ON THE SHADOWS AND THE SECTIONS OF CONVEX SETS

Z. WAKSMAN

Abstract.

The paper is a continuation of research into the four point types of convex sets of \mathscr{E}_n introduced in [2]. Transference of the questions relating to this classification onto points exterior to the convex set are examined in section 1. The possibility of maintaining the point type under cutting of a convex set by hyperplane is examined in section 2. The terms of section 1 turn out to be convenient (section 3) for construction of the simple example of a boundedly polyhedral set, all of whose projections are polyhedral. The existence of such sets was proved by V. Klee [1].

Introduction.

Let us recall the main concepts of [2]. Denote by $[x,y\rangle$ the ray emanating from point x towards point y (in case x=y, $[x,y\rangle=\{x\}$). For convex $A \subseteq \mathscr{E}_n$ and $x \in A$ let

$$[x,A\rangle = \bigcup_{y\in A}[x,y\rangle, \quad \operatorname{cone}(x,A) = [x,A\rangle - x = [0,A-x\rangle$$

and

$$\mu_A(x) \,=\, \inf \left\{ \|A \,\cap\, [x,y\rangle\|: \,\, y \in A \,\smallsetminus\, \{x\} \right\}$$

(or $\mu_A(x) = +\infty$ in case $A \setminus \{x\} = \emptyset$) Discriminate between the points of set A by the value of the function $\mu_A : A = A_0 \cup A_{\pm 0}$, where

$$A_0 = \{x \in A : \mu_A(x) = 0\}, \quad A_{\pm 0} = \{x \in A : \mu_A(x) > 0\}.$$

A more detailed classification uses the structure of the cone (x, A). Namely, the four point types appear as follows:

$$A_1 = \{x \in A : \operatorname{cone}(x, A) \text{ is not closed}\}$$

(in the case of closed $A, A_1 \subset A_0$),

$$A_2 = A_0 \setminus A_1 = \{x \in A : \mu_A(x) = 0, \text{ cone } (x, A) \text{ is closed} \},$$

 $A_4 = \{x \in A : \text{ cone } (x, A) \text{ is polyhedral} \} \quad (A_4 \subset A_{+0})$

Received October 6, 1975.

and

$$A_3 = A_{+0} \setminus (A_1 \cup A_4)$$

= $\{x \in A : \mu_A(x) > 0, \text{ cone}(x, A) \text{ is closed and not polyhedral}\}$

From among the propositions in [2] note the following:

- 1°. if $x \in A_i (i=1,2,3,4)$, hyperplane Π contains x, $B = A \cap \Pi$ and $x \in B_i$, then $i \le j$ and $\mu_A(x) \le \mu_B(x)$;
- 2°. if $x \in (u,v) \subset A$, $(u,v) \cap \Pi = \{x\}$ and $x \in A_i (i = 1,2,3,4)$, then $(u,v) \subset A_i$ and $x \in (A \cap \Pi)_i$; in particular, for every face F of A, ri F lies entirely in one of the sets A_i ;
- 3°. $\operatorname{cl} A_1 = A_1 \cup A_2 \cup A_3$ and $\operatorname{cl}(A_1 \cap A_0) \supset A_2 \cup A_3$, moreover, for every point $x \in \operatorname{cl}(A_1 \cap A_0) \setminus (A_1 \cap A_0)$ there exists an interval $(x, u) \subseteq A_1 \cap A_0$.

1. Shadow of convex sets.

For any point $s \in \tilde{A} = \mathscr{E}_n \setminus \operatorname{cl} A$ we shall call set $\bigcup_{y \in A} [s, y]$ the shadow of set A with respect to the point s and denote it by $\operatorname{sh}(s, A)$. It is natural to presume that the type of the ray (s, y) with respect to $\operatorname{sh}(s, A)$, where $y \in A$, preserves certain information about the type of y with respect to A.

We first define one concept. Let us say that point $a \in A$ is a non-regular point of A, if there exists an interval (a,b) such that $(a,b) \subset \operatorname{cl} A \setminus A$. Otherwise it is regular. Denote

$$A_{\mathbf{R}} = \{x \in A : x \text{ is regular}\}, \quad A_{\mathbf{N}} = \{x \in A : x \text{ is non-regular}\},$$

 $\begin{array}{ll} A_{1\mathrm{R}}\!=\!A_1\cap A_{\mathrm{R}}. & \text{It is clear that} & A_{\mathrm{N}}\subseteq A_1, A_1\cap A_{+0}\subseteq A_{\mathrm{N}}, A_{1\mathrm{R}}\subseteq A_0, \\ A_{1\mathrm{R}}\cup A_{\mathrm{N}}\!=\!A_1. & \end{array}$

The simplest example of a non-regular point is the vertex of any convex non-closed cone.

In the sequel, we shall use freely the following simple facts.

