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AN APPLICATION OF A THEOREM OF
HIRSBERG AND LAZAR

ASVALD LIMA

Abstract.

We use a theorem of Hirsberg and Lazar to show that complex E(3)-
spaces are L,-preduals if they are finite dimensional or subspaces of
Cc(X)-spaces containing the constants.!

1. Preliminaries and notations.

A will be a complex Banach space. B(a,r) denotes the closed ball in 4
with center o and radius r. We write 4, =B(0,1). If J is a linear subspace
of 4, we write for xc 4

d(z,J) = inf{d(z,y): yeJ}.
In the product space A®,H*(A4,J) denotes the subspace
HYA,J) = {(@....z,) € A™: Fiy x€ T, (@, o) = 2oy e}

and we write H*(4)=H"(4,(0)) (» a natural number = 2). The convex
hull of a set 8 is denoted co(S) and the set of extreme points of a convex
set C is denoted 9,C. A convex cone C of A is said to be hereditary if for
all z € € and all y € 4 such that ||| =|x—y||+|ly|| we have y € C.

A family {B(a;,7;)};c; of closed balls in 4 is said to have the weak
intersection property if N, B(f(a;),r))+@ for all linear functionals f
on 4 with ||f||<1.

We say that 4 is an E(n)-space for some natural number « 2 3 if every
family of n balls in A with the weak intersection property has a non-
empty intersection.

The notion of E(n)-spaces was introduced by Hustad in [2]. (Actu-
ally he used another definition and our definition is a theorem of his).
Hustad [2] proved that E(7)-spaces are L,-preduals and Lima [4] im-
proved this by showing that E(4)-spaces are Ly-preduals. The problem
whether F(3)-spaces are L,-preduals has been open.

Received November 7, 1975. .
1 Bince these results were obtained we have shown that every complex E(3)-space is

8n L,-predual, see Appendix.
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A closed subspace J of A4 is said to be a semi L-summand if for all
z € A, there exists a unique y € J such that |z —y||=d(x,J) and more-
over this element y satisfies ||| =|ly||+ |z —y||. (See [3].)

2. Some finite dimensional results.

In the following we will assume that 4 is a complex E/(3)-space.
First we will prove a lemma from which it follows that the finite di-
mensional case is a special case of the case treated in section 3.

Lemma 1. If J is a w*-closed hereditary subspace of A*, then J is o
semi L-summand.

Proor. Let (x,y) € 0,H*A*,J);, and let z=—(x+y)eJ. Define
ot =|lz||+[lyl| + ll2ll. Then
“(x9yaz) € Ha(A*)l .

Suppose that there exist (x;,y;,2;) € H3(A*), such that

a(®,y,2) = § 271 (2Yp2) -
Then we have

I

1 = ol + [l7ll + ll=1)

$llwy + 2oll + |lyg + Yall + 124+ 24l])
F(llwall + lall + llyall + llyall + 2ol + 1220]) = 1.

A1

Hence
20z = z;+2z;, and  2aljz]| = 2]+ |2l

and similar formulas hold for « and y. Since J is hereditary, we have
21,2 € J. Hence
(@,9) = (1/20)[(z1,91) + (%2, Y3)]
gives us a convex combination in H2(4*,J),. Since (x,y) is an extreme
point, we must have z;=y;=2,=0 or (z,,¥,,2,) =t(%1,¥;,2,) for some
t> 0. But this shows that
0‘(37:?/,2) € aeﬂs(A*)l .

Hence by [3; Theorem 2.14] there exist ged,4*, and (4;,45,43)€
0,H3(C), such that
*(2,9,2) = (119,499, 459) -

Now if 43=0 then z+y=0 and if 1,40 then geJ and z,y € J. Hence
by [3; Corollary 6.13] J is a semi L-summand. The proof is complete.

COROLLARY 2. If e € 9, 4%, and f € 0, A**, then |f(e)|=1.
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Proor. Let e € 9, 4%, and let J =span(e). Then J is a w*-closed her-
editary subspace of A*. Hence by Lemma 1, J is a semi L-summand.
Let f € 8,4**. Since J° is w*-closed in A**, it follows from Theorem 6.11
and Corollary 6.8 in [3] that d(f,J°)=1. Hence |f(e)|=1.

