AN APPLICATION OF A THEOREM OF HIRSBERG AND LAZAR

ASVALD LIMA

Abstract.

We use a theorem of Hirsberg and Lazar to show that complex $E(3)$-spaces are L_1-preduals if they are finite dimensional or subspaces of $C_c(X)$-spaces containing the constants.\footnote{1}

1. Preliminaries and notations.

A will be a complex Banach space. $B(a, r)$ denotes the closed ball in A with center a and radius r. We write $A_1 = B(0, 1)$. If J is a linear subspace of A, we write for $x \in A$

$$d(x, J) = \inf \{d(x, y) : y \in J\} .$$

In the product space $A^n, H^n(A, J)$ denotes the subspace

$$H^n(A, J) = \{ (x_1, \ldots, x_n) \in A^n : \sum_{i=1}^n x_i \in J, \|x_1, \ldots, x_n\| = \sum_{i=1}^n \|x_i\| \}$$

and we write $H^n(A) = H^n(A, (0))$ (n a natural number ≥ 2). The convex hull of a set S is denoted $\text{co}(S)$ and the set of extreme points of a convex set C is denoted $\partial_e C$. A convex cone C of A is said to be hereditary if for all $x \in C$ and all $y \in A$ such that $\|x\| = \|x - y\| + \|y\|$ we have $y \in C$.

A family $\{B(a_t, r_t)\}_{t \in I}$ of closed balls in A is said to have the weak intersection property if $\bigcap_{t \in I} B(f(a_t), r_t) \neq \emptyset$ for all linear functionals f on A with $\|f\| \leq 1$.

We say that A is an $E(n)$-space for some natural number $n \geq 3$ if every family of n balls in A with the weak intersection property has a non-empty intersection.

The notion of $E(n)$-spaces was introduced by Hustad in [2]. (Actually he used another definition and our definition is a theorem of his). Hustad [2] proved that $E(7)$-spaces are L_1-preduals and Lima [4] improved this by showing that $E(4)$-spaces are L_1-preduals. The problem whether $E(3)$-spaces are L_1-preduals has been open.

\footnote{Received November 7, 1975.}

\footnote{1 Since these results were obtained we have shown that every complex $E(3)$-space is an L_1-predual, see Appendix.}
A closed subspace J of A is said to be a semi L-summand if for all $x \in A$, there exists a unique $y \in J$ such that $\|x - y\| = d(x, J)$ and moreover this element y satisfies $\|x\| = \|y\| + \|x - y\|$. (See [3].)

2. Some finite dimensional results.

In the following we will assume that A is a complex $E(3)$-space. First we will prove a lemma from which it follows that the finite dimensional case is a special case of the case treated in section 3.

Lemma 1. If J is a w^*-closed hereditary subspace of A^*, then J is a semi L-summand.

Proof. Let $(x, y) \in \partial_e H^2(A^*, J)_1$, and let $z = -(x + y) \in J$. Define $\alpha^{-1} = \|x\| + \|y\| + \|z\|$. Then

$$\alpha(x, y, z) \in H^3(A^*)_1.$$

Suppose that there exist $(x_j, y_j, z_j) \in H^3(A^*)_1$ such that

$$\alpha(x, y, z) = \frac{1}{2} \sum_{j=1}^2 (x_j, y_j, z_j).$$

Then we have

$$1 = \alpha(\|x\| + \|y\| + \|z\|)$$

$$= \frac{1}{2}(\|x_1 + x_2\| + \|y_1 + y_2\| + \|z_1 + z_2\|)$$

$$\leq \frac{1}{2}(\|x_1\| + \|x_2\| + \|y_1\| + \|y_2\| + \|z_1\| + \|z_2\|) \leq 1.$$

Hence

$$2\alpha z = z_1 + z_2$$

and similar formulas hold for x and y. Since J is hereditary, we have $z_1, z_2 \in J$. Hence

$$(x, y) = (1/2\alpha)[(x_1, y_1) + (x_2, y_2)]$$

gives us a convex combination in $H^2(A^*, J)_1$. Since (x, y) is an extreme point, we must have $x_1 = y_1 = z_1 = 0$ or $(x_2, y_2, z_2) = t(x_1, y_1, z_1)$ for some $t > 0$. But this shows that

$$\alpha(x, y, z) \in \partial_e H^3(A^*)_1.$$

Hence by [3; Theorem 2.14] there exist $g \in \partial_e A^*_1$ and $(\lambda_1, \lambda_2, \lambda_3) \in \partial_e H^3(C)_1$ such that

$$\alpha(x, y, z) = (\lambda_1 g, \lambda_2 g, \lambda_3 g).$$

Now if $\lambda_3 = 0$ then $x + y = 0$ and if $\lambda_3 \neq 0$ then $g \in J$ and $x, y \in J$. Hence by [3; Corollary 5.13] J is a semi L-summand. The proof is complete.

Corollary 2. If $e \in \partial_e A^*_1$ and $f \in \partial_e A^{**}$, then $|f(e)| = 1.$
Proof. Let $e \in \partial_e A^*_1$ and let $J = \text{span}(e)$. Then J is a w^*-closed hereditary subspace of A^*. Hence by Lemma 1, J is a semi L-summand. Let $f \in \partial_e A^**$. Since J° is w^*-closed in A^**, it follows from Theorem 6.11 and Corollary 6.8 in [3] that $d(f, J^\circ) = 1$. Hence $|f(e)| = 1$.

Corollary 3. If $\dim A < \infty$, then $|e(x)| = 1$ for all $x \in \partial_e A_1$ and all $e \in \partial_e A^*_1$.