LEMMA 1. a) $x \in A_R$ iff cone(x, A) = cone(x, cl A);

- b) if $x \in A_R$ and $x \notin A_4$, then $x \notin (clA)_4$;
- c) if clA is a boundedly polyhedral set (that is, $(clA)_4 = clA$), then $A \setminus A_4 \subseteq A_N$;
- d) if I is an interval of A (open or not), $x \in riI$ and $x \in A_N$, then $I \subseteq A_N$;
- e) under the conditions of d), if Π is a hyperplane and $I \cap \Pi = \{x\}$, then $x \in (A \cap \Pi)_N$;
- f) if $a \in A_2 \cup A_3$, then an interval $(a,b) \subseteq A_{1R}$ exists.

The ray l = [0, p) is called a direction of recession in A if $x + l \subset A$ for $x \in riA$. The recessive directions of A form a convex cone which we denote by O+A as in [3]. (Our definition of recessive cone, however, differs slightly from that given in [3] in that O+(clA) in the sence of [3] coincides with our O+A). Recessive cone O+A is closed ([3], theorem 8.2).

LEMMA 2. If $a \in A_R$, then $O+A \subset cone(a,A)$.

Lemma 2 is obvious.

LEMMA 3. Let $S = \operatorname{sh}(s, A)$ and $x \in S \setminus \{s\}$, that is $x \in (s, p)$ where $p \in A$. Then

- a) cone(x, S) = cone(p, A) + [0, s-p] + [0, p-s];
- b) if $p \in A_R$, then $x \in S_R$.

PROOF. a) If $w \in \text{cone}(x, S)$, then $w = \mu(y - x)$, $\mu \ge 0, y \in S$. The last means that

$$y = s + \lambda(z - s), \quad \lambda \ge 0, z \in A.$$

Finally

$$w = \mu(s-x) + \mu\lambda(z-p) + \mu\lambda(p-s) .$$

This proves inclusion \subseteq . The converse inclusion is obvious.

b) By Lemma 1a), it is sufficient to prove that

$$cone(x, cl S) = cone(x, S).$$

Let w be in cone $(x, \operatorname{cl} S)$, that is $w = \mu(y - x), \mu \ge 0$ and $y \in \operatorname{cl} S$. The last relationship means that $y = \lim_{t \to \infty} y_t$, when $y_t \in S$, that is

$$y_i = s + \lambda_i(z_i - s), \quad \lambda_i \ge 0, z_i \in A.$$

By substituting sequence $\{y_i\}_{1}^{\infty}$ for its subsequence, if necessary, we have two cases.

CASE 1. The sequence $\{z_i\}_1^{\infty}$ converges, $z_i \to z$. Then $z \in cl A$ and the sequence $\{\lambda_i\}_1^{\infty}$ also converges, $\lambda_i \to \lambda \ge 0$. From this $y = s + \lambda(z - s)$ and, as in a),

$$w = \mu(s-x) + \mu\lambda(z-p) + \mu\lambda(p-s);$$

this time under the condition $z \in clA$. But, by Lemma 1 a), $z - p \in cone(p,A)$ and hence, by a) of this Lemma, $w \in cone(x,S)$.

CASE 2. The sequence $\{z_i\}_1^{\infty}$ diverges to infinity and the sequence of rays $[p,z_i]$ converges to a ray $l \in O^+A$. In this case $\lambda_i \to 0, \lambda_i z_i \to z \in l$, y=s+z and $w=\mu z+\mu(s-x)$. By Lemma 2, $\mu z \in \text{cone}(p,A)$ and, by a) of this Lemma, $w \in \text{cone}(x,S)$ again.

LEMMA 4. Let $S = \operatorname{sh}(s, A)$, $x \in S \setminus \{s\}$, $P = A \cap [s, x)$.

- a) If $x \in S_1$, then $riP \subseteq A_1$.
- b) If $x \in S_0$ and whenever it is the case that P consists of one point, this point is regular, then $riP \subseteq A_0$.

PROOF. Let P consist of more than one point and let $p \in ri P$. By Lemma 3 a),

$$cone(x, S) = cone(p, A)$$

and therefore $x \in S_1$ implies $p \in A_1$ that is a) is true. Moreover,

$$cone(p, S) = cone(p, A)$$

and this together with $A \subset S$ gives $\mu_A(p) \ge \mu_S(p)$. Therefore if $\mu_S(x) = 0$, then $\mu_S(p) = 0$ and consequently $\mu_A(p) = 0$, that is, b) is true.

Now let $P = \{p\}$. Then $l, -l \neq \text{cone}(p, A)$, where l = [0, s - p). Since

$$cone(x, S) = cone(p, A) + l + (-l),$$

the closedness of cone(p,A) implies the closedness of cone(x,S) (see [2], 18). Hence a) is true. Assume that $p \in A_{\pm 0} \cap A_{\mathbb{R}}$. Then cone(p,A) is closed and with $l, -l \notin \text{cone}(p,A)$ it easily implies $\mu_S(x) > 0$, that is, b) is true.

