (mod29) .

The 4-th roots of unity mod29 are +1, +12. It follows that 107= —8,
-7, 9, 10 (mod29) and, hence n=1, 6, 19, 26 (mod 28). In particular,
since 7 is odd,

(9) n = 1lor5 (mod7).

p=43. We have ord,;(10)=21. Since 43|y implies 43|(10"—1) and
3|n, we obtain 43+n. Hence,

..

((102—1)/9)® = y** = 1 (mod 43) .
The 6-th roots of unity mod43 are +1, +6, +7. Proceeding as in case
p=29, we find that n=1,4,6,12 (mod 21). Hence,
(10) n = 1or4 (mod7).

In view of (9) and (10) there are no solutions with n==1 (mod 7).

g=11. Let p=67. We have ordg,(10) = 33. Hence, 67{y. The 6-th roots
of unity mod67 are +1, +29, +30. It follows that n=1 or 27 (mod 33).
Since 31#, there are no solutions with ns1 (mod11).
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g¢=13. We consider p=157 and p=53.
p=157. We have ord,;,(10)=156. Hence, 157ty. The 12-th roots of
unity mod 157 are +1, +12, +13, +22, +28, +50. This implies

(11) n =1, 50r7 (mod13).

p=53. We have ord,;;(10)=13. We have, by (11), that 53{y. The
4-th roots of unity mod 57 are +1, +23. It follows that

(12) n = 1or6 (mod13).

The combination of (11) and (12) excludes solutions with =1 (mod 13).
g=17. We consider p=103 and p=409.
p=103. We have ord,¢,;(10) =34. Hence, 103ty. The 6-th roots of unity
mod 103 are +1, +46, +47. It follows that

(13) n = 1,17,19,29 (mod 34) .

p=409. We have ord,(10)=204. Hence, 4091y. The 24-th roots of
unity mod409 are +1, +7, +31, +38, +49, +53, 154, +66, +117,
+ 143, +183, +192. It follows that

(14) n = 1,3 (mod34).

The combination of (13) and (14) excludes solutions with n==1 (mod 17).
¢=19. We consider p=191 and p=229.
p=229. We have ord,.(10)=228. Hence, 229ty.
The 12-th roots of unity mod 229 are +1, +18, +89, +94, +95, +107.
It follows that
(15) = —5,1,6,7 (mod19) .

p=191. We have ord,y;(10)=95. We have, by (15), that 191¢y.
The 10-th roots of unity mod191 are +1, +7, +39 +49, +82. It fol-
lows that
(16) n= —7,-6,-1,1,2,89 (mod19).

The combination of (15) and (16) excludes solutions with n==1 (mod 19).
This completes the proof of Theorem 7.
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