Corollary 4. If $\dim A < \infty$, then A is isometric to a subspace of $C_c(K)$ containing the constants for some compact Hausdorff space K.

Proof. Let $u \in \partial_e A_1$ and define

$$K = \{e \in \partial_e A^*_1 : e(u) = 1\}.$$

From Corollary 3 it follows that $\partial_e A^*_1$ is w^*-closed. Hence K is compact. The rest of the proof is obvious.

Remark. In [3] we proved that a real Banach space is an $E(3)$-space if and only if its dual space is an $E(3)$-space. This is not true for complex spaces as the following example show. In $l^2_1(C)$ the balls

$$B_1 = B((1,1), \sqrt{2} - 1), \quad B_2 = B((\frac{1}{2}(1+i), \frac{1}{2}(1-i)), 1)$$

and

$$B_3 = B((\frac{1}{2}(1-i), \frac{1}{2}(1+i)), 1)$$

have the weak intersection property and an empty intersection. In fact, if $(a,b) \in B_2 \cap B_3$ then both a and b are convex combinations of $\frac{1}{2}(1-i)$ and $\frac{1}{2}(1+i)$. Hence it follows that $(a,b) \notin B_1$, so the balls have empty intersection. On the other side the balls have the weak intersection property since if $(x,y) \in \partial_e A^*_1$, then we may assume $x=1$ and $|y|=1$, and a verification shows that $t(x+y) \in \cap_{i=1}^2 B_i$ where

$$t = \frac{1}{2} + \frac{2 - |x-y|}{2|x+y|}$$

if $x+y \neq 0$ and $t = 1$ if $x+y = 0$.

Let B denote C^3 with the norm

$$||(z_1, z_2, z_3)|| = \max |z_1 \pm z_2 \pm z_3|.$$

Let $X = \{1, 2, 3, 4\}$ and let $f_1, f_2, f_3 \in C_c(X)$ be defined as follows:

$$f_1(i) = 1 \quad \text{for all } i,$$

$$f_2(1) = f_2(2) = 1 \quad \text{and} \quad f_2(3) = f_2(4) = -1,$$

$$f_3(1) = f_3(3) = 1 \quad \text{and} \quad f_3(2) = f_3(4) = -1.$$
Let \(E = \text{span}(f_1, f_2, f_3) \), and define a map \(T : B \to E \) by
\[
T(z_1, z_2, z_3) = z_1 f_1 + z_2 f_2 + z_3 f_3.
\]
A verification shows that \(T \) is an isometry of \(B \) onto \(E \).

Proposition 5. The space \(E \) has the following properties:

(i) \(E \) contains the constants.
(ii) \(E \) is self-adjoint.
(iii) \(\text{Re} E \) is an \(E(3) \)-space.
(iv) \(E \) is not an \(E(3) \)-space.

Proof. (i) and (ii) are trivial. The map \(T \) shows that \(\text{Re} E \) is isometric to \(\ell^1_1(\mathbb{R}) \) which is an \(E(3) \)-space by [5] and [3], so (iii) follows. In order to prove (iv) it suffices by Corollary 3 to find \(e \in \partial_e E_1 \) and \(u \in \partial_e E^*_1 \) such that \(|u(e)| < 1 \). Define \(e = (\lambda_1, \lambda_2, \lambda_3) \in B \) where
\[
\lambda_1 = \frac{1}{2}(1 + i), \quad \lambda_2 = \frac{1}{2}((1 + i)/\sqrt{2} - 1) \quad \text{and} \quad \lambda_3 = \frac{1}{2}(i - (1 + i)/\sqrt{2}).
\]
Then
\[
\begin{align*}
(1) \quad & \lambda_1 + \lambda_2 + \lambda_3 = i, \\
(2) \quad & \lambda_1 + \lambda_2 - \lambda_3 = (1 + i)/\sqrt{2}, \\
(3) \quad & \lambda_1 - \lambda_2 + \lambda_3 = (1 + i)(\sqrt{2} - 1)/\sqrt{2}, \\
(4) \quad & \lambda_1 - \lambda_2 - \lambda_3 = 1.
\end{align*}
\]
Hence \(|e| = 1 \). Suppose \((\alpha_1, \alpha_2, \alpha_3) \in B_1 \) is such that
\[
||e \pm (\alpha_1, \alpha_2, \alpha_3)|| \leq 1.
\]
Then by (1), (2) and (4):
\[
\begin{align*}
\alpha_1 + \alpha_2 + \alpha_3 &= 0, \\
\alpha_1 + \alpha_2 - \alpha_3 &= 0, \\
\alpha_1 - \alpha_2 - \alpha_3 &= 0.
\end{align*}
\]
so \(\alpha_1 = \alpha_2 = \alpha_3 = 0 \). Hence \(e \in \partial_e B_1 \). Define \(p_i \in E^* \) by \(p_i(f) = f(i), f \in E, i = 1, 2, 3, 4 \). Then clearly every \(u \in \partial_e E^*_1 \) is of the form \(u = zp_i \) for some \(i \) and some \(z \in \mathbb{C} \). An argument by contradiction shows that
\[
p_3 \notin \text{co}(\{zp_i : i = 1, 2, 4 \text{ and } z \in \mathbb{C} \text{ with } |z| = 1\}).
\]
Hence \(p_3 \in \partial_e E^*_1 \). But then by (3):
\[
|p_3(T(e))| = |\lambda_1 - \lambda_2 + \lambda_3| = \sqrt{2} - 1 < 1.
\]
The proof is complete.
3. The structure of A^\ast.