Whether or not the converse proposition holds is an interesting question. The answer to it depends on regularity.

THEOREM 1. Let $n \ge 3$, the set $A \subset \mathcal{E}_n$ is convex, $y \in A$ and moreover

- i) the cone O+A does not contain an (n-2)-dimensional subspace;
- ii) $y \in A_{1R}$.

Then there exists a point $s \in \tilde{A}$ such that $(s,y) \subset S_{1R}$ for $S = \operatorname{sh}(s,A)$.

PROOF. Without loss of generality, let y = 0.

1) It is sufficient to consider the case of the pointed cone O+A. Indeed, if $\mathscr{E}_1 \subset O+A$, then, n>3 and, by Lemma 2, there exists an interval $(u,v) \subset \mathscr{E}_1$ such that $0 \in (u,v) \subset A$. If $\mathscr{E}_n = \mathscr{E}_1 + \mathscr{E}_{n-1}$ and $B = A \cap \mathscr{E}_{n-1}$,

then for the set $B \subset \mathscr{E}_{n-1}$ and its point 0, all the conditions of Theorem 1 hold. Therefore, there exists a point $s \in \tilde{B} = \mathscr{E}_{n-1} \setminus \operatorname{cl} B$ such that $(s,0) \subset S'_{1\mathbf{R}}$ for $S' = \operatorname{sh}(s,B)$. Since $\mathscr{E}_1 \subset 0^+A$, $\operatorname{cl} B = \operatorname{cl} A \cap \mathscr{E}_{n-1}$ and therefore $s \in \tilde{A}$. Further, from

$$S' = \operatorname{sh}(s, A) \cap \mathscr{E}_{n-1}$$
 and $(s, 0) \subseteq S'_{1R}$

(by 1°) we get $(s,0) \subseteq \operatorname{sh}(s,A)_{1R}$.

- 2) If a point s satisfies Theorem 1 and L is a straight line containing 0 and s, then every point of $L \cap \tilde{A}$ also satisfies Theorem 1.
- 3) Denote cone (0,A) by C and let l be a ray such that $l \not\in C$ and $l \subset \operatorname{cl} C$. There exists a supporting subspace \mathscr{E}_{n-1} of A at point 0 containing l (see e.g. [3, Theorem 11.3]). Denote by \mathscr{E}_n^+ the open half-space associated with \mathscr{E}_{n-1} such that $A \subset \mathscr{E}_n^+ \cup \mathscr{E}_{n-1}$. Let $B = A \cap \mathscr{E}_{n-1}$. Since $B, l \subset \mathscr{E}_{n-1}$ and $B \cap l = \{0\}$, there exists in \mathscr{E}_{n-1} a subspace \mathscr{E}_{n-2} separating B and l. Denote by \mathscr{E}_{n-1}^+ and \mathscr{E}_{n-1}^- two open half-spaces in \mathscr{E}_{n-1} associated with \mathscr{E}_{n-2} such that $B \subset \mathscr{E}_{n-1}^+ \cup \mathscr{E}_{n-2}$.
 - 4) Let $l \notin \mathscr{E}_{n-2}$, that is, $l \subset \mathscr{E}_{n-1}^-$. It is clear that $\widetilde{A} \cap \mathscr{E}_{n-2} \neq \emptyset$. Let $s \in \widetilde{A} \cap \mathscr{E}_{n-2}$ and $x \in (s,0) \subset S = \operatorname{sh}(s,A)$.

By Lemma 3a),

cone
$$(x, S) = C + [0, -s\rangle + [0, s\rangle$$
.

Hence cone $(x,S) \subset \mathscr{E}_n^+ \cup \mathscr{E}_{n-1}^+ \cup \mathscr{E}_{n-2}$, that is, $l \not\subset \operatorname{cone}(x,S)$. At the same time, $l \subset \operatorname{cl} C \subset \operatorname{cl} \operatorname{cone}(x,S)$, that is, $(s,0) \subset S_1$. By Lemma 3b), $(s,0) \subset S_{1R}$.

5) Let case 4) be impossible, that is, $l \subset \mathscr{E}_{n-2}$ for every choise \mathscr{E}_{n-1} and \mathscr{E}_{n-2} . In particular, this means that $l \subset \operatorname{cl} C'$ for $C' = \operatorname{cone}(0,B)$, from which $0 \in B_{1R}$. The rest of the proof will be carried out by induction in n. First let n be greater than 3. In this case, the set B of \mathscr{E}_{n-1} and its point 0 satisfy the conditions of Theorem 1, and then, by the induction hypothesis, there exists a point $s \in \tilde{B} = \mathscr{E}_{n-1} \setminus \operatorname{cl} B$ such that

$$(s,0) \subset S'_{1R}$$
 for $S' = \operatorname{sh}(s,B)$.

