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ON THE SHADOWS AND THE SECTIONS OF
CONVEX SETS

Z. WAKSMAN

Abstract.

The paper is a continuation of research into the four point types of
convex sets of &, introduced in [2]. Transference of the questions rela-
ting to this classification onto points exterior to the convex set are exa-
mined in section 1. The possibility of maintaining the point type under
cutting of a convex set by hyperplane is examined in section 2. The
terms of section 1 turn out to be convenient (section 3) for construction
of the simple example of a boundedly polyhedral set, all of whose pro-
jections are polyhedral. The existence of such sets was proved by V.
Klee [1].

Introduction.

Let us recall the main concepts of [2]. Denote by [x,y) the ray emana-
ting from point z towards point y (in case z=y, [#,y)={z}). For convex
A< &,andzedlet

[z, 4) = Uyeal®,y), cone(r,4) = [#,4)—x = [0,4—2z)
and
pa(@) = inf{lAd n[z,y)]: yeA\{a}}

(or p (x)=+oo in case A\ {x}=®) Discriminate between the points
of set 4 by the value of the function u,: A=4,U4_,, where

Ay = {ged: uyx) =0}, A,={red: pyx)>0}.

A more detailed classification uses the structure of the cone(x,4).
Namely, the four point types appear as follows:

A, = {xe A: cone(z,4) is not closed}
(in the case of closed 4,4, < 4,),

A, = Ag\NA, = {xeA: py(x) = 0, cone(z,4) is closed},
A, = {xe A: cone(z,A)is polyhedral} (4d,=4,,)
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and

Ay = A 0\ (4,0 4,)
={red: py(x) > 0, cone(x,A) is closed and not polyhedral}

From among the propositions in [2] note the following:

1° if ze A,(1=1,2,3,4), hyperplane II contains x, B=AnIl and
x € By, then i <j and p 4() < up(r);

2°.if x e (u,0) < 4,(u,v)nII={x} and x € 4,(1=1,2,3,4), then (u,v) <
A4, and z € (AnII);; in particular, for every face F' of A, riF lies entirely
in one of the sets 4,;

3° cld,=4,ud,UA4,; and cl(4,nd,) © 4,U4,, moreover, for every
point z e cl(4,n4,)\ (4;nA,) there exists an interval (z,u) < 4,n4,.

1. Shadow of convex sets.

For any point se€ 4=&,\ cl4 we shall call set U,_,[s,y) the shadow
of set A with respect to the point s and denote it by sh (s, 4). It is natural
to presume that the type of the ray (s,y) with respect to sh(s,4), where
y € A, preserves certain information about the type of y with respect
to A.

We first define one concept. Let us say that point a € 4 is a non-regular
point of A4, if there exists an interval (a,b) such that (a,b) < cl4A\ 4.
Otherwise it is regular. Denote

Ag = {xecA: xisregular}, Ay = {xreA: zisnon-regular},

Ajg=A4,nAg. It is clear that Ay < 4,,4,nA < Ax,41g < 4,
Aqgudy=A,.

The simplest example of a non-regular point is the vertex of any
convex non-closed cone.

In the sequel, we shall use freely the following simple facts.

LEMmMA 1. a) x € Ay iff cone(x,4) = cone(x,clA);

b) if xe Ag and x & Ay, then x ¢ (cl4),;

c) if clA is a boundedly polyhedral set (that is, (clA4),=clA),
then AN Ay <« Ay;

d) if I is an interval of A (open or not), z€ril and x € Ay,
then I < Ay;

e) under the conditions of d), if II is a hyperplane and InII = {x},
then x € (AnIT)y;

f) if a € A;UAd,, then an interval (a,b) < A,y exists.
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The ray I=[0,p) is called a direction of recession in 4 if z+1 < 4
for z e rid. The recessive directions of 4 form a convex cone which we
denote by O+A as in [3]. (Our definition of recessive cone, however,
differs slightly from that given in [3] in that O+(cl4) in the sence of
[3] coincides with our O+A4). Recessive cone O+4 is closed ([3], theorem
8.2).

Lemma 2. If a € Ay, then O+t4 < cone(a,A4).

Lemma 2 is obvious.