We will now assume that A is a complex Banach space. We say that A is an almost $E(3)$-space if for every family of three balls $\{B(a_i, r_i)\}_{i=1}^3$ in A with the weak intersection property we have

$$\bigcap_{i=1}^3 B(a_i, r_i + \varepsilon) \neq \emptyset$$

for all $\varepsilon > 0$.

In the study of the properties of dual spaces of $E(3)$-spaces the following theorem will be useful.

Theorem 6. If A is a complex Banach space, then the following properties are equivalent:

(i) A is an almost $E(3)$-space.

(ii) A^{**} is an $E(3)$-space.

(iii) $H^3(A^\ast)_1 = \overline{co}(\partial_e A^\ast_1 \cdot H^3(C)_1)$ (w*-closure).

(iv) $H^3(A^\ast)_1 = \overline{co}(A^\ast_1 \cdot H^3(C)_1)$ (norm-closure).

For $S \subseteq A^\ast$, $S \cdot H^3(C)_1$ denotes the set

$$\{(z_1 g, z_2 g, z_3 g) \in H^3(A^\ast)_1 : g \in S \text{ and } (z_1, z_2, z_3) \in H^3(C)_1\}$$

Proof. (i) \iff (ii) is Theorem 2.16 in [3] and (i) \iff (iii) is Theorem 2.14 in [3]. (iv) \implies (iii) is trivial and the proof of (ii) \implies (iv) is similar to the proof of (i) \implies (iii). (See [3; Theorem 2.14].)

In [3] we proved that dual spaces of real $E(3)$-spaces were characterized by a kind of weak decomposition property. We will now give a partial extension of this result to complex spaces. First a definition.

Definition. A convex cone C in a Banach space is said to be an R_3-cone if for all $x, y \in C$ there exist $z, u, v \in C$ such that

$$x = z + u \quad \text{and} \quad ||x|| = ||z|| + ||u||,$$

$$y = z + v \quad \text{and} \quad ||y|| = ||z|| + ||v||$$

and

$$||x - y|| = ||u - v|| = ||u|| + ||v||.$$

In the proof of Lemma 7 and Lemma 9 below we will use the following observation. If F is a convex (nonempty) subset of A such that $||x|| = 1$ for all $x \in F$, then there exists an $f \in A^\ast_1$ such that $f(x) = 1$ for all $x \in F$. In fact, we can choose $f \in A^\ast_1$ such that $||f|| = 1$ and

$$\sup \{\text{Re} f(y) : ||y|| < 1\} \leq \inf \{\text{Re} f(x) : x \in F\}.$$
Then we have
\[
\|f\| = 1 = \sup \{|f(y)| : \|y\| < 1\} = \sup \{\text{Re} f(y) : \|y\| < 1\} \\
\leq \inf \{\text{Re} f(x) : x \in F\} \leq 1.
\]

Hence \(\text{Re} f(x) = f(x)\) for all \(x \in F\).

Lemma 7. Let \(F\) be a proper face of \(A^*_1\) and let \(\varepsilon > 0\). If \(A\) is an almost \(E(3)\)-space and \(x, y \in \text{cone}(F) = \bigcup_{\lambda \geq 0} \lambda F\), then there exist \(z, u, v \in A^*\) such that
\[
\|z + u - x\| < \varepsilon \quad \text{and} \quad \|z\| + \|u\| < \|x\| + \varepsilon,
\]
\[
\|z + v - y\| < \varepsilon \quad \text{and} \quad \|z\| + \|v\| < \|y\| + \varepsilon
\]
and
\[
\|u\| + \|v\| < \|x - y\| + \varepsilon.
\]

Proof. Let \(x, y \in \text{cone}(F)\). If \(x = 0\) or \(y = 0\) then there is nothing to prove. So assume \(x \neq 0\) and \(y \neq 0\). We may assume that \(\|x\| + \|y\| + \|x - y\| = 1\) and that \(\varepsilon\) is small compared with \(\|x\|\) and \(\|y\|\). Since \((x, -y, y - x) \in H^3(A^*_1)\), there exist by Theorem 6 \(\lambda_j > 0\), \(\sum_{j=1}^m \lambda_j = 1\), \(g_j \in A^*_1\) and \((z_{1j}, z_{2j}, z_{3j}) \in H^3(C)_1\) such that
\[
\|(x, -y, y - x) - \sum_{j=1}^m \lambda_j (z_{1j} g_j, z_{2j} g_j, z_{3j} g_j)\| < \varepsilon.
\]
From (5) we get
\[
\|x - \sum_{j=1}^m \lambda_j z_{1j} g_j\| < \varepsilon, \tag{6}
\]
\[
\|y + \sum_{j=1}^m \lambda_j z_{2j} g_j\| < \varepsilon \tag{7}
\]
and
\[
\|y - x - \sum_{j=1}^m \lambda_j z_{3j} g_j\| < \varepsilon. \tag{8}
\]

Let \(f \in A_{1**}^*\) be such that \(f|_F = 1\) and let \(h \in A_{1**}^*\) be such that \(\|x - y\| = h(x - y)\). Then we get from (6), (7) and (8):
\[
\|\|x\| - \sum_{j=1}^m \lambda_j z_{1j} f(g_j)\| < \varepsilon, \tag{9}
\]
\[
\|\|y\| + \sum_{j=1}^m \lambda_j z_{2j} f(g_j)\| < \varepsilon \tag{10}
\]
and
\[
\|\|y - x\| - \sum_{j=1}^m \lambda_j z_{3j} h(g_j)\| < \varepsilon. \tag{11}
\]