CoroLLARY 3. If dimd <oo, then |e(z)|=1 for all z€ 2,4, and all
e€ 0, A%,.

CoROLLARY 4. If dim 4 < oo, then A 18 isometric to a subspace of Cc(K)
containing the constants for some compact Hausdorff space K.

Proor. Let u € 9,4, and define
K = {ec0, A%, : e(u)=1}.

From Corollary 3 it follows that 9, A*, is w*-closed. Hence K is compact,
The rest of the proof is obvious.

ReMARK. In [3] we proved that a real Banach space is an E(3)-space
if and only if its dual space is an F(3)-space. This is not true for complex
spaces as the following example show. In /2, (C) the balls

By = B((1,1),)/2—1), B, = B((3(1+1),3(1-14)),1)
and

By = B((3(1—1),3(1+1),1)

have the weak intersection property and an empty intersection. In fact,
if (@,b) € BynB, then both a and b are convex combinations of §(1—1)
and }(1++4). Hence it follows that (a,b) ¢ B;, so the balls have empty
intersection. On the other side the balls have the weak intersection
property since if (z,y) € 9,4*%,, then we may assume z=1 and |y|=1,
and a verification shows that #(z+y) € NI, B, where
2—|z—y|
b= 3+—
H St
fr+y+0andt=1if z+y=0.
Let B denote C® with the norm
”(zvzzazs)" = ma’xlzlizﬁizSI ¢

Let X ={1,2,3,4} and let f,,f,.f3 € Oc(X) be defined as follows:

fil) =1 foralls,
L) =f2) =1 and fy3) =f(4=-1,
f) =f4(8) =1 and fy2) =fo4) = - 1.
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Let E =span(f;,f,.fs), and define a map 7': B - E by
T(2120,23) = 21f1+2afo+25f5

A verification shows that 7' is an isometry of B onto K.

ProrosrrioN 5. The space E has the following properties:

(i) E contains the constants.
(ii) E is self-adjoint.
(iii) ReX is an E(3)-space.
(iv) E 1s not an E(3)-space.

Proow. (i) and (ii) are trivial. The map T shows that Re E is isometric
to 13;(R) which is an E(3)-space by [5] and [3], so (iii) follows. In order to
* prove (iv) it suffices by Corollary 3 to find e € 9, B, and « € 6, E*, such
that |u(e)| < 1. Define e=(4,,4,,43) € B where

M= 3(1+9), A= A+9)/2-1) and A = Hi—(1+0))/2).
Then

(1) AM+A+is =1,

(2) M+Ay—2y = (1+7:)/V§:

3) M=oty = 1+0)(J/2-1)))/2,
(4) M=Ag—Ag =1,

Hence |l¢]|=1. Suppose (xy,xy,%3) € B, is such that
lle £ (o1, 395 5)]| < 1.

Then by (1), (2) and (4): .
&+ g+ o5 = 0

Kyt og—og = 0

Ky —xg—0g = 0

80 oy =0y=0x3=0. Hence e € d,B,. Define p, € E* by p,(f)=f@s), fe K,
i=1,2,3,4. Then clearly every u € 9, E*, is of the form w=zp, for some ¢
and some z € C. An argument by contradiction shows that

psco({zp;: i=1,2,4 and ze C with [2|]=1}).
Hence p, € 8, E*;,. But then by (3):
Po(T())] = hy—Ag+As| = 2-1 < 1.
The proof is complete.
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3. The structure of A*,

We will now assume that 4 is a complex Banach space. We say that
A is an almost E(3)-space if for every family of three balls {B(a;,r)}3.,
in A with the weak intersection property we have

Ni1 Bla,ri+e) + @
for all £>0.
In the study of the properties of dual spaces of E(3)-spaces the follow-
ing theorem will be useful.

TrEOREM 6. If A i3 a complex Banach space, then the following proper-
ties are equivalent:

(i) A s an almost E(3)-space.