LemMA 3. Let S=sh(s,4) and x € S\ {s}, that is x € (s,p) where p € 4.
Then

a) cone(x,S) = cone(p,A4)+[0,s—p)+[0,p—s);
b) if p € Ay, then x € Sg.

Proor. a) If we cone(z,S), then w=pu(y—=), p20,y€S. The last
means that
y =8+Az—8), A20,ze4.
Finally
w = u(8—1x)+puiz—p)+pA(p—s) .

This proves inclusion <. The converse inclusion is obvious.
b) By Lemma 1a), it is sufficient to prove that

cone (z,cl8) = cone(z,S) .

Let w be in cone(z, c1S), that is w=pu(y—=),u 20 and y € c1 8. The last
relationship means that y=1lim, , y;, when y; € 8, that is

y’i = S+3.i(z,-—8), A‘t g O,ZieA.

By substituting sequence {y,}{° for its subsequence, if necessary, we have
two cases.

Case 1. The sequence {z;)?° converges, z; - 2. Then z € cl4 and the
sequence {1,} also converges, A; > 12 0. From this y=s+4(z—3) and,
as in &),

w = p(s—x)+phz—p)+pAp—8);

this timg under the condition z € cl4. But, by Lemma 1 a), z—p € cone
(p,4) and hence, by a) of this Lemma, w € cone(z, S).
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Case 2. The sequence {z;};° diverges to infinity and the sequence of
rays [p,z;» converges to a ray ! € O+A. In this case 1; > 0,42, >z €l,
y=8+z and w=puz+u(s—x). By Lemma 2, uz € cone(p,4) and, by a)
of this Lemma, w € cone (x, §) again.

LeMma 4. Let S=sh(s,4), z € S\ {s}, P=An[s,x).

a) If e 8,, thentiP < A,.
b) If x € 8, and whenever it is the case that P consists of one point, this
point is regular, then TiP < A,

Proor. Let P consist of more than one point and let p eriP. By
Lemma 3 a),
cone(x,S) = cone(p,4)

and therefore x € 8, implies p € 4, that is a) is true. Moreover,
cone(p,S) = cone(p,4)

and this together with A < S gives u4(p) 2 ug(p). Therefore if ug(x)=0,
then pg(p)=0 and consequently u ,(p)=0, that is, b) is true.
Now let P={p}. Then I, —1 ¢ cone(p,4), where I=[0,s—p). Since

cone (@, 8) = cone(p,4)+1+(-1),

the closedness of cone(p,A) implies the closedness of cone(x,S) (see
[2], 18). Hence a) is true. Assume that pe A ,nAg. Then cone(p,4)
is closed and with I,—7 ¢ cone(p,4) it easily implies ug(x) >0, that is,
b) is true.

Whether or not the converse proposition holds is an interesting ques-
tion. The answer to it depends on regularity.

THEOREM 1. Let n2 3, the set A < &, 18 convex, y € A and moreover

i) the cone O+A does not contain an (n— 2)-dimensional subspace;
i) y € 4p.

Then there exists a point s € A such that (s,y) < Syg for S=sh(s,4).

Proor. Without loss of generality, let y=0.

1) It is sufficient to consider the case of the pointed cone O+A4. Indeed,
if & <= O+A, then, n>3 and, by Lemma 2, there exists an interval
(u,v) < &, such that O e (u,0) < 4. If §,=&,+&,_, and B=4AnE,1



ON THE SHADOWS AND THE SECTIONS OF CONVEX SETS 311

then for the set B = &, _; and its point 0, all the conditions of Theorem 1
hold. Therefore, there exists a point s € B=&,_; \ ¢l B such that (s,0) <
8’1z for 8'=sh(s,B). Since &, < 0+4,clB=clAné&,_; and therefore
s € A. Further, from

S’ = sh(s,4)né,_; and (s,0) = 8

(by 1°) we get (s,0> < sh(s,4)g.

2) If a point s satisfies Theorem 1 and L is a straight line containing
0 and s, then every point of Ln 4 also satisfies Theorem 1.