By rotating all \(g_j\) and \(z_{kj}\), we may assume that \(f(g_j) \geq 0\) for all \(j\). Then we get from (9), (10) and (11):
\[
\|x\| < \varepsilon + \sum_{j=1}^m \lambda_j |z_{1j}| f(g_j) \leq \varepsilon + \sum_{j=1}^m \lambda_j |z_{1j}|, \tag{12}
\]
\[
\|y\| < \varepsilon + \sum_{j=1}^m \lambda_j |z_{2j}| f(g_j) \leq \varepsilon + \sum_{j=1}^m \lambda_j |z_{2j}|. \tag{13}
\]
(14) \[||x - y|| < \varepsilon + \sum_{j=1}^{m} \lambda_j |z_{3j}| \leq \varepsilon + \sum_{j=1}^{m} \lambda_j |z_{3j}|. \]

This now gives
\[
\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_j |z_{kj}| \leq 1 = ||x|| + ||y|| + ||x - y||
\]
\[
< 3\varepsilon + \sum_{k=2}^{3} \sum_{j=1}^{m} \lambda_j |z_{kj}| + \sum_{j=1}^{m} \lambda_j |z_{1j}| f(g_j)
\]
so
\[
\sum_{j=1}^{m} \lambda_j |z_{1j}| < 3\varepsilon + \sum_{j=1}^{m} \lambda_j |z_{1j}| f(g_j)
\]
and we get
\[
\sum_{j=1}^{m} \lambda_j |z_{1j}| (1 - f(g_j)) < 3\varepsilon .
\]
Hence we get
\[
|\sum_{j=1}^{m} \lambda_j z_{1j} - \sum_{j=1}^{m} \lambda_j z_{1j} f(g_j)| < 3\varepsilon
\]
and
\[
|||x|| - \sum_{j=1}^{m} \lambda_j z_{1j}| < 4\varepsilon .
\]
Similarly we get
\[
\sum_{j=1}^{m} \lambda_j |z_{2j}| < 3\varepsilon + \sum_{j=1}^{m} \lambda_j |z_{2j}| f(g_j) ,
\]
\[
|\sum_{j=1}^{m} \lambda_j z_{2j} - \sum_{j=1}^{m} \lambda_j z_{2j} f(g_j)| < 3\varepsilon ,
\]
\[
||y|| + \sum_{j=1}^{m} \lambda_j z_{2j}| < 4\varepsilon .
\]
Since
\[
\sum_{k=1}^{3} \sum_{j=1}^{m} \lambda_j |z_{kj}| \leq 1 = ||x|| + ||y|| + ||y - x||
\]
we get from (12), (13) and (14):
\[
\sum_{j=1}^{m} \lambda_j |z_{1j}| < ||x|| + 2\varepsilon ,
\]
\[
\sum_{j=1}^{m} \lambda_j |z_{2j}| < ||y|| + 2\varepsilon
\]
and
\[
\sum_{j=1}^{m} \lambda_j |z_{3j}| < ||x - y|| + 2\varepsilon .
\]
If \(\text{Im} z_{1j} \geq 0 \), write
\[
\lambda_j z_{1j} = r_j (\cos \varphi_j + i \sin \varphi_j)
\]
and if \(\text{Im} z_{1j} < 0 \), write
\[
\lambda_j z_{1j} = r_j (\cos \varphi_j - i \sin \varphi_j) .
\]
Let \(\delta, \gamma \in [-4\varepsilon, 4\varepsilon] \) be such that
\[
\sum_{j=1}^{m} \lambda_j \text{Re}(z_{1j}) = ||x|| + \delta
\]
and
\[\sum_{j=1}^{m} \lambda_j |z_{1j}| = ||x|| + \gamma. \]

If we now compute the maximum of
\[F(r_1, \ldots, r_m, \varphi_1, \ldots, \varphi_m) = \sum_{j=1}^{m} r_j \sin \varphi_j \]
subject to the conditions
\[G_1(r_1, \ldots, r_m) = \sum_{j=1}^{m} r_j = ||x|| + \gamma \]
and
\[G_2(r_1, \ldots, r_m) = \sum_{j=1}^{m} r_j \cos \varphi_j = ||x|| + \delta \]
(with \(\delta \) and \(\gamma \) fixed and \(||x|| \leq \frac{1}{2} \)) we find
\[F(r_1, \ldots, r_m) \leq (2||x||(\gamma - \delta) + \gamma^2 - \delta^2)^{\frac{1}{2}} < 5\epsilon^4. \]

Hence from (17) and (21) we get
\[\sum_{j=1}^{m} \lambda_j |\text{Im} z_{1j}| < 5\epsilon^4. \quad (24) \]

Similarly we get from (20) and (22)
\[\sum_{j=1}^{m} \lambda_j |\text{Im} z_{2j}| < 5\epsilon^4 \quad (25) \]
and from (24) and (25) we get
\[\sum_{j=1}^{m} \lambda_j |\text{Im} z_{3j}| < 10\epsilon^4. \quad (26) \]

From (21) and (17) we also get
\[\sum_{j=1}^{m} \lambda_j |z_{1j}| < ||x|| + 2\varepsilon \]
\[< 6\varepsilon + \sum_{j=1}^{m} \lambda_j \text{Re}(z_{1j}). \]

Hence
\[\sum_{j=1}^{m} \lambda_j (|z_{1j}| - \text{Re}z_{1j}) < 6\varepsilon \]
so
\[\sum_{\text{Re}z_{1j} < 0} \lambda_j |z_{1j}| < 6\varepsilon. \quad (27) \]