On the straight line $L = [0, s) \cup [0, -s)$ there exists a point p such that $p \in \tilde{A}$. By 2), p satisfies Theorem 1 for $B \subset \mathscr{E}_{n-1}$ and its point 0, too. As in 1), it is easy to verify that p satisfies the theorem for $A \subset \mathscr{E}_n$ and its point 0.

6) For completion of the inductive proof, there remains the consideration of the case 5) for n=3. This means that for any choice of supporting subspace \mathscr{E}_2 , there exists a unique subspace \mathscr{E}_1 separating B and l, and $l \subset \mathscr{E}_1$ holds. In particular, it implies $\dim B = 2$. Let

$$s \in \mathscr{E}_1 \cap \widetilde{A}, \quad S = \operatorname{sh}(s, A)$$
.

Let us ascertain that $(s,0) \subset S_{1R}$. Assume for $x \in (s,0)$ that cone(x,S) is closed. Then, since

$$cone(x,S) = C + \mathscr{E}_1,$$

cone (x,S) is a dihedral angle one side Γ' of which coincides with \mathscr{E}_2^+ and the other Γ'' is different from \mathscr{E}_2^- . Let \mathscr{E}_2' be any subspace containing \mathscr{E}_1 and passing between Γ'' and \mathscr{E}_2^- . Then \mathscr{E}_2' is a supporting subspace of A at point 0 and $l \subset \mathscr{E}_2'$, that is, for \mathscr{E}_2' case 4) holds (since $\dim(A \cap \mathscr{E}_2') = 1$). This is a contradiction. With Lemma 3b), it gives $(s,0) \subset S_{1R}$. The theorem is thus proved.

It is easy to give an example showing that without regularity, Theorem 1 fails.

In addition to the theorem, note that if $0 \in A_2 \cup A_3$ and therefore, by Lemma 1f), an interval $(0,u) \subseteq A_{1R}$ exists, then, by choosing $s \in \tilde{A} \cap [0, -u)$, we have $(s,0) \subseteq S_{1R}$.

Let $y \neq s$ and $y \in \operatorname{sh}(s,A)_{\mathbb{N}}$. It is easy to verify that $[s,y) \cap A \subseteq A_{\mathbb{N}}$. The converse proposition looks more intricate, but it can be proved by imitation of the proof of Theorem 1.

THEOREM 2. With $n \ge 3$, set $A \subset \mathscr{E}_n$ convex and $y \in A$ let

- i) cone O+A contain no (n-2)-dimensional subspace;
- ii) $y \in A_N$, that is, there exists $(y, u) \subset \operatorname{cl} A \setminus A$.

Then there exists a point $s \in \tilde{A}$ such that for $S = \operatorname{sh}(s, A)$

either
$$[s,y\rangle \subseteq S_N$$

or $(s,y)\subseteq S_{1R}$ and $(y,u)\subseteq (\operatorname{cl} A)_1$.

Under the conditions of Theorem 1 and 2, if point s is relegated to infinity along straight line L containing y and s, we get a special case of the shadow, which will be denoted by $\operatorname{sh}(L,A)$ (it is obvious $\operatorname{sh}(L,A) = A + (L-y)$). For this shadow, Theorems 1 and 2 remain true. Its connection with a special case of projection is obvious. The general case of projection possesses a certain peculiarity. In particular, the condition i) of Theorems 1 and 2 is not essential. The following is simply just one more version of Theorem 1.

THEOREM 3. If $n \ge 3$ and the set $A \subset \mathcal{E}_n$ is convex, then there exists a projection πA of the set A such that:

a) if $y \in A_{1R}$, then $\pi y \in (\pi A)_{1R}$;

- b) if A is not closed, i.e. a point $x \in clA \setminus A$ exists, then either $\pi x \in cl(\pi A) \setminus \pi A$, or $\pi x \in (\pi A)_{1R}$;
- c) if A is a non-closed cone, then πA is also non-closed.

The above specifies in more exact detail the results of [1, §4]. Note the following corollary of Theorem 1.

COROLLARY 1. If $n \ge 4$, cone $C \subset \mathscr{E}_n$ is closed, convex and non-polyhedral, then there exists a representation $\mathscr{E}_n = \mathscr{E}_1 + \mathscr{E}_{n-1}$ such that a linear projection πC of cone C onto \mathscr{E}_{n-1} parallel to \mathscr{E}_1 is closed an non-polyhedral.

PROOF. It is sufficient to examine the case of pointed cone C. Let Π be a hyperplane $(0 \notin \Pi)$ such that $A = C \cap \Pi$ is compact. Then A is non-polyhedral; more exactly

$$A_{\mathbf{N}} = \emptyset, \quad A_{\mathbf{1}} \neq \emptyset.$$

Let $y \in A_1$. According to Theorem 1, there exists a point $s \in \Pi \setminus A$ such that $(s,y) \subset S_1$ where $S = \operatorname{sh}(s,A)$, that is, the cone S is closed an non-polyhedral. Let $\mathscr{E}_1 = [0,s) \cup [0,-s)$ and let \mathscr{E}_{n-1} be the subspace parallel to Π . It is easy to check that $\pi C = \operatorname{sh}(s,A) - s$.