3) Denote cone(0,4) by C and let ! be a ray such that { & C and
l < clC. There exists a supporting subspace &,_, of 4 at point 0 con-
taining I (see e.g. [3, Theorem 11.3]). Denote by &,* the open half-space
associated with &,_; such that 4 < &,tué&,_,. Let B=4Ané&,_,. Since
B,l = &,_, and Bnl= {0}, there exists in &,,_, a subspace &,_, separating
Band!. Denote by &;_; and &,_, two open half-spaces in &,_, associated
with &,_, such that B < &;}_,U&,_,.

4) Let I ¢ &,_,, that is, I = &, _,. It is clear that An&,_,+D. Let

sedAné&,., and xe(s,0) =8 =sh(s,4).

By Lemma 3a),
cone(x,8) = C+[0,—s)+[0,8).

Hence cone(z,S) = &,7U&;_,U&,_,, thatis, ! & cone(x,S). At the same
time, I < c¢lC < clcone(w,8), that is, (s,0) = §;. By Lemma 3b),
(5,0 < Sig.

5) Let case 4) be impossible, that is, I = &,_, for every choise &,_,
and &,_,. In particular, this means that ! < ¢lC" for C'=cone(0,B),
from which 0 € B,g. The rest of the proof will be carried out by induction
in n. First let n be greater than 3. In this case, the set B of &,_, and its
point 0 satisfy the conditions of Theorem 1, and then, by the induction
hypothesis, there exists a point s € B=&,_,\ c1B such that

(8,0 = 8,z for &' =sh(s, B).

On the straight line L=[0,s)U[0,—s) there exists a point p such that
pe A. By 2), p satisfies Theorem 1 for B = &,_, and its point 0, too.
As in 1), it is easy to verify that p satisfies the theorem for 4 < &,
and its point 0.

6) For completion of the inductive proof, there remains the conside-
ration of the case 5) for n= 3. This means that for any choice of supporting
subspace &,, there exists a unique subspace &, separating B and I, and
!l = &, holds. In particular, it implies dim B =2. Let

s€e é’lnl, S = sh(s,4).
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Let us ascertain that (s,0) < S,p. Assume for z € (s,0) that cone(z,S)
is closed. Then, since
cone(xz,8) = C+&,,

cone(x,S) is a dihedral angle one side I of which coincides with &,+
and the other I’ is different from &,~. Let &,’ be any subspace contain-
ing &, and passing between I and &,~. Then &,’ is a supporting subspace
of A at point 0and ! < &,’, thatis, for &, case 4) holds (since dim(4né&y’)
=1). This is a contradiction. With Lemma 3b), it gives (s,0) < S;z.
The theorem is thus proved.

It is easy to give an example showing that without regularity, Theo-
rem 1 fails.

In addition to the theorem, note that if 0 € A,u4, and therefore, by
Lemma 1f), an interval (0,u) < A,y exists, then, by choosing s € An[0,
—u), we have (5,00 < Syg.

Let y+s and y esh(s,4)y. It is easy to verify that [s,ydnd < Ay.
The converse proposition looks more intricate, but it can be proved by
imitation of the proof of Theorem 1.

THEOREM 2. Withn>3, set A < &, convex and y € A let

i) coneO+A4 contain no (n— 2)-dimensional subspace;
ii) y € Ay, that is, there exists (y,u) < clAN\A4.

Then there exists a point s € A such that for S=sh(s, A)

etther [s,y) < Sy
or (s,4) < S;g and (y,u) < (cl4),.

Under the conditions of Theorem 1 and 2, if point s is relegated to
infinity along straight line L containing y and s, we get a special case
of the shadow, which will be denoted by sh (L, A4) (it is obvious sh(L,4)=
A+ (L-y)). For this shadow, Theorems 1 and 2 remain true. Its connec-
tion with a special case of projection is obvious. The general case of
projection possesses a certain peculiarity. In particular, the condition i)
of Theorems 1 and 2 is not essential. The following is simply just one
more version of Theorem 1.

TraEOREM 3. If n2 3 and the set A <= &, 18 convex, then there exists a
projection A of the set A such that:

a) if y € A, then ny € (wd)sg;
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b) if A is not closed, i.e. a point x € cl A\ A exists, then
either nx € cl(md)\nd, or nxe (wd)g;

¢) if A is a non-closed cone, then nAd is also non-closed.

The above specifies in more exact detail the results of [1, §4].
Note the following corollary of Theorem 1.