Similarly we get from (20) and (22):
\[\sum_{\text{Re}z_{2j} > 0} \lambda_j |z_{2j}| < 6\varepsilon. \quad (28) \]

We now define for \(j = 1, \ldots, m \)
\[u_{1j} = \begin{cases} \text{Re}z_{1j} & \text{if } \text{Re}z_{1j} \geq 0 \\ 0 & \text{if } \text{Re}z_{1j} < 0 \end{cases} \]
\[u_{2j} = \begin{cases} \text{Re}z_{2j} & \text{if } \text{Re}z_{2j} \leq 0 \\ 0 & \text{if } \text{Re}z_{2j} > 0 \end{cases} \]
and
\[u_{3j} = - (u_{1j} + u_{2j}) . \]

For \(k = 1, 2 \) we get from (24), (25), (27) and (28)
\[\| \sum_{j=1}^{m} \lambda_j u_{kj} g_j - \sum_{j=1}^{m} \lambda_j z_{kj} g_j \| < 6 \epsilon + 5 \epsilon^* . \]

This immediately gives
\[\| \sum_{j=1}^{m} \lambda_j u_{3j} g_j - \sum_{j=1}^{m} \lambda_j z_{3j} g_j \| < 12 \epsilon + 10 \epsilon^* . \]

Define
\[
\begin{align*}
z & = \sum_{j=1}^{m} \lambda_j [\min(u_{1j}, -u_{2j})] g_j \\
u & = \sum_{j=1}^{m} \lambda_j [u_{1j} - \min(u_{1j}, -u_{2j})] g_j \\
v & = \sum_{j=1}^{m} \lambda_j [-u_{2j} - \min(u_{1j}, -u_{2j})] g_j .
\end{align*}
\]

Then we have
\[
\begin{align*}
z + u & = \sum_{j=1}^{m} \lambda_j u_{1j} g_j , \\
z + v & = - \sum_{j=1}^{m} \lambda_j u_{2j} g_j , \\
v - u & = \sum_{j=1}^{m} \lambda_j u_{3j} g_j .
\end{align*}
\]

From (6) and (29) we get
\[\| z + u - x \| < 8 \epsilon + 5 \epsilon^* . \]

Similarly we get from (7) and (29)
\[\| z + v - y \| < 8 \epsilon + 5 \epsilon^* . \]

It follows from (21), (24) and (27) that
\[
\begin{align*}
\| z \| + \| u \|
& \leq \sum_{j=1}^{m} \lambda_j [\min(u_{1j}, -u_{2j})] + |u_{1j} - \min(u_{1j}, -u_{2j})|] \\
& = \sum_{j=1}^{m} \lambda_j |u_{1j}| \\
& \leq \sum_{j=1}^{m} \lambda_j |z_{1j}| + \sum_{j=1}^{m} \lambda_j |\text{Im} z_{1j}| + \sum_{\text{Res}_{1j} < 0} \lambda_j |z_{1j}| \\
& \leq \| x \| + 8 \epsilon + 5 \epsilon^* .
\end{align*}
\]

Similarly it follows from (22), (25) and (28) that
\[\| z \| + \| v \| \leq \| y \| + 8 \epsilon + 5 \epsilon^* \]

and it follows from (23), (26), (27) and (28) that
\[\| v \| + \| u \| \leq \| x - y \| + 14 \epsilon + 10 \epsilon^* . \]

The proof is complete.

From Lemma 2 by the \(w^* \)-compactness of \(A^* \) and the \(w^* \)-lower semicontinuity of the dual norm we get:
Corollary 8. If A is an almost $E(3)$-space, then $\text{cone}(F)$ is an R_3-cone for every proper face F of A^*_1.

Let F be a proper face of A^*_1. We say that F is a split face of $\text{co}(FU - iF)$ if every element in $\text{co}(FU - iF)$ can be written in a unique way as a convex combination of an element in F and an element in $-iF$. (i denotes the imaginary unit.)

Lemma 9. Suppose A is an almost $E(3)$-space and that F is a proper face of A^*_1. Then F is a split face of $\text{co}(FU - iF)$.

Proof. Assume for contradiction that F is not a split face of $\text{co}(FU - iF)$. Then there exist $x_1, x_2, y_1, y_2 \in \text{cone}(F)$ such that $x_1 = x_2$ and

$$x_1 - iy_1 = x_2 - iy_2.$$

By Corollary 8 we may assume $\|x_1 - x_2\| = \|x_1\| + \|x_2\|$ and also $\|y_1 - y_2\| = \|y_1\| + \|y_2\|$. Choose $e \in A^{**}_1$ such that $e(x) = 1$ for all $x \in F$. Then we get by applying e that

$$\|x_1\| - i\|y_1\| = \|x_2\| - i\|y_2\|$$

so $\|x_1\| = \|x_2\|$ and $\|y_1\| = \|y_2\|$. Since $x_1 - x_2 = i(y_1 - y_2)$ we get

$$\|x_1\| + \|x_2\| = \|x_1 - x_2\| = \|y_1 - y_2\| = \|y_1\| + \|y_2\|.$$

Hence we may assume $x_1, x_2, y_1, y_2 \in F$. The equation

$$\|x_1 - x_2 + iy_1 - iy_2\| = 2\|x_1 - x_2\| = 4$$

shows that there exists an $f \in A^{**}_1$ such that $f(x_1) = 1$, $f(x_2) = -1$, $f(y_1) = -i$ and $f(y_2) = i$. Now consider the following balls in A^{**}: $B_1 = B(a_1, \sqrt{2} - 1)$, $B_2 = B(a_2, 1)$ and $B_3 = B(a_3, 1)$ where

$$a_1 = e + f, \quad a_2 = \frac{1}{2}(1 + i)e + \frac{1}{2}(1 - i)f, \quad a_3 = \frac{1}{2}(1 - i)e + \frac{1}{2}(1 + i)f.$$

In order to obtain a contradiction we want to show that these three balls have the weak intersection property and an empty intersection. By Theorem 6 this is impossible since A is an almost $E(3)$-space.

