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GAUSSIAN RADON MEASURES
ON LOCALLY CONVEX SPACES

CHRISTER BORELL?

1. Introduction.

Throughout this paper E denotes a locally convex Hausdorff vector space
over the field of real numbers (l.c.s.). A Radon probability measure u on F
is said to be a (centred) Gaussian Radon measure on E if the image
measure &(u) is a (centred) Gaussian measure on R for every £ belonging
to the topological dual E’ of E. The class of all (centred) Gaussian Radon
measures on F is denoted by %(E) (%,(E)).

In Section 2, it will be proved that every u € (&) has a reproducing
kernel Hilbert space (RKHS) 5£(u) contained in E. One of the main
results of this paper shows that J#(u) is separable (Theorem 7.1). This
conclusion has many corollaries. For example, it follows that L,(u)
(1=p< +o0) and supp(u) are separable (Corollaries 8.1 and 8.2).

Theorem 2.1 shows that every x € %(E) has a barycentre b € E. Setting
Ho(*)=pu(+ +0b), it follows that #(u) and the closure E,'(x) of E' in
Ly(u,) are isomorphic (Theorem 2.1). This makes it possible to give a
very simple representation of u,-measurable additive functions. A real-
valued function f on ¥ is said to be a u-measurable additive (subaddi-
tive) function on E, if f( + -) are u-measurable, and there exists an addi-
tive u-measurable subgroup @ of E with u-measure one so that

fle+y) =(2)f@)+fly), =zyel.

Since E,'(u) is separable, there exists an at most denumerable ortho-
normal basis {e,} for this Hilbert space so that every e, belongs to E'.
If f is a uy,-measurable additive function on E, it will be proved that
there exists an (a,) € I2(N) such that

f(x) = Y a,e,(x), py-almost all z,

(Theorem 8.1). The class of all y-measurable subadditive functions is
much more complicated and a simple representation of this class is un-
known to us. In any case, we discuss some of its properties in Sections
5 and 9.
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As said above, the topological support of a Gaussian Radon measure
u is separable. In particular, u sits on a separable Borel subspace of
probability one. It can be conjectured that it sits on a Souslin subspace
of probability one. This would be an extremely important result. It can
be said that some results of this paper are trivial if E is a Souslin space.
In Section 11, we will point out that a Gaussian Radon measure will
not, in general, sit on an ultrabornological Borel subspace of probability
one.

Many results of this paper have, clearly, earlier been obtained on
special l.c.s.’s or in terms of Gaussian stochastic processes. Again it can
be said that some results are trivial on locally convex Souslin spaces.
On the other hand, the proper setting for Gauss measures on l.c.s.’s is
Gaussian Radon measures on arbitrary l.c.s.’s. This paper is thus devoted
to a study of this class.

A large part of this paper was written during my visit at Matematisk
Institut, Aarhus Universitet. I am indepted to S. E. Graversen, J. Hoff-
mann-Jorgensen, and W. Slowikowski for many valuable discussions on
the subject of this paper.

2. Every pe %(E) has an RKHS.

To start with, we introduce some notation and conventions.

If 5 is a Hilbert space, the canonical cylinder Gauss measure on 5 is
denoted by y , that is, the Fourier transform of y 4 equals exp (—||-[1?/2),
where ||+ || denotes the Hilbert norm in 5#.

If u is a positive measure on E, elements of L,(u) (1 <p< +o0) are
regarded as functions defined everywhere on E, and two such elements
are identified if they coincide a.s.[u].

We shall prove

TuroreM 2.1. Suppose u € 4(E). Then

a) u has a barycentre be E,
b) every measure ugy, £ € Ey' (1), has a barycentre At € E.

The map A: Ey'(u) - E 18 linear and injective. We define,
2 (u) = range(4),

h=A-"% hes),
and
[BIE = po(h?), hef(n),
respectively. Then,
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c) (#(u),||*l) is a Hilbert space and the canonical injection 6 of
(# (), |I+]l) into E is weakly continuous. Furthermore,

(2.1) 0y p0) = o -

Here u, and E,'(u) are defined as in Section 1.