CorROLLARY 1. If n> 4,coneC < &, is closed, convex and non-polyhedral,
then there exists a representation &, = &1+ &, such that a linear projection
nC of cone C onto &, parallel to &, is closed an non-polyhedral.

Proor. It is sufficient to examine the case of pointed coneC. Let IT
be a hyperplane (0 & IT) such that A=CnII is compact. Then A4 is
non-polyhedral; more exactly

Ay=90, A, 0.

Let y € A,. According to Theorem 1, there exists a point s € [T\ 4 such
that (s,y) = S; where S=sh(s,4), that is, the cone S is closed an non-
polyhedral. Let &,=[0,8)u[0,—s) and let &,_, be the subspace parallel
to II. It is easy to check that xC =sh(s,A4)—s.

This corollary, together with 18 from [2] and point 3) of Theorem 3
adds details to the results related to Mirkil’s theorem [4] (see e.g., [1]).

CoroLLARY 2. If n23,C < &, is a convex closed non-polyhedral cone
and k is an integer, 2k < n—1, then there exist a representation

gn = é’ll+é”12_i_ e +é”1n—2+gz

such that for the sequence of comes Cl=mC,C?=m,C",...,Ck=m k1,
e, On2=g  O"-3, where m; is projection onto &/ 4 ...+ &2 8,
parallel to &%, we have CL,C%, .. .,C% 1 closed and C¥, . . .,C"~% non-closed.

2. On sections.

The point classification given in [2] is such that the type of point can
only increase under section (see 1°). It is natural to ask whether it is possible
to maintain the type of a point under section by proper choice of the
cutting hyperplane. Whenever the point is not extreme, the answer is
positive (see 2°). In general, it remains positive only for ¢+2. More
Precisely, the essence of this section is given in the following Theorem.



314 Z. WAKSMAN

THEOREM 4. Let A < &, be convex, dimA =n and y € A,.

a) ifi=1and n = 3, then there exists a hyperplane IT such that y € (AnII),

b) if i=3 and n = 4, then there exists a hyperplane IT such that y € (AnIl),

c) For every n = 3 there exists a convex compact set A with a point a € 4,
such that a & (AnIl), for any hyperplane I1.

The following lemma prepares the way for construction of an example
which proves c).

Levma 5. Let B® be a ball in &,(n=3),S=bdB%ye 8. There exist
sequences {y*}7° < 8 of points and {U*}P° of their neighbourhoods such that:

a) y* -y,

b) UknUP = @ for k + p (and hence sup, y|ly — x| > 0 with k - ),

¢) every hyperplane containing y meets only finitely many neighbourhoods
U~

Proor. Choose in &, an orthonormal coordinate system with the origin
at y and axis & passing through the ball’s center, such that the equation
of §is

(E1—7)P+ 20082 =12,
where r is the radius of §.

For positive », define positive functions g,(»),s=2,3,...,n—1, such
that these functions g;(») tend monotonically to zero together with v,
and in addition
1) v = o{es(r) ea(»)" - - - *Cna(¥)) -

For every value of the parameter », define the hyperplanes

Pp)={reé,: —&+v(+...+&,) =0},

Qi(v) = g€ &, —0i¥)- 6,4+ (Epat ... +&,) = 0},
t=2,...,m—1.
Define

E,t={xeb,: & >0,4=1,...,n}, P+»)=P(né&,*,
Q:*(») = Q)néE,t, THr) = P+(»)n@Qgt(»)n...nQ_1(v) .
We shall show that for every hyperplane
II={zeé,: pbit+ ...+ pép = 0}
there exists »,> 0 such that

2) IInT+(») = @ for every O<v<w,.
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Assume that x € T+(v) with &,,...,&, the coordinates of z. It is easily
seen that
1
&b =, S = i=2,...,n—1,
) Gt+...+ 6, St & e

54-_575, = (1+§;:7)>'“(1+é?1(15) i=4,...,n.

From this and (1) it follows that

. & .
lm, -+ =0 i=3,...m,
T L tE,
(4) ;
lim, g = §=2,...,0~1.
St ..+,
Let py=...=p;_1=0,p,% 0,k <n (the case k=n is trivial). Define

P = MaXy 140, P4l -
If x € IT also, then

[P1é1)Crart - oo +E0) + i) Gpia+ .- - HE)ISD.