First we want to show that the balls have the weak intersection property. So let $z \in A^{***}_1$. If $z(e) = z(f) = 0$, then there is nothing to prove. Hence we may assume that there exists an $r \in [1, \infty)$ such that

$$r \cdot \max(|z(e)|, |z(f)|) = 1.$$

Now define

$$u = i(z(e) + z(f))$$
where
\[t = \frac{2 + r|z(e) + z(f)| - r|z(e) - z(f)|}{2|z(e) + z(f)|}. \]

(If \(z(e) + z(f) = 0 \), let \(u = 0 \) and \(t = 0 \).) Since
\[r|z(e) - z(f)| \leq 2 \leq r|z(e) + z(f)| + r|z(e) - z(f)| \]
we get \(\frac{1}{2} r \leq t \leq r \). Hence
\[
|rz(a_2) - u| \\
= |(t - \frac{1}{2} r)(z(e) + z(f)) - \frac{1}{2} ir(z(e) - z(f))| \\
\leq (t - \frac{1}{2} r)|z(e) + z(f)| + \frac{1}{2} r|z(e) - z(f)| = 1.
\]

This shows that
\[u/r \in B(z(a_2), 1). \]

Similarly we get
\[u/r \in B(z(a_3), 1). \]

It is easy to see that
\[r|z(e) + z(f)| + r|z(e) - z(f)| \leq 2\sqrt{2}. \]

Hence
\[
|rz(a_1) - u| = (r - t)|z(e) + z(f)| \\
= \frac{1}{2} r(|z(e) + z(f)| + |z(e) - z(f)|) - 1 \\
\leq \sqrt{2} - 1.
\]

This shows that
\[u/r \in B(z(a_1), \sqrt{2} - 1). \]

Hence \(\{B_i\}_{i=1}^3 \) have the weak intersection property.

Suppose that there exists \(g \in \mathcal{A}^{**} \) such that \(g \in \cap_{i=1}^3 B_i \). Then \(g \in B_3 \cap B_3 \), \(a_2(x_2) = i \) and \(a_3(x_2) = -i \) implies that \(g(x_2) = 0 \). Similarly \(g \in B_1 \cap B_2 \), \(a_1(y_1) = 1 - i \) and \(a_2(y_1) = 0 \) implies that \(g(y_1) = (1 - i)/\sqrt{2} \), and \(g \in B_1 \cap B_3 \), \(a_1(y_2) = 1 + i \) and \(a_3(y_2) = 0 \) implies that \(g(y_2) = (1 + i)/\sqrt{2} \). But then we have
\[g(x_1) = g(x_2) + ig(y_1) - ig(y_2) = \sqrt{2}. \]

Hence
\[a_1(x_1) - g(x_1) = 2 - \sqrt{2} > \sqrt{2} - 1. \]

This contradicts that \(g \in B_1 \). The proof is complete.
4. The application of the Hirsberg-Lazar theorem.

In this section we will assume that A is an $E(3)$-space, and that A is a subspace of $C_c(X)$ for some compact Hausdorff space X.

If $1 \in A$, let S denote the state space

$$S = \{p \in A^*: p(1) = 1 = \|p\|\}.$$

If $1 \in A$, then it follows from Lemma 9 that S is a split face of $\text{co}(SU - iS)$. Hence from Lemma 9 and [1; Lemma 3.3] we get:

Proposition 10. If A is an $E(3)$-subspace of $C_c(X)$ containing the constants, then A is self-adjoint.

In the next two lemma we need not assume that A is containing the constants. We only assume that A is a self-adjoint $E(3)$-subspace of $C_c(X)$.

Lemma 11. $\text{Re} A$ is an $E(3)$-space.

Proof. Assume $f_1, f_2, f_3 \in \text{Re} A$ and $r_1, r_2, r_3 > 0$ are such that the balls $\{B(f_i, r_i)\}_{i=1}^3$ have the weak intersection property in $\text{Re} A$. Then for each $x \in X$, $\cap_{i=1}^3 B(f_i(x), r_i) = \emptyset$. Hence by [3; Theorem 1.1]

$$|\sum_{i=1}^3 z_i f_i(x)| \leq \sum_{i=1}^3 r_i |z_i|$$

for all $(z_1, z_2, z_3) \in H^3(C)$. But then by [2; Corollary 1.4] the balls have the weak intersection property in A. Let $f \in \cap_{i=1}^3 B(f_i, r_i)$. Then $\text{Re} f \in \cap_{i=1}^3 B(f_i, r_i)$. This completes the proof of the lemma.

Lemma 12. $\text{Re} A$ is an $E(n)$-space for all $n \geq 3$.

Proof. By Lemma 11 $\text{Re} A$ is an $E(3)$-space. By [5; Theorem 4.1] it suffices to show that $\text{Re} A$ is an $E(4)$-space. Assume for contradiction that $\text{Re} A$ is not an $E(4)$-space. Let $\varepsilon > 0$. By [3; Corollary 4.5] there exist a linear operator $S : l_1^3(R) \to \text{Re} A$ such that

$$\|x\| \leq \|S(x)\| \leq (1 + \varepsilon)\|x\|$$

for all $x \in l_1^3(R)$ and there exist a projection P in $\text{Re} A$ such that $P(\text{Re} A) = S(l_1^3(R))$ and $\|P\| \leq 1 + \varepsilon$.