The notation introduced in Theorem 2.1 will be fixed throughout this
paper. The Hilbert space #(u) is called the RKHS of p.

Theorem 2.1 is well-known if E is a u-Lusin space, that is if

sup {u(K) | K compact convexc E} = 1.

[10, Theorem 4]. It can be conjectured that E is a u-Lusin space when
u € 9(H). If that is the case, many proofs of this paper can be a little
bit simplified.

Let us at once point out two corollaries of Theorem 2.1.

CoroLLARY 2.1. Suppose u € %(E). Then
(2.2) tn = [exp(h—|I[2)] o, b e H(p).

(Compare [26, Prop. 8.1].)
Here u,(-)=p(: —2), x€ E.

CoroLLARY 2.2. Suppose u € (E), and let G be an additive, u-measur-
able subgroup of E with positive u-measure.
Then, 2b € G and #(u)<G.

Compare [15], [23], and [2, Exposition IX].)

Note also that u(@)=1 [5, Theorem 4.1]. (Compare also [15], [21],
[23], [2, Exposition IX], and [11, p. 7].)

We have not been able to prove that b € G.

Proor or CororrarY 2.1. (Compare [26, Proposition 8.1].) The meas-
ures in the left-hand, and right-hand sides of (2.2), respectively, have the
same Fourier transforms. Since they are Radon probability measures,
they, clearly, coincide. This proves Corollary 2.1.

Proor or CoroLLarY 2.2. We already know that u(@)=1. Hence
po(~b+6) =1 and po—(~b+@) = 1.
In particular u((—b+G)n(d+@G))=1. The set (—b+G)n(>+G) is thus
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nonempty, which proves that 2b € G. Furthermore Corollary 2.1 shows
that

Holh—b+@G) =1 whenever ke (u).

The set (A—-b+G@)n(—~b+@) is thus non-empty and it follows that
H(p) =@

Proor or THEOREM 2.1. Denote by F the completion of E, and let
j: E — F be the canonical injection. Set » =j(u) and observe that v € Z(F).
Since F' is a v-Lusin space, it is readily seen that the map

Var(v): F'sn—>v(n?)eR

is 7(F’',F)-continuous (Mackey continuous) (Compare [10, p. 403].) In
particular, the measure » has a barycentre b e F. In the same way it
follows that the measures #»y,7n € Fy'(v) have barycentres in F. Corollaries
2.1 and 2.2 thus apply to the measure ». Since E is a v-measurable sub-
space of F' with »-measure one, we have that b € E. It is obvious that b
is the barycentre of x4 and j(u,)=v,. Using this and Corollary 2.2 again,
it is readily seen that the measures éu,, £ € E,'(u) have barycentres in E.
Finally, observe that

E(h) = {A&,h), hei#(u), EcE,

where (-, ) denotes the scalar product in s#(u). The mapping 0 is thus
weakly continuous and a simple calculation proves (2.1). This concludes
the proof of Theorem 2.1.
We define
Ow) = (he #(u) | (WS}, ped(E),
and have

CorOLLARY 2.3. Suppose u € 9(E). Then O(u) 18 a compact subset of E,
and

(2.3) o(£?) = max{£(x)® | xeO(u)}, é&éck'.
In particular, the mapping Var(u) is v(E’, E)-continuous.

Proor. Using the same notation as above, we have O(u)=0(»)<E.
To prove that O(u) is a compact subset of E, it therefore suffices to
show that O(v) is a compact subset of F. To this end let K be a compact
convex subset of F, symmetric about the origin, and so that »(K)> 0.
By Corollary 2.2, we have O(») U, \nK. Theorem 2.1 shows that O(»)
is a weakly compact subset of F, and K is, clearly, a weakly compact
subset of F'. An application of the closed graph theorem now easily gives
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O(»)cnK for a suitable n € N. Hence O(v) is compact, which was to be
proved. The identity (2.3) follows at once from the definitions, and the
last statement is now also obvious. This proves Corollary 2.3.