On the other hand, from (4) it follows that this inequality fails for every
v small enough. This contradiction proves equation (2).
Note that for »" & ",

Q0 )INQ(v') =@ and PHy')nPH(r') = Q.
Define

P+0,1") = UoayerPH(v) = e &t 1 =&+ (G+. .. +&,)>0}
and
Q") = Upayer@itlv)  for v <o’
Fix a sequence »'>»2> ... - 0 and define
Yk P+(0, ,,k+1)n[n?=—22 Q i+(”k+1» ,,k)] .

Taking into account (3) and the monotonicity of g;(»), from (2) one
obtaing W*nJT=@ for k large enough (it suffices to take % such that
> 54, v, from (2)).
We now show that ¥*nS8+®@ for all k. Fix an arbitrary 4,,...,2,4
such that
A< ¥Rl and R < Ay < o
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fori=2,...,n—1. It is easy to choose successively the positive numbers
& n1 . o, Ep, & such that for the point x=(&;,...,&,) the conditions

€€ QA1) - - -, % € Qydy),® € P(4y)

hold, and therefore x € ¥%. For « >0 small enough, point «-z is in the
set P*nintB° It is clear that for 0<¢,"<waé, every point ' = (&,
ok, . . .,0,) lies in Wk, For appropriate &' also 2’ € 8, that is, P*n S+ @.

Since the sets ¥* are open and disjoint and since the distance between
y and ¥* tends to zero with k& — oo, the sequences {y*}{° and {U*}° satis-
fying the Lemma can be constructed easily by arbitrarily choosing
y* e P&n S and Uk < Pk,

A three dimensional example is shown in Fig.1.

y vins

Q)
Q07
Q0"

Fig. 1.

We continue the reasoning of Lemma 5. For every k=1,2,... choose
a point 2¥ € U¥\ B® such that B*¥ = U* where B*=conv(BoU{z*})/B°.
This choice implies that: 1) properties a) and b) from Lemma 5 hold for
sets B¥, 2) the set B=UZ_, B, is a convex compact. Denote by H,(k=1,2,
...) the hyperplane tangent to B° at the point y*. Consider &, together
with the construction described above as a hyperplane in &,,,. Let a
point @ € &,,, be at a distance go>0 from &,. For every k=1,2,...
choose a point u* € [a,2*] such that g, >0, > 09> . . . - 0 where g = |la — u¥|

Let IT%(k=1,2,...) be the hyperplane in &,,; containing H, and u*
and IT,’ be a closed half-space associated with IT, and containing the
point a. Define

4 = conv(Bu{eh)n[Nr= 111
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A is a convex compact. In addition a € 4, {u*¥}°> = 4 and the set [a,4) =
[a,B) and therefore is closed. On the other hand,

limy o014 N[, 0] = 0.
Thus, a € 4,.
Define
A%=conv(B°u{a}), Ak¥=conv(B*u{a})nIl,’ fork=1,2,...,

C* = [a,A%) for k=0,1,2,...
and note that
4 = Up,ds, C* = [0,B%)
and
[a,4) = J,C%.
Since
inf{|ldnfa,z)|| : xe Ak, z+a} =0, (k=0,1,2,...),

every subsequence {I}° of rays from [a,A4) for which lim, , [l4nl=0
possesses common rays with the set C* for infinitely many values of k.

Now let II be a hyperplane in &, .,acll. If yelIl, then by 1),
IInC*+ @ only for finitely many values of k. In the case y ¢ IT it is
even more obvious. Thus u ,,,(e) >0 always holds, that is, a ¢ (4 nIT),.

LeEMMA 6. With n 2 8,4 < &, convex, dimA=n and yeA,, if lis a
ray such that 1 & [y,A), | < cl{y,A) and a s a point from int A, then
y € (AnII),, where IT is any hyperplane containing | and a.

Proor. Without loss of generality, let y=0. There exists a subsequence
of points {y,}* < A\ {0} such that y, -0 and [, > for l,=[0,y,).
Let the sequence {y,} lie to one side of IT and let e be a vector ortho-
gonal to IT and lying on the same side. The point y,, can be represented
in the form
Yo = b+ dit e,
where b is a fixed point of the ray I, d;, € IT and dj 1 b,v;>0,5,>0,
lldell/vs, — 0 and B/v, — O.

