A SIMPLE PROOF OF THE STONE-WEIERSTRASS THEOREM FOR CCR-ALGEBRAS WITH HAUSDORFF SPECTRUM

SIN-EI TAKAHASI

The purpose of this note is to give a simple proof of the following.

THEOREM. Let A be a CCR-algebra with Hausdorff spectrum and P(A) the set of pure states of A. If B is a C*-subalgebra of A which separates $P(A) \cup \{0\}$, then B = A.

This was first proved by Kaplansky [5] in a different form. Our proof is based on Dauns-Hofmann's theorem, which we state as Lemma 1, and Akemann's result (see Lemma 2) which is essentially contained in the proof of Theorem III. 8 in [1]. In [4], Elliott and Olesen gave a simple proof of the Dauns-Hofmann theorem. We now give a simple proof of Akemann's result and thus obtain a simpler proof of the main theorem.

LEMMA 1 (Dauns-Hofmann [2]). Let A be a C*-algebra and Prim A its structure space. Let f be a bounded continuous complex-valued function on Prim A and $x \in A$. Then there exists an element $f \cdot x$ in A such that $f \cdot x = f(P)x \mod P$ for all $P \in \operatorname{Prim} A$.

LEMMA 2 (Akemann [1]). Let A be a C*-algebra and B a C*-subalgebra of A which separates $P(A) \cup \{0\}$. Let Prim A and Prim B be the structure spaces of A and B, respectively. Then there exists a homeomorphism between Prim A and Prim B.

PROOF. Let φ be a map of Prim A into Prim B defined by $\varphi(P) = P \cap B$. The definition of the hull-kernel topology on the structure space implies easily that φ is continuous. Since B is a rich subalgabra of A by Lemme 11.1.7 in [3], φ is an onto correspondence. We assert that $I \cap B \subset P \cap B$ implies $I \subset P$ for any closed two-sided ideal I of A and any primitive ideal P of A. To see this, let π be a non-zero irreducible representation of A with $P = \text{Ker } \pi$. Suppose, on the contrary, that $\pi(I) \neq 0$. Then $\pi_{|I|}$ is

ż

non-zero irreducible representation of I. Since $I \cap B$ is a rich subalgebra of I by Lemme 11.1.3 (ii) in [3], we see that $\pi_{|I \cap B} \neq 0$. This contradicts our assumption $I \cap B \subseteq P \cap B$, as was to be proved. It follows easily from the above assertion that φ is the one-to-one correspondence. Finally, we show that φ^{-1} is continuous. Let $K \subseteq \text{Prim } B$ and any point $Q \in \text{Cl}(K)$, where Cl(K) denotes the closure of K. Then

$$B\cap \varphi^{-1}(Q) \supset \cap \left\{Q_\alpha:\ Q_\alpha\in K\right\} = \cap \left\{P_\alpha\cap B:\ P_\alpha\in \varphi^{-1}(K)\right\}.$$

By the assertion mentioned above, we have

$$\varphi^{-1}(Q) \, \supseteq \, \cap \, \{\boldsymbol{P}_{\scriptscriptstyle \alpha}: \; \boldsymbol{P}_{\scriptscriptstyle \alpha} \in \varphi^{-1}(K)\}$$
 ,

so that $\varphi^{-1}(Q) \in \mathrm{Cl}\,\big(\varphi^{-1}(K)\big)$. Thus φ^{-1} is continuous and the lemma is proved.

PROOF OF THEOREM. Let \widehat{A} be the spectrum of A and let $x \in A$ and $\varepsilon > 0$ be chosen arbitrarily. Set

$$K_{\varepsilon} = \{ \varrho \in \widehat{A} : \ \|\varrho(x)\| \geqq \varepsilon \} \quad \text{ and } \quad G_{\varepsilon} = \widehat{A} \setminus K_{\varepsilon} \ .$$