Let $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$ and define $f_i = S(e_i)$, $i = 1, 2, 3$. Then $1 \leq \|f_i\| \leq 1 + \varepsilon$ for all i and for all sign:

$$3 = \|e_1 \pm e_2 \pm e_3\| \leq \|f_1 \pm f_2 \pm f_3\| \leq (1 + \varepsilon)3.$$
Choose $x_i \in X$ such that

$$
3 \leq |f_1(x_1) + f_2(x_2) + f_3(x_3)| \leq 3(1 + \varepsilon)
$$

$$
3 \leq |f_1(x_2) + f_2(x_2) + f_3(x_2)| \leq 3(1 + \varepsilon)
$$

$$
3 \leq |f_1(x_3) - f_2(x_3) + f_3(x_3)| \leq 3(1 + \varepsilon)
$$

$$
3 \leq |f_1(x_4) - f_2(x_4) - f_3(x_4)| \leq 3(1 + \varepsilon)
$$

Choose a constant K such that

$$
|\lambda_1 + |\lambda_2| + |\lambda_3| \leq K \max |\lambda_1 \pm \lambda_2 \pm \lambda_3|
$$

for all $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^3$. Then for all $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^3$

$$
||\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3||
$$

$$
\geq \sup_{i=1,2,3,4} |\lambda_1 f_1(x_i) + \lambda_2 f_2(x_i) + \lambda_3 f_3(x_i)|
$$

$$
\geq \max |\lambda_1 \pm \lambda_2 \pm \lambda_3| - 2\varepsilon(|\lambda_1| + |\lambda_2| + |\lambda_3|)
$$

$$
\geq (1 - 2K\varepsilon) \max |\lambda_1 \pm \lambda_2 \pm \lambda_3|
$$

The function

$$
g(t_1, t_2, t_3) = |\lambda_1 t_1 + \lambda_2 t_2 + \lambda_3 t_3|
$$

is for each $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{C}^3$ continuous and convex on $[-1 - \varepsilon, 1 + \varepsilon]^3$. Since continuous convex functions obtain their supremum at extreme points and all $\|f_i\| \leq 1 + \varepsilon$, we get

$$
|\lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x)|
$$

$$
\leq (1 + \varepsilon) \max |\lambda_1 \pm \lambda_2 \pm \lambda_3|
$$

for all $x \in X$. Let B be the space above. (See Proposition 5.) Then we have just shown that the map $\hat{S}: B \to A$ defined by

$$
\hat{S}(\lambda_1, \lambda_2, \lambda_3) = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3
$$

satisfies

$$
(1 - 2K\varepsilon)\|u\| \leq \|\hat{S}(u)\| \leq (1 + \varepsilon)\|u\|
$$

for all $u \in B$.

Extend P to a projection $\hat{P}: A \to A$ by

$$
\hat{P}(f) = P(Re f) + iP(Im f).
$$

Clearly, \hat{P} is a linear projection and $\hat{P}(A) = \hat{S}(B)$. Let $f \in A$. Choose $x \in X$ such that $\|\hat{P}(f)\| = |\hat{P}(f)(x)|$ and choose $z = \cos \varphi - i \sin \varphi$ such that $\|\hat{P}(f)\| = z\hat{P}(f)(x)$. Then

$$
\|\hat{P}(f)\| = (\cos \varphi - i \sin \varphi)[P(Re f) + iP(Im f)](x)
$$

$$
= [\cos \varphi P(Re f) + \sin \varphi P(Im f)](x) +
$$

$$
+ i[\cos \varphi P(Im f) - \sin \varphi P(Re f)](x)
$$
\[P(\cos \phi \text{ Re} f + \sin \varphi \text{ Im} f)(x) + iP(\cos \varphi \text{ Im} f - \sin \varphi \text{ Re} f)(x) \]
\[= P(\text{Re}(zf))(x) + iP(\text{Im}(zf))(x) \]
\[= P(\text{Re}(zf))(x) \]
\[\leq \|P(\text{Re}(zf))\| \]
\[\leq (1 + \varepsilon)\|\text{Re}(zf)\| \]
\[\leq (1 + \varepsilon)\|zf\| \]
\[= (1 + \varepsilon)\|f\|. \]

Hence \[\|\tilde{P}\| \leq (1 + \varepsilon). \]

Let \(\{B(x_i, r_i)\}_{i=1}^3 \) be three balls in \(B \) with the weak intersection property. Then the balls \(\{B(\tilde{S}(x_i), (1 + \varepsilon)r_i)\}_{i=1}^3 \) have the weak intersection property in \(A. \) ([2; Corollary 1.4]). Since \(A \) is an \(E(3) \)-space, there exists an \(f \in \bigcap_{i=1}^3 B(\tilde{S}(x_i), (1 + \varepsilon)r_i). \)

Hence
\[\tilde{P}(f) \in \tilde{S}(B) \cap \bigcap_{i=1}^3 B(\tilde{S}(x_i), (1 + \varepsilon)^2 r_i), \]
and
\[\tilde{S}^{-1}(\tilde{P}(f)) \in \bigcap_{i=1}^3 B(x_i, (1 - 2K\varepsilon)(1 + \varepsilon)^2 r_i). \]
Since \(\varepsilon > 0 \) is arbitrary, \(\bigcap_{i=1}^3 B(x_i, r_i) \neq \emptyset. \) Since \(B \) is not an \(E(3) \)-space (see Proposition 5), this is a contradiction.