(i1) A** i3 an E(3)-space.
(i) H3(A*),=co(d,A*,-H¥C),) (w*-closure).
(iv) H3(A*),=Co(A*,-H3(C),) (norm-closure).

For S A4*, 8-H3(C), denotes the set
{(219,2:9,259) € H¥(A*),: g8 and (2,,25,25) € H¥(C),}
Proor. (i) <> (ii) is Theorem 2.16 in [3] and (i) <=> (iii) is Theorem 2.14

in [3]. (iv) =~ (iii) is trivial and the proof of (ii) = (iv) is similar to the
proof of (i) = (iii). (See [3; Theorem 2.14].)

In [3] we proved that dual spaces of real E(3)-spaces were character-
ized by a kind of weak decomposition property. We will now give a par-
tial extension of this result to complex spaces. First a definition.

DEFINITION. A convex cone C in a Banach space is said to be an Ry-cone
if for all z,y € C there exist z, u, v € C such that

x=z+u and [z]= |+,
y =z+v and |yll=|ll+]}l

and
le—yll = llw—vll = [l + o]l -

In the proof of Lemma 7 and Lemma 9 below we will use the following
observation. If F is a convex (nonempty) subset of 4 such that ||z||=1
for all z € F, then there exists an f € A*; such that f(x)=1for allz e F.
In fact, we can choose f e A*, such that ||f||=1 and

sup{Ref(y) : llyll<1} s inf{Ref(z): z€F}.
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Then we have

IFll =1 = sup{|f(®)l : lgll<1} = sup{Ref(y): [yl <1}
< inf{Ref(x): zeF} < 1.

Hence Ref(z)=1=f(x) for all ze F.

LreMMA 7. Let F be a proper face of A*, and let ¢>0. If A is an almost
E(3)-space and z,y € cone(F)=U,_(AF, then there exist z, u, v € A* such
that

letu—al <& and [+ < llzf+e,
le+o—yl < e and |zl +]oll < lyl+e
and
llll +lloll < lle—yll+e .

Proor. Let z,y € cone(F). If x=0 or y=0 then there is nothing to
prove. So assume z+0 and y=+0. We may assume that |z|+ ||+
lt—yll=1 and that ¢ is small compared with |jz| and |jy||. Since
(%, —y, y—x) € H¥A*),, there exist by Theorem 6 1,>0, 3™ ,1;=1,
g; € A%, and (244,2y,25) € H3(C), such that

(5) ll(ez, —y,y—w)—Zz".l A(21595520; 91,2390 < € .
From (5) we get

(6) llw—Z-".l Mzy;95ll < e,

(7) ly + 251 Azes9,ll < &

and

(8) Ily—w—Z}'Ll Aizgs04ll < €.

Let fe A¥* be such that fjr=1 and let A A* be such that [ —y|/=
h(z—y). Then we get from (6), (7) and (8):

(9 IIIxII—E;".l Ajzljf(gj)l <e,
(10) gl + 2721 A2a1f ()] < &
and

(11) lly —2ll — 271 A25:hlg))] < &

By rotating all g, and z;;, we may assume that f(g;) 2 0 for all j. Then we
get from (9), (10) and (11):

(12) llell < e+ 37, Aleilf(gy) S e+370; A2yl
(13) Iyl < e+ 3701 A1zl flgy) S &40y Ayl
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and
(14) lle—gll < e+27w; Al25,0(9;)| S e+ 370y Alzgyl -
This now gives
i1 21 Alzgl S 1
= |l + llyll + [z — |
< Be+ Dhop 27 Aylegl + 2701 Ayl f(gy)

80

2;".'—_1 Mlzyyl < 33"'2;";1 Ayl2451f(g5)
and we get
(15) 2?;1 ;lezljl(l —f(gj)) < 3e.
Hence we get
(16) I3y Ay2yy— geq X210 (97)] < 36
and
(17) el = 3721 424 < 42
Similarly we get
(18) Z;'r;l Ajlzg] < 38'*’2;'11 Ailzgil f(g5) 5
(19) 127 Ags— 201 Az f(g;)| < 3e,
(20) Myl + 27eq Ajzesl < 42
Since

331 2 gl < 1= i+l + lly — =l
we get from (12), (13) and (14):

(21) Z}"ﬂ Alagyl < [lel| + 2¢ ,
(22) ST el < Iyl 426
and

(23) D1 Azl < lle—yl|+2¢ .