3. Inequalities of the Brunn-Minkowski type.

The purpose of this section is merely to point out three known in-
equalities satisfied by Gaussian Radon measures. We think it can be
convenient doing so since almost all subsequent results will depend on
these estimates. In fact, we have already touched upon one of these
estimates in connection with the zero-one law [5, Theorem 4.1].

If 4 is a Radon probability measure on E, we set

ps(Ad) = sup{u(K)| K compactc 4},

whenever A ¢ E. Furthermore, we define
(3.1) D(a) = \*, exp(—2?2)dz[(2n)}, —o=Zasoo.

THEOREM 3.1. Let u € 9(E) and suppose A 13 a u-measurable subset of
E. Ohoose a € R so that u(4)=D(a). Then,

Ue(4A+20(p)) = DP(a+t), t>0.

Equality occurs if A is a half space.

In particular, if A+ 3¢ (u)=A, then u(A)=0or 1.

Since the map Var(u) is Mackey continuous by Corollary 2.3, the result
is contained in [6, Theorem 3.1].
THaEOREM 3.2. Suppose u € Y(E). Then, the inequality
ux(A4 +(1—2)B) z pH(A)u'~4(B)
i8 valid for all y-measurable subsets A and B of E, and every 0<i<1.

(See [5, Corollary 2.1].)
The following simple corollary will play a fundamental rdle later on.

CoROLLARY 3.1. Let u € %,(E) and suppose 4 is a convex Borel measur-
able subset of E, symmetric about the origin. Then,

wd) 2 u(d+2), zek.
(See [5, Theorem 6.1].)
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4. Some continuity properties of translations.

Let u be a Radon probability measure on £ and 4 a u-measurable
subset of E. Suppose ¢>0 is a given real number. Then, by definition,
there exists a compact subset K of 4 so that u(K)> u(4)—¢/2. Further-
more, the Hahn-Banach separation theorem gives us a finite-dimensional
cylinder set C2K so that u(C)<u(K)+¢/2. To say that C is a finite-

dimensional cylinder set means that there exist &,,...,£, € E’, and a
Borel set M in R” so that
(4.1) C = {(&,....6)eM}.

It is always possible to choose the &, so that the family {£,,...,&,}
constitutes an orthonormal family in Ly(u) whenever £’ < Ly(u). In addi-
tion, we thus have

(4.2) #l4—1Igl) < &.

From this important approximation property, we easily get

THEOREM 4.1. Let u € 4(E) and suppose f s a bounded u-measurable
Junction on E. Then, for every fixed p, 1 £p< + oo, the mapping

(), 1113 = > f(- +h) € Ly(p)
18 continuous.

Note here that the function f(- + &) is u-measurable for every k € ' (u)

by Corollary 2.1.
A very special case of Theorem 4.1 is proved in [14, Corollary p. 740].

Proor. It is enough to prove the continuity at the origin. Furthermore,
it can be assumed that u € % (E) and f2 0. Let (s;) be a denumerable
sequence of u-measurable simple functions so that s, ”f as &k tends to
+ oo, By Corollary 2.1, we have

WIFC +B) =8 (- +R)P) = p(|f sl exp(h—|A]/2) ,
for every h € 5#(u). The right-hand side here is less or equal to
(u(1f — 84I%7))F- (u(exp 2R))* .

Since 4 is a centred Gaussian random variable with variance ||, we
get a uniform bound for the second factor if ||4]| is bounded. It can there-
fore be assumed that f=1,, where 4 is a y-measurable set.

Now let &> 0 be given. There exists a cylinder set C of the form (4.1)
so that (4.2) holds. Furthermore, as said above, it can be assumed that
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the image measure y=(&,,...,£,)(u) equals canonical Gauss measure in
R®. As above, we conclude that it suffices to prove

u(lLo(- +h)=1Igl) < e,
for small ||h||, or, equivalently,

P(Hae( + (4B, o Ea(B) = Iygl) < e,
for small ||A|.
Since the mapping 6 in Theorem 2.1 is weakly continuous this follows
at once from a well-known property of Lebesgue measure in n-space.
This concludes the proof of Theorem 4.1.