This corollary, together with 18 from [2] and point 3) of Theorem 3 adds details to the results related to Mirkil's theorem [4] (see e.g., [1]).

COROLLARY 2. If $n \ge 3$, $C \subset \mathscr{E}_n$ is a convex closed non-polyhedral cone and k is an integer, $2 \le k \le n-1$, then there exist a representation

$$\mathcal{E}_n = \mathcal{E}_1^{\ 1} \dot{+} \mathcal{E}_1^{\ 2} \dot{+} \ldots \dot{+} \mathcal{E}_1^{n-2} \dot{+} \mathcal{E}_2$$

such that for the sequence of cones $C^1 = \pi_1 C, C^2 = \pi_2 C^1, \ldots, C^k = \pi_k C^{k-1}, \ldots, C^{n-2} = \pi_{n-2} C^{n-3}$, where π_i is projection onto $\mathcal{E}_1^{i+1} + \ldots + \mathcal{E}_1^{n-2} + \mathcal{E}_2$ parallel to \mathcal{E}_1^{i} , we have $C^1, C^2, \ldots, C^{k-1}$ closed and C^k, \ldots, C^{n-2} non-closed.

2. On sections.

The point classification given in [2] is such that the type of point can only increase under section (see 1°). It is natural to ask whether it is possible to maintain the type of a point under section by proper choice of the cutting hyperplane. Whenever the point is not extreme, the answer is positive (see 2°). In general, it remains positive only for $i \neq 2$. More precisely, the essence of this section is given in the following Theorem.

THEOREM 4. Let $A \subseteq \mathscr{E}_n$ be convex, $\dim A = n$ and $y \in A_i$.

- a) if i = 1 and $n \ge 3$, then there exists a hyperplane Π such that $y \in (A \cap \Pi)_1$
- b) if i = 3 and $n \ge 4$, then there exists a hyperplane Π such that $y \in (A \cap \Pi)_3$
- c) For every $n \ge 3$ there exists a convex compact set A with a point $a \in A_2$ such that $a \notin (A \cap \Pi)_2$ for any hyperplane Π .

The following lemma prepares the way for construction of an example which proves c).

LEMMA 5. Let B^0 be a ball in $\mathscr{E}_n(n \ge 3)$, $S = \operatorname{bd} B^0$, $y \in S$. There exist sequences $\{y^k\}_1^{\infty} \subseteq S$ of points and $\{U^k\}_1^{\infty}$ of their neighbourhoods such that:

- a) $y^k \to y$,
- b) $U^k \cap U^p = \emptyset$ for $k \neq p$ (and hence $\sup_{x \in U^k} ||y x|| \to 0$ with $k \to \infty$),
- c) every hyperplane containing y meets only finitely many neighbourhoods U^k .

PROOF. Choose in \mathcal{E}_n an orthonormal coordinate system with the origin at y and axis ξ_1 passing through the ball's center, such that the equation of S is

$$(\xi_1-r)^2+\sum_{i=2}^n\xi_i^2=r^2$$
,

where r is the radius of S.

For positive ν , define positive functions $\varrho_i(\nu), i=2,3,\ldots,n-1$, such that these functions $\varrho_i(\nu)$ tend monotonically to zero together with ν , and in addition

(1)
$$v = o(\varrho_3(v) \cdot \varrho_4(v) \cdot \ldots \cdot \varrho_{n-1}(v)) .$$

For every value of the parameter ν , define the hyperplanes

$$\begin{split} P(\nu) &= \left\{ x \in \mathscr{E}_n : \ -\xi_1 + \nu(\xi_3 + \ldots + \xi_n) \, = \, 0 \right\}, \\ Q_i(\nu) &= \left\{ x \in \mathscr{E}_n : \ -\varrho_i(\nu) \cdot \xi_i + (\xi_{i+1} + \ldots + \xi_n) \, = \, 0 \right\}, \\ i &= \, 2, \, \ldots, n-1 \; . \end{split}$$

Define

$$\mathcal{E}_n^+ = \{ x \in \mathcal{E}_n : \xi_i > 0, i = 1, \dots, n \}, \quad P^+(v) = P(v) \cap \mathcal{E}_n^+ ,$$

$$Q_i^+(v) = Q_i(v) \cap \mathcal{E}_n^+, \quad T^+(v) = P^+(v) \cap Q_2^+(v) \cap \dots \cap Q_{n-1}^+(v) .$$

We shall show that for every hyperplane

$$\Pi = \{x \in \mathscr{E}_n : p_1 \xi_1 + \ldots + p_n \xi_n = 0\}$$

there exists $v_0 > 0$ such that

(2)
$$\Pi \cap T^+(\nu) = \emptyset$$
 for every $0 < \nu < \nu_0$.