If Imz,;2 0, write
Mzy = ri(cosg;+1 sing;)
and if Imz;; <0, write
M2y = r;(cosg; — 4 sing;) .
Let 0,y € [ —4¢,4¢] be such that
ShiA;Re (2y) = l&ll+2

331
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and
Z;nnl Alzygl = llzl[+y .
If we now compute the maximum of
F(ry, .. ..fpm@use e os@p) = Z;';l r; sing;

subject to the conditions

Gy(ry,- « oo 0m) = 2Tty 7y = Jlxll+¥
and

Go(ry,- - s Pm) = Z_;'Ll 7; COSQ; = ll=ll + o

(with 9 and y fixed and |jz|| < }) we find
F(ry,...,0,) S (2lzll(y —8)+y2—02)t < bet.
Hence from (17) and (21) we get

(24) 21 A Imzy| < Bet .
Similarly we get from (20) and (22)

(25) 27 Al Imzy| < Bet
and from (24) and (25) we get

(26) 37 AyfImzy) < 106k,

From (21) and (17) we also get

Z;";l Alzyyl < lll] + 2¢
< 6e+27, A4, Re(zyy) .

Hence

E}"=1 Ai(|215 = Rezyy) < 8¢
80
(27) ZRezu<o Ajlzyyl < e
Similarly we get from (20) and (22):
(28) 2R9”If>° j’jlzzjl < B¢.

We now define for j=1,...,m

N Rez,; if Rez;;20
1y = 0 if Rez,;<0
_— Rezy; if Rezy;<0
LA if Rezg>0
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and
Ugy = — (Uy;+uy) .
For k=1,2 we get from (24), (25), (27) and (28)
(29) ”27;1 }'juk]'gj—z}';l }.]ijgj” < 68+58} .
This immediately gives
Define

2= Z;-’;l As[min (uy4, — ugy)]g;
U = Z;L As[wy; —min (w5, —uyy)lg;

v = z}:’;l Z'j[ - u2j - min (ulj, - uzj)]gj .
Then we have

Z+u = z;’;l ﬂju]]-gj Iy
240 = =30 Ay,
v—u = DT 3 Atygy -

From (6) and (29) we get
le+u—z| < 8+ bet.

Similarly we get from (7) and (29)
lk+v—y|| < 8e+bet.

It follows from (21), (24) and (27) that

ll21] -+ llell
= E;";l ).j[|min('uu, —ugy)| + |y — min (u,,, —w99)|]

= Z}’Ll Aglugyl
S 3P Mleyl+ 3 AyTmayl + Dnesy<o Yloyl
< |||+ 8e+ bet .

Bimilarly it follows from (22), (25) and (28) that
llell+ llofl < llyll + 82+ Be?
and it follows from (23), (26), (27) and (28) that
[l + llell £ lle—yll+14e+ 10¢t .

The proof is complete.

333

From Lemma 2 by the w*-compactness of A* and the w*-lower

semicontinuity of the dual norm we get:
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CorOLLARY 8. If A is an almost E(3)-space, then cone (F) is an Ry-cone
for every proper face F of A*,.

Let F be a proper face of A4*. We say that F is a split face of
co(FU —iF) if every element in co(FU —iF) can be written in a unique
way as a convex combination of an element in F and an element in —¢F.
(¢ denotes the imaginary unit.)

Lemma 9. Suppose 4 is an almost E(3)-space and that F is a proper
Jace of A*,. Then F is a split face of co(FU —1iF).