Then K_{ε} is compact in \widehat{A} (Proposition 3.3.7 in [3]) and G_{ε} is open in \widehat{A} . Take $\pi \in \widehat{A}$. Since A is a CCR-algebra and $\pi_{|B} \in \widehat{B}$, we see that both $\pi(A)$ and $\pi(B)$ coincide with the algebra of compact operators on H_{π} (see 4.3.2 in [3]). So there exists $b_{\pi} \in B$ such that $\pi(x) = \pi(b_{\pi})$. Since the map: $\varrho \to ||\varrho(x-b_{\pi})||$ is continuous on \widehat{A} (Corollaire 3.3.9 in [3]), there exists an open neighbourhood U_{π} of π in \widehat{A} such that

$$\|\rho(x-b_{\pi})\| < \varepsilon \quad \text{for all } \varrho \in U_{\pi}.$$

By the compactness of K_{ϵ} , there exists a finite open covering $\{U_{\pi_1},\ldots,U_{\pi_n}\}$ of K_{ϵ} and therefore $\{U_{\pi_1},\ldots,U_{\pi_n},G_{\epsilon}\}$ is a finite open covering of \hat{A} . Thus we can easily construct a partition of the identity $\{h_1,\ldots,h_n,h_{\omega}\}$ for the covering $\{U_{\pi_1},\ldots,U_{\pi_n},G_{\epsilon}\}$. Let ψ be a map of \hat{A} into \hat{B} defined by $\psi(\varrho)=\varrho_{|B}$. By Lemma 2, ψ is homeomorphic. Let ψ^* be the dual map of ψ from the algebra of bounded continuous complex-valued functions on \hat{B} onto that on \hat{A} . Setting

$$f_1 = (\psi^*)^{-1}(h_1), \dots, f_n = (\psi^*)^{-1}(h_n)$$

and

$$b_{\varepsilon} = f_1 \cdot b_{\pi_1} + \ldots + f_n \cdot b_{\pi_n} ,$$

we see that $f_i \cdot b_{\pi_i} \in B$ and $\tau(f_i \cdot b_{\pi_i}) = f_i(\tau)\tau(b_{\pi_i})$ for any $\tau \in \widehat{B}$ (i = 1, ..., n) by Lemma 1. Then $b_s \in B$ and, for any $\varrho \in \widehat{A}$,

$$\varrho(b_e) = \sum_{i=1}^n f_i(\varrho_{|B}) \varrho_{|B}(b_{\pi_i})
= \sum_{i=1}^n \psi^*(f_i)(\varrho) \varrho(b_{\pi_i})
= \sum_{i=1}^n h_i(\varrho) \varrho(b_{\pi_i}).$$

It follows from the definition of h_1, \ldots, h_n, h_n that

$$\begin{split} \|\varrho(x-b_{\varepsilon})\| &= \|\sum_{i=1}^n h_i(\varrho)\varrho(x-b_{\pi_i}) + h_{\omega}(\varrho)\varrho(x)\| \\ &\leq \sum_{i=1}^n h_i(\varrho) \|\varrho(x-b_{\pi_i})\| + h_{\omega}(\varrho) \|\varrho(x)\| \\ &< \varepsilon \;. \end{split}$$

for all $\varrho \in \widehat{A}$ and therefore $||x-b_{\varepsilon}|| < \varepsilon$. As ε is arbitrary, $x \in B$ and the theorem is proved.

REMARK. We can by the same method show: If $B \subseteq A$ are C*-algebras, Prim A is Hausdorff, $\pi(A) = \pi(B)$ for any irreducible representation π of A, and B separates $P(A) \cup \{0\}$, then B = A.

We thank the referee for suggestions to improve the paper and Professor M. Hasumi for helpful discussions.

REFERENCES

- C. A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis, 4 (1969), 277-294.
- J. Dauns and K. H. Hofmann, Representations of rings by continuous sections, Mem. Amer. Math. Soc., 83 (1968).
- J. Dixmier, Les C*-algèbres et leurs représentations, (Cahiers Scientifique 24), Gauthier-Villars, Paris, 1964.
- G. Elliott and D. Olesen. A simple proof of the Dauns-Hofmann theorem, Math. Scand., 34 (1974), 231-234.
- I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc., 70 (1951), 219-255.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE IBARAKI UNIVERSITY MITO, JAPAN