Assume that $x \in T^+(v)$ with ξ_1, \ldots, ξ_n the coordinates of x. It is easily seen that

(3)
$$\frac{\xi_1}{\xi_3 + \ldots + \xi_n} = \nu, \quad \frac{\xi_i}{\xi_{i+1} + \ldots + \xi_n} = \frac{1}{\varrho_i(\nu)} \quad i = 2, \ldots, n-1,$$
$$\frac{\xi_1}{\xi_i + \ldots + \xi_n} = \nu \left(1 + \frac{1}{\varrho_3(\nu)} \right) \ldots \left(1 + \frac{1}{\varrho_{i-1}(\nu)} \right) \quad i = 4, \ldots, n.$$

From this and (1) it follows that

(4)
$$\lim_{\nu \to 0} \frac{\xi_1}{\xi_i + \ldots + \xi_n} = 0 \quad i = 3, \ldots, n,$$

$$\lim_{\nu \to 0} \frac{\xi_i}{\xi_{i+1} + \ldots + \xi_n} = \infty \quad i = 2, \ldots, n-1.$$

Let $p_2 = \ldots = p_{k-1} = 0, p_k \neq 0, k < n$ (the case k = n is trivial). Define

$$p = \max_{k+1 < i < n} |p_i|.$$

If $x \in \Pi$ also, then

$$|p_1\xi_1/(\xi_{k+1}+\ldots+\xi_n)+p_k\xi_k/(\xi_{k+1}+\ldots+\xi_n)| \leq p$$
.

On the other hand, from (4) it follows that this inequality fails for every ν small enough. This contradiction proves equation (2).

Note that for $v' \neq v''$,

$$Q_i{}^+(\nu')\cap Q_i{}^+(\nu'') \,=\, \varnothing \quad \text{ and } \quad P^+(\nu')\cap P^+(\nu'') \,=\, \varnothing \ .$$

Define

$$P^+(0,\nu') \,=\, \bigcup_{0<\nu<\nu'} P^+(\nu) \,=\, \big\{x\in \mathscr{E}_n^{\,+}:\, \,-\xi_1+\nu'(\xi_3+\,\ldots\,+\,\xi_n)>0\big\}$$

and

$$Q_i{}^+\!(\nu^{\prime\prime},\nu^\prime) \,=\, \bigcup_{\nu^{\prime\prime}<\nu<\nu^\prime} Q_i{}^+\!(\nu) \quad \text{ for } \nu^{\prime\prime}<\nu^\prime \;.$$

Fix a sequence $v^1 > v^2 > \ldots \rightarrow 0$ and define

$$\Psi^{k} = P^{+}(0, \nu^{k+1}) \cap \left[\bigcap_{i=2}^{n-2} Q_{i}^{+}(\nu^{k+1}, \nu^{k})\right].$$

Taking into account (3) and the monotonicity of $\varrho_i(v)$, from (2) one obtains $\Psi^k \cap \Pi = \emptyset$ for k large enough (it suffices to take k such that $v^k > v_0$, v_0 from (2)).

We now show that $\Psi^k \cap S \neq \emptyset$ for all k. Fix an arbitrary $\lambda_1, \ldots, \lambda_{n-1}$ such that

$$\lambda_1 < v^{k+1}$$
 and $v^{k+1} < \lambda_i < v^k$

316 Z. WAKSMAN

for $i=2,\ldots,n-1$. It is easy to choose successively the positive numbers $\xi_n,\xi_{n-1},\ldots,\xi_2,\xi_1$ such that for the point $x=(\xi_1,\ldots,\xi_n)$ the conditions

$$x \in Q_{n-1}(\lambda_{n-1}), \ldots, x \in Q_2(\lambda_2), x \in P(\lambda_1)$$

hold, and therefore $x \in \Psi^k$. For $\alpha > 0$ small enough, point $\alpha \cdot x$ is in the set $\Psi^k \cap \text{int } B^0$. It is clear that for $0 < \xi_1' < \alpha \xi_1$ every point $x' = (\xi_1', \alpha \xi_2, \ldots, \alpha \xi_n)$ lies in Ψ^k . For appropriate ξ_1' also $x' \in S$, that is, $\Psi^k \cap S \neq \emptyset$.

Since the sets Ψ^k are open and disjoint and since the distance between y and Ψ^k tends to zero with $k \to \infty$, the sequences $\{y^k\}_1^{\infty}$ and $\{U^k\}_1^{\infty}$ satisfying the Lemma can be constructed easily by arbitrarily choosing $y^k \in \Psi^k \cap S$ and $U^k \subset \Psi^k$.

A three dimensional example is shown in Fig.1.

Fig. 1.