Proor. Assume for contradiction that F is not a split face of
co(FU —iF). Then there exist x,,2,,¥;,y, € cone (F) such that x, +x, and

Ty — WYy = Ta—1Y, -

By Corollary 8 we may assume [|z; — 2, = ||z{|| + ||z,]| and also |ly, —y,||=
ly1ll + llysll. Choose e e A¥* such that e(x)=1 for all x€ F. Then we get

by applying e that
lleall = 2llyall = llall —dllyel

80 [y = llll and |ly]|=1ly.ll. Since z, —z,=i(y,—y.) we get
]l + |2l = [z —2all = lly2—yall = llgall + 152l -
Hence we may assume 2,,%,,9;,¥, € F. The equation
lley — 2o +yy —1ysl| = 2|y — ]| = 4

shows that there exists an feAf* such that f(z,)=1, f(z,)=—1,
f(y))=—1 and f(y,)=4. Now consider the following balls in 4**: B, =

B(a,,)/2-1), By=B(a,,1) and B,=B(a,,1) where
a; = e+f, ay = }1+ie+H(1—9)f, az= Hl—d)e+§(1+i)f.

In order to obtain a contradiction we want to show that these three
balls have the weak intersection property and an empty intersection.
By Theorem 6 this is impossible since 4 is an almost E(3)-space.

First we want to show that the balls have the weak intersection
property. So let z € AF**. If z(e) =2(f) =0, then there is nothing to prove.
Hence we may assume that there exists an r € [1,00) such that

r-max(|z(e)|, |2(f)]) = 1.
= i(z(e) +2(f))

Now define
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where

. 2 +rlz(e) +2(f)| —rlz(e)—2(f)|
2Jz(e)+2(f)] '

(If z(e) +2(f)=0, let »=0 and ¢=0.) Since
rlz(e) —2(f)] = 2 = rlz(e) +2(f)| +rlz(e) —2(f)|
we get 3r <t <r. Hence

Irz(a@y) —ul
= [(t—3r)(2(e) +2(f)) - dir(z(e) — 2(f))]
= (E—dn)lz(e) +2(f) + drla(e) —2(f)| = 1.
This shows that
ufr € B(z(ay),1) .
Similarly we get
ufr € B(z(as),1) .
It is easy to see that

rla(e) +2(f)] +rlz(e) —2(f)] < 2V/2.
Hence
lra(ay) —ul = (r—£)lz(e) +2(f)|
= ¥r(J2(e) + 2(f)| + J2(e) () — 1
<y2-1.

This shows that
ufr € B(z(a,), /2- 1).

Hence {B,}?_, have the weak intersection property.

Suppose that there exists g € A** such that g € N3_, B,. Then g € Byn
By, ay(x,) =1 and ag(x,)= —4 implies that g(z,)=0. Similarly g € B,nB,,
ay(y;)=1—1 and ay(y,)=0 implies that g(y;)=(1—3)//2, and g € B;nB;,
ay(ya)=1+1¢ and ay(y,)=0 implies that g(y,)=(1 +i)/V§. But then we
have

glzy) = g(@o) +iglys) —iglys) = V2 .
Hence

ay(m)—glay) = 2-V2 > V2-1.

This contradicts that g € B,. The proof is complete.
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4. The application of the Hirsberg-Lazar theorem.

In this section we will assume that 4 is an E(3)-space, and that 4
is a subspace of Cc(X) for some compact Hausdorff space X.

If 1 e 4, let S denote the state space

S={ped*: p(l)=1=|p|}.

If 14, then it follows from Lemma 9 that 8§ is a split face of
co(SU —18). Hence from Lemma 9 and [1; Lemma 3.3] we get:

ProrosrTioN 10. If A is an E(3)-subspace of Cc(X) containing the con-
stants, then A is self-adjoint. ‘

In the next two lemma we need not assume that A4 is containing the
constants. We only assume that 4 is a self-adjoint Z(3)-subspace of
Cc(X).

Lemma 11. Re A is an E(3)-space.

Proor. Assume f,,f,,fs € Red and ry,r,,7;>0 are such that the balls
{B(f;,r;,)}3_, have the weak intersection property in Red. Then for
each z € X, N2_, B(fi(x),r;) + @. Hence by [3; Theorem 1.1]

?
231 zfil@) £ 23wl
for all (z,,2,,2;) € H3(C). But then by [2; Corollary 1.4] the balls have

the weak intersection property in 4. Let fe N3_, B(f;,r;). Then Refe
N3_, B(f;r;)- This completes the proof of the lemma.