This completes the proof.

The above results together with Theorem 2 of Hirsberg and Lazar [1] give:

Theorem 13. Let \(A \) be a complex \(E(3) \)-space. If \(\dim A < \infty \) or \(A \) is a subspace of \(C_c(X) \) containing the constants, then \(A^* \) is isometric to an \(L_1(\mu) \)-space for some measure \(\mu. \)

Remarks. An inspection of the proof given above shows that the conclusion of Theorem 13 holds if we only assume that \(A \) is an almost \(E(3) \)-space i.e. if for every family of three balls in \(A \{B(a_i, r_i)\}_{i=1}^3 \) with the weak intersection property we have \(\bigcap_{i=1}^3 B(a_i, r_i + \varepsilon) \neq \emptyset \) for all \(\varepsilon > 0. \)

In the proof of Theorem 13 we used that \(A \) contains the constants to conclude that \(A \) is self-adjoint. It is essential in our argument that \(A \) contains the constants.

The problem whether every complex \(E(3) \)-space is an \(L_1 \) predual space is still open. We know that if \(A \) is an \(E(3) \)-space then \(A^{**} \) is an \(E(3)- \)
space [3]. Corollary 2 indicate that it might be possible to imbed A^{**} into a $C_c(K)$ space such that the image-space contains the constants.

In the case that A is an $E(4)$-space the argument in Lemma 1 shows that every w^*-closed hereditary subspace of A^{***} is an L-summand (see [3]) from which it follows that $|f(e)| = 1$ for all $e \in \partial_o A_1^{**}$ and all $f \in \partial_o A_1^{***}$. Hence we can apply Theorem 13 and get that A^{**} is an L_1-predual space. But then also A is an L_1-predual space. This gives a new proof of the result that A is an $E(4)$-space if and only if A is an L_1-predual space.

Almost the same results that Hirsberg and Lazar obtained in [1] were independently obtained by Fuhr and Phelps [8]. See also Lacey [7].

If we combine Theorem 13 with the results in [2] and [5] we get:

Theorem 14. If A is finite dimensional or A is a subspace of $C_c(X)$ containing the constants then the following statements are equivalent:

(i) Every linear operator $T : H^1(C) \to A$ admits for every $\varepsilon > 0$ an extension $\tilde{T} : H^1(C) \to A$ such that $\|\tilde{T}\| \leq (1 + \varepsilon)\|T\|.$

(ii) For an arbitrary compact linear operator T from a Banach space X into A and for every Banach space $Y \supseteq X$ and every $\varepsilon > 0$, the operator T admits an extension $\tilde{T} : Y \to A$ such that $\|\tilde{T}\| \leq (1 + \varepsilon)\|T\|.$

Appendix added June 18, 1976.

We prove that complex $E(3)$ spaces are L_1-predual spaces.

Theorem 15. Let A be an almost $E(3)$-space and let J be a closed subspace of A such that J^0 is a semi L-summand in A^*. Let $r_i > 0$ and let $x_i \in A$ be such that $d(x_i, J) \leq r_i$ for $i = 1, 2$ and $\|x_1 - x_2\| \leq r_1 + r_2$. Then for every $\varepsilon > 0$ there exists an $a \in B(x_1, r_1) \cap B(x_2, r_2)$ such that $d(a J) \leq \varepsilon$.

Proof. Let

$$0 < \theta \leq \min\{(r_i^2 + \varepsilon^2)^{\frac{1}{2}} - r_i : i = 1, 2\}.$$

By [3; Theorem 6.10] there exists an

$$x \in J \cap B(x_1, r_1 + \theta) \cap B(x_2, r_2 + \theta).$$

By [3; Lemma 6.4] the balls $B(x, \varepsilon)$, $B(x_1, r_1)$ and $B(x_2, r_2)$ have the weak intersection property. Now the same argument as in the proof of [4; Proposition 4.4] shows that there exists an

$$a \in B(x, 2\varepsilon) \cap B(x_1, r_1) \cap B(x_2, r_2).$$

The proof is complete.
An inspection of the proof of [3; Corollary 6.8] shows that from Theorem 15 we get the following Corollary.

COROLLARY 16. Let A be an almost $E(3)$-space and let $e \in \partial_e A_1$. If J is a closed subspace of A such that J^0 is a semi L-summand, then $d(e,J) = 1$.

THEOREM 17. Let A be a complex $E(3)$-space. Then A^* is isometric to an $L_1(\mu)$-space for some measure μ.

PROOF. Suppose first that the unit ball of A contains an extreme point e and let

$$F = \{f \in A^* : \|f\| = f(e) = 1\}.$$

As in Corollary 2 it follows from Lemma 1 and Corollary 16 that $|f(e)| = 1$ for every $f \in \partial_e A_1^*$. Hence the map $S : A \to C_0(F)$ defined by $S(x)(f) = f(x)$ is an isometry into and $S(e) = 1$. From Theorem 13 we get that A is an L_1-predual space. If A_1 does not contain an extreme point, then by Theorem 6 and the argument above, A^{**} is a predual L_1-space and hence also A is a predual L_1-space. The proof is complete.

REMARKS. Theorem 17 shows that the initial requirement on A in Theorem 14 is superfluous.

Theorem 17 solve problems 2 and 3 of Hustad [2]. In both problems the best possible number is 3.

REFERENCES