We continue the reasoning of Lemma 5. For every $k=1,2,\ldots$ choose a point $z^k \in U^k \setminus B^0$ such that $B^k \subset U^k$ where $B^k = \operatorname{conv}(B^0 \cup \{z^k\})/B^0$. This choice implies that: 1) properties a) and b) from Lemma 5 hold for sets B^k , 2) the set $B = \bigcup_{k=0}^{\infty} B_k$ is a convex compact. Denote by $H_k(k=1,2,\ldots)$ the hyperplane tangent to B^0 at the point y^k . Consider \mathscr{E}_n together with the construction described above as a hyperplane in \mathscr{E}_{n+1} . Let a point $a \in \mathscr{E}_{n+1}$ be at a distance $\varrho_0 > 0$ from \mathscr{E}_n . For every $k=1,2,\ldots$ choose a point $u^k \in [a,z^k]$ such that $\varrho_0 > \varrho_1 > \varrho_2 > \ldots \to 0$ where $\varrho_k = ||a-u^k||$ Let $H^k(k=1,2,\ldots)$ be the hyperplane in \mathscr{E}_{n+1} containing H_k and u^k and H_k be a closed half-space associated with H_k and containing the point a. Define

$$A = \operatorname{conv}(B \cup \{a\}) \cap [\bigcap_{k=1}^{\infty} \Pi_{k'}].$$

A is a convex compact. In addition $a \in A$, $\{u^k\}_1^{\infty} \subset A$ and the set [a, A) = [a, B) and therefore is closed. On the other hand,

$$\lim_{k\to\infty}||A\cap[a,u^k\rangle||=0.$$

Thus, $a \in A_2$.

Define

$$A^0 = \operatorname{conv}(B^0 \cup \{a\}), \quad A^k = \operatorname{conv}(B^k \cup \{a\}) \cap \Pi_k' \quad \text{for } k = 1, 2, \dots,$$

$$C^k = [a, A^k) \quad \text{for } k = 0, 1, 2, \dots$$

and note that

$$A = \bigcup_{k=0}^{\infty} A^k, \quad C^k = [a, B^k]$$

and

$$[a,A\rangle = \bigcup_{k=0}^{\infty} C^k.$$

Since

$$\inf\{\|A\cap[a,x\rangle\|:\ x\in A^k, x\neq a\}=arrho_k \quad (k=0,1,2,\ldots)$$
 ,

every subsequence $\{l_s\}_1^{\infty}$ of rays from [a,A] for which $\lim_{s\to\infty} ||A\cap l_s|| = 0$ possesses common rays with the set C^k for infinitely many values of k.

Now let Π be a hyperplane in $\mathscr{E}_{n+1}, a \in \Pi$. If $y \in \Pi$, then by 1), $\Pi \cap C^k \neq \emptyset$ only for finitely many values of k. In the case $y \notin \Pi$ it is even more obvious. Thus $\mu_{A \cap \Pi}(a) > 0$ always holds, that is, $a \notin (A \cap \Pi)_2$.

LEMMA 6. With $n \geq 3$, $A \subset \mathscr{E}_n$ convex, $\dim A = n$ and $y \in A_1$, if l is a ray such that $l \neq [y,A]$, $l \subset \operatorname{cl}[y,A]$ and a is a point from $\operatorname{int} A$, then $y \in (A \cap \Pi)_1$, where Π is any hyperplane containing l and a.

PROOF. Without loss of generality, let y=0. There exists a subsequence of points $\{y_k\}_1^{\infty} \subset A \setminus \{0\}$ such that $y_k \to 0$ and $l_k \to l$ for $l_k = [0, y_k)$. Let the sequence $\{y_k\}_1^{\infty}$ lie to one side of Π and let e be a vector orthogonal to Π and lying on the same side. The point y_k can be represented in the form $y_k = v_k b + d_k + \beta_k e ,$

where b is a fixed point of the ray l, $d_k \in \Pi$ and $d_k \perp b$, $v_k > 0$, $\beta_k > 0$, $||d_k||/v_k \to 0$ and $\beta_k/v_x \to 0$.

There exists $\alpha > 0$ such that $a - \alpha e \in A$. Let $y_k' = \Pi \cap [a - \alpha e, y_k]$. It is clear that $y_k' \in B \setminus \{0\}$ for $B = A \cap \Pi$. It is easy to verify that $l_k' \to l$ for $l_k' = [0, y_k')$. Hence $0 \in B_1$. The Lemma is proved.

This implies the proposition a) of Theorem 4.

Moreover, $y \in A_{1R}$ implies $y \in B_{1R}$.

LEMMA 7. With $n \ge 4$, $A \subset \mathcal{E}_n$ convex, dim A = n and $y \in A$, if an interval $(y,u) \subset A_1$ exists, then a hyperplane Π exists such that $(y,u) \subset (A \cap \Pi)_1$.

PROOF. Assume that $z \in (y, u), l \notin [z, A)$ but $l \subset \operatorname{cl}[z, A)$. Let a be in int A and B be a hyperplane containing a, l and (y, u). Since

$$cone(x, A) = cone(z, A)$$
 for every $x \in (y, u)$

(see [2], 9), the hyperplane Π satisfies the conditions of Lemma 6 for every $x \in (y,u)$, and hence $(y,u) \subseteq (A \cap \Pi)_1$. The Lemma is proved.