Lemma 12. ReA is an E(n)-space for all n=3.

Proor. By Lemma 11 Re 4 is an E(3)-space. By [5; Theorem 4.1] it
guffices to show that Red is an E(4)-space. Assume for contradiction
that ReA is not an E(4)-space. Let £¢>0. By [3; Corollary 4.5] there
exist a linear operator S :[,3(R) -~ Re4 such that

Il = I8 = (1+eé)l]|

for all ze€l3(R) and there exist a projection P in Red such that
P(ReAd)=8(I%(R)) and ||P|s1+e.

Let ¢;=(1,0,0), e,=(0,1,0) and e;=(0,0,1) and define f;=38(e,),
t=1,2,3. Then 15||f,Jl<1+¢ for all ¢ and for all sign:

3=llegtestey < |Ifitfatfsll S (1+€)3.
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Choose z; € X such that

3 = |ful#y) +fa(zy) +fs(2y)| < 3(14¢)
3 = |fi(@a) +/a(xe) —fa(@a)] < 3(1+e)
3 = |fulws) —fa(@s) +f5(xs)| < 3(1+¢)
3 = (@) —fa(®a) —fs(xs)] < 3(1+e)

Choose a constant K such that
[A4] + |2g] + [A5] = K max|A; £ A% 4]
for all (4;,4,,43) € C3. Then for all (4;,4,,45) € C?

IAnfs+ Aafa+ Asfsll

SUP;_1,2,3,4 [ Af1(%:) + Aafales) + A3 fa(x)]
max | + Ay + Ag| — 2&(| 44| + [ Ao] + [43])
(1—2Ke) max A + g% Ay -

[\ '\ 1%

The function
G(ty,ta,t3) = |Agly + Agta + Agts]

is for each (A;,4,,4;) € C3 continuous and convex on [—1-—g,1+¢]3
Since continuous convex functions obtain their supremum at extreme
points and all ||f;]|=1+¢, we get

12.f(®) + Aafo(@) + Asf3(2)]

S (1+4e) max|i; £+ 44

for all € X. Let B be the space above. (See Proposition 5.) Then we
have just shown that the map S : B - 4 defined by

81,20 45) = Afy+2afa+ 255
satisfies
(1—2Ke)|ull < IS)]| £ (1+¢)ull
for all u € B.
Extend P to a projection P: A -~ A by

B(f) = P(Ref)+iP(Imf) .

Clearly P is a linear projection and P(4) =8(B). Let fe A. Choose r € X
such that [|P(f)|=|P(f)() and choose z=cosg—ising such that
IP(f)]|=2P(f)(z). Then
IB(f)ll = (cosp—3 sing)[P(Ref) +iP(Imf))(z)
= [cospP(Ref)+sinpP(Imf)](x)+
+i[cospP(Imf)—singP(Ref)](x)

Math. Scand. 38 — 22
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= P(cosp Ref+sing Imf)(x) +
+1iP(cosp Imf—sing Ref)(x)

= P(Re(zf))(x) ++P(Im (zf))(x)

= P(Re(zf))(=)

1P(Re (zf))

(1+e)[Re(zf)ll

1+ &)l

1+e)lfll -

IIA IA DA

Hence ||P|| = (1+¢).

Let {B(2;,7,)};_, be three balls in B with the weak intersection property.
Then the balls {B(S(x,), (1 +¢)r;)}:_; have the weak intersection property
in 4. ([2; Corollary 1.4]). Since 4 is an F(3)-space, there exists an

feNiiB8=),(1+e)r).
P(f) e 8(B) n N1 B(S(xy), (L +e)r,) ,
S8-YP(f)) € Ni1 B(xy, (1—2Ke)(1+¢)%r) .

Hence

and

Since >0 is arbitrary, N2_, B(z;r;)+@. Since B is not an E(3)-space
(see Proposition 5), this is a contradiction.
This completes the proof.

The above results together with Theorem 2 of Hirsberg and Lazar [1]
give:

THEOREM 13. Let A be a complex E(3)-space. If dimA4d <o or 4 is:a
subspace of Cc(X) containing the constants, then A* is isometric to an
L,(p)-space for some measure u.