There exists « >0 such that a—ae € 4. Let y,/=IIn[a—ae,y,]. It is
clear that y,’ € B\ {0} for B=AnII. It is easy to verify that [’ —>1
for I’ =[0,y,'). Hence 0 € B,. The Lemma is proved.

This implies the proposition a) of Theorem 4.
Moreover, y € A, implies y € Biy.

Lemma 7. With n24,4 < &, convex, dimA=n and ye A, if an in-
terval (y,u) < A, exists, then a hyperplane IT exists such that (y,u) <
(Anm),
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Proor. Assume that z e (y,u),l ¢ [2,4) but I < cl[z,4). Let a be in
int 4 and IT be a hyperplane containing a,l and (y,u). Since

cone(x,A4) = cone(z,4) for every x € (y,u)

(see [2], 9), the hyperplane IT satisfies the conditions of Lemma 6 for
every z € (y,u), and hence (y,u) < (AnIl);. The Lemma is proved.

This Lemma implies the proposition b) of Theorem 4 (see 39.) As to the
point y € 4,, Lemma 7 asserts that for a certain hyperplane I1, y e
(AnIl),u(Anll);. In addition, it follows that ye 4, iff ye(4Anll), for
every hyperplane IT containing y (see [1]).

3. Appendix. On an example of V. Klee.

The results of section 1 mean, in fact, that if non-polyhedrality of a
convex set is revealed locally, that is, 4 \ A,+ @, then it can be detected
by a shadow. Now let 4 be nonpolyhedral, but 4 = 4,, that is, let 4 be
boundedly polyhedral [1]. It is easy to give an example of an 4 for which
sh(s,A4) is polyhedral for every s € &, \ 4. Namely, each continuous set
[6] 4 with A;=A is such (it is easy to show that 4 is continuous iff for
every point s and appropriate neighbourhood P of s, sh(s,4)=sh(s,4nP).

It is non-trivial to prove such a possibility for projection, a special
case of shadow. Such an example was given in [1] in the form of a com-
plicated existence theorem. Here we give a much simpler example.

Let us give an example of convex compact set 4 < &, and its support
hyperplane II such that:

1) 4,+90,4, <« II,LA\II < A,,A, = 4; = O;

2) Every point s satistying Theorem 1 is outside 77, that is, sh(s,4)
is polyhedral for each s IT\ 4;

3) for every point a € 4,, and every ray !l < cl[a,4)\[a,4) the re-
lation ! < II holds.

It will suffice to restrict ourselves to &5 (as in [1]).
Let the coordinate system in &, be fixed such that £2,,0,,02,; are
coordinates of an arbitrary point. Let

Q% = (0,0,0) @* = (1/s%,1/5,0) for s=1,2,...
and
Px = (0,1/k,1/k?) for k=1,2,....
Let
4 = conv{Q’@,...,PLP?...)



ON THE SHADOWS AND THE SECTIONS OF CONVEX SETS 319

(see Fig. 2). This 4 is a convex compact and satisfies the condition
1)-3) if I7 is the hyperplane 2,=0.

Fig. 2.

It is easy to understand, by interpreting IT as an infinitely distant
hyperplane, that a set 4 satisfying the conditions 1)-3) gives the sought-
after example. Concretely, let & be the projective transformation

0 91/93’ Wy = -92/-93’ g = 1/93 .

It transforms theset U={z : 0<2,<1}intotheset V={z: 1S w;< + oo}
such that convex set 4 < U is transformed into the convex set #4 < V
and the type of every point remains unchanged. Under the transforma-
tion 2, IT changes into the infinitely distant hyperplane, the point P¥(k=
L,2,...) turns into p*=(0,k,%2), the point @%(s=0,1,2,...) is identified
with the direction I#=[0,q*), where

¢° = (0,0,1) and ¢*= (1/s%1/s,1) for s=1,2,....

Therefore 24 is the set with ex 24 = {p!,p?, ...} and O+24 is generated
by the rays 19,01,12,... (see Fig. 3). It is also easy to verify by direct
computation that all projections of 24 are polyhedral.
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