This Lemma implies the proposition b) of Theorem 4 (see 3°.) As to the point $y \in A_2$, Lemma 7 asserts that for a certain hyperplane Π , $y \in (A \cap \Pi)_2 \cup (A \cap \Pi)_3$. In addition, it follows that $y \in A_4$ iff $y \in (A \cap \Pi)_4$ for every hyperplane Π containing y (see [1]).

3. Appendix. On an example of V. Klee.

The results of section 1 mean, in fact, that if non-polyhedrality of a convex set is revealed locally, that is, $A \setminus A_4 \neq \emptyset$, then it can be detected by a shadow. Now let A be nonpolyhedral, but $A = A_4$, that is, let A be boundedly polyhedral [1]. It is easy to give an example of an A for which $\operatorname{sh}(s,A)$ is polyhedral for every $s \in \mathscr{E}_n \setminus A$. Namely, each continuous set [5] A with $A_4 = A$ is such (it is easy to show that A is continuous iff for every point s and appropriate neighbourhood P of s, $\operatorname{sh}(s,A) = \operatorname{sh}(s,A \cap P)$.

It is non-trivial to prove such a possibility for projection, a special case of shadow. Such an example was given in [1] in the form of a complicated existence theorem. Here we give a much simpler example.

Let us give an example of convex compact set $A \subseteq \mathscr{E}_n$ and its support hyperplane Π such that:

- 1) $A_1 \neq \emptyset, A_1 \subseteq \Pi, A \setminus \Pi \subseteq A_4, A_2 = A_3 = \emptyset;$
- 2) Every point s satisfying Theorem 1 is outside Π , that is, $\operatorname{sh}(s,A)$ is polyhedral for each $s \in \Pi \setminus A$;
- 3) for every point $a \in A_1$, and every ray $l \subset \operatorname{cl}[a,A) \setminus [a,A)$ the relation $l \subset \Pi$ holds.

It will suffice to restrict ourselves to \mathscr{E}_3 (as in [1]).

Let the coordinate system in \mathscr{E}_3 be fixed such that $\Omega_1, \Omega_2, \Omega_3$ are coordinates of an arbitrary point. Let

$$Q^0 = (0,0,0)$$
 $Q^s = (1/s^2, 1/s, 0)$ for $s = 1, 2, ...$

and

$$P^k = (0, 1/k, 1/k^2)$$
 for $k = 1, 2, ...$

Let

$$A = \operatorname{conv} \{Q^0, Q^1, \dots, P^1, P^2, \dots\}$$

(see Fig. 2). This A is a convex compact and satisfies the condition 1)-3) if Π is the hyperplane $\Omega_3 = 0$.

It is easy to understand, by interpreting Π as an infinitely distant hyperplane, that a set A satisfying the conditions 1)-3) gives the sought-after example. Concretely, let $\mathscr P$ be the projective transformation

$$\omega_1\,=\,\varOmega_1/\varOmega_3, \quad \, \omega_2\,=\,\varOmega_2/\varOmega_3, \quad \, \omega_3\,=\,1/\varOmega_3\;.$$

It transforms the set $U = \{x : 0 \le \Omega_3 \le 1\}$ into the set $V = \{x : 1 \le \omega_3 < +\infty\}$ such that convex set $A \subset U$ is transformed into the convex set $\mathscr{P}A \subset V$ and the type of every point remains unchanged. Under the transformation \mathscr{P} , Π changes into the infinitely distant hyperplane, the point $P^k(k = 1, 2, \ldots)$ turns into $p^k = (0, k, k^2)$, the point $Q^s(s = 0, 1, 2, \ldots)$ is identified with the direction $l^s = [0, q^s)$, where

$$q^0 = (0,0,1)$$
 and $q^s = (1/s^2, 1/s, 1)$ for $s = 1, 2, ...$

Therefore $\mathscr{P}A$ is the set with ex $\mathscr{P}A = \{p^1, p^2, \ldots\}$ and $O^+\mathscr{P}A$ is generated by the rays l^0, l^1, l^2, \ldots (see Fig. 3). It is also easy to verify by direct computation that all projections of $\mathscr{P}A$ are polyhedral.

320 Z. WAKSMAN

Fig. 3.

REFERENCES

- 1. V. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 78-107.
- 2. Z. Waksman, M. Epelman, On point classification in convex sets, Math. Scand. 38 (1976), 83-96.
- 3. P. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
- 4. H. Mirkil, New characterizations of polyhedral cones, Canad. J. Math. 9 (1957), 1-4.
- 5. D. Gale, V. Klee, Continuous convex sets, Math. Scand. 7 (1959), 379-391.

BEN GURION UNIVERSITY OF THE NEGEV, BEER SHEVA, ISRAEL