ReMARKS. An inspection of the proof given above shows that the con-
clusion of Theorem 13 holds if we only assume that 4 is an almost
E(3)-space i.e. if for every family of three balls in A{B(a;,r,)}3_, with
the weak intersection property we have N}_, B(a,,7;+&)+ @ for all £>0.

In the proof of Theorem 13 we used that 4 contains the constants to
conclude that 4 is self-adjoint. It is essential in our argument that 4
contains the constants.

The problem whether every complex #(3)-space is an L, predual space
is still open. We know that if 4 is an E(3)-space then A** is an E(3)-
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space [3]. Corollary 2 indicate that it might be possible to imbed 4**
into a C¢(K) space such that the image-space contains the constants.

In the case that 4 is an E(4)-space the argument in Lemma 1 shows
that every w*-closed hereditary subspace of A*** is an L-summand
(see [3]) from which it follows that |f(e)]=1 for all ec 9, 4* and all
fed,AF**. Hence we can apply Theorem 13 and get that A** is an
L,-predual space. But then also 4 is an L,-predual space. This gives a
new proof of the result that 4 is an E(4)-space if and only if 4 is an
L,-predual space.

Almost the same results that Hirsberg and Lazar obtained in [1] were
independently obtained by Fuhr and Phelps [8]. See also Lacey [7].

If we combine Theorem 13 with the results in [2] and [5] we get:

TaEOREM 14. If A is finite dimensional or A is a subspace of Cc(X)
containing the constants then the following statements are equivalent:

(i) Every linear operator T': H3(C) -~ A admits for every >0 an exten-
sion T': 13,(C) - A such that ||T|| < (L+¢)|T]l.

(ii) For an arbitrary compact linear operator T from a Banach space X
into A and for every Banach space Y 2 X and every ¢> 0, the operator
T admits an extension T: Y - A such that ||T|| < (1+¢)|T|.

Appendix added June 18, 1976.
We prove that complex /(3) spaces are L;-predual spaces.

TuroreM 15. Let A be an almost E(3)-space and let J be a closed sub-
space of A such that JO is a semi L-summand in A*. Let r;>0 and let 2,€ A
be such that d(z,J)<r; for i=1,2 and |jg;— 2| S7y+75. Then for every
&> 0 there exists an a € B(x,,7,) N B(x,,7,) such that d(aJ) <e.

Proor. Let
0 < 6 < min{(r2+e?)t—r;: ¢ = 1,2}.

By [3; Theorem 6.10] there exists an
z €J N B(xy,r,+0) N B(xg,ry+0) .

By [3; Lemma 6.4] the balls B(z,¢), B(z,,7;) and B(z,,r5) have the weak
intersection property. Now the same argument as in the proof of [4;
Proposition 4.4] shows that there exists an

a € B(x,2¢) n B(z,,1;) N B(z,,15) -

The proof is complete.
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An inspection of the proof of [3; Corollary 6.8] shows that from Theo-
rem 15 we get the following Corollary.

CoroLrLARY 16. Let A be an almost E(3)-space and let e € 8,4,. If J is
a closed subspace of A such that J° is a semi L-summand, then d(e,J)=1.

THEOREM 17. Let A be a complex E(3)-space. Then A* is isometric to
an Ly(u)-space for some measure u.

Proor. Suppose first that the unit ball of 4 contains an extreme
point e and let

F = {fed*: |fll = fle) = 1}.

As in Corollary 2 it follows from Lemma 1 and Corollary 16 that |f(e)| =1
for every f € 9,4*,. Hence the map 8: 4 — C(F) defined by S(z)(f) =f(x)
is an isometry into and S(e)=1. From Theorem 13 we get that 4 is an
L,-predual space. If 4, does not contain an extreme point, then by
Theorem 6 and the argument above, A** is a predual L,-space and
hence also 4 is a predual L,-space. The proof is complete.

REMARES. Theorem 17 shows that the initial requirement on A4 in
Theorem 14 is superfluous.

Theorem 17 solve problems 2 and 3 of Hustad [2]. In both problems
the best possible number is 3.
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