CoROLLARY 4.1. Let u € 9(E) and assume A i3 a u-measurable subset
of E with positive u-measure. Then there exists a positive number & so that

30(u) s A—A4 .

(Compare [23, Proposition 1].)
Note that Corollary 4.1 again shows that O(u) is a compact subset of E.

Proor. The map
() 1I1) 2 b~ p((h+4) 0 4) R

is continuous by Theorem 4.1 and positive at the origin. From this the
result follows at once.

CoroLLARY 4.2. Suppose u € %(E). Then

a) tf f is a u-measurable additive function on E, the function f| (' (u),||*]))
18 continuous and linear,

b) if f is a u-measurqble subadditive function on E, positively homo-
geneous of degree one on H (u), the function f|(H# (u),||*|) 18 continuous.

Proor. Let us first prove Part a).

Suppose @ is a u-measurable additive subgroup of £ with u-measure
one and so that the function f|G is additive. Note that s#'(u)<G by
Corollary 2.2 (or 4.1). Suppose ¢ € R, and

w{f<t}n{f(--)<t}n@) > 0.

By Corollary 4.1, there exists a 6> 0 so that (f|60(x)) < 2¢. This proves
Part a), Part b) follows in exactly the same way.

.A subset of E (function from ¥ into R) is said to be universally Gauss
measurable, if it is u-measurable with respect to every u € ¥(E).
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COROLLARY 4.3. Let E be an wultrabornological l.c.s. and 2 an open
convex subset of E. Furthermore, assume that f is a universally Gauss
measurable convex function on E. Then f is continuous.

Corollary 4.3 is essentially proved in [6, Lemma 5.1]. (Compare also
[9, Theorem 7.3}, [25], [28], and [31].) The following proof is probably
simpler since it only depends on Theorem 4.1.

Proor. It can be assumed that £ is a Banach space and f a seminorm
on E. Let F=1°(N), equipped with the ¢(I(N),}(N))-topology, and set
IT,(x)==,, x=(x,) € F. Choose a » € (F) so that »(IT, IT,)=0, m+n,
=0,>0, m=n. The existence of such a measure » follows at once from
Kolmogorov’s consistence theorem. Suppose (e,),.y is an arbitrary se-
quence in E such that the series e, is absolutely convergent. It is enough
to show that (o, f(e,)) € F. To this end set u(r)=3x,e,, x € F, and ob-
gerve that u is a continuous linear mapping of F into E by the Banach-
Steinhaus theorem. Hence u=u(v) € ¥,(E). Furthermore, the submar-
tingale convergence theorem shows that

§&du = 3 0,28%e,), E(ck'.
In particular, o,e, € O(u) and Corollary 4.2(b) proves the result.

COROLLARY 4.4. Let E be an ultrabornological l.c.s. and A a convex
universally Gauss measurable subset of E. Furthermore, suppose u € 4(E)
and set

fx) = u(x+4), zek.

Finally, assume that there exists an open convex subset 2 of E so that
f(®)>0, ze€ Q. Then, f|Q2 is continuous.

A special case of Corollary 4.4 is proved in [13, Propositions 4 and 5].

Proor. By Fubini’s theorem f is universally Gauss measurable. Fur-
thermore, the function —logf| is finite-valued and Theorem 3.2 easily
shows that it is convex. Corollary 4.3 thus proves the result.

We observe that Corollary 4.4 applies to generalized Gaussian processes.

5. An inequality of Berwald’s type.

Let u e ¥(H) and suppose f20 is a u-measurable, subadditive func-
tion, positively homogeneous of degree one on 5#(u). By Corollary 4.2b),
we have

ey = 8uPoeyf < +oo.
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Throughout this section, it will be assumed that
Iflper = 1-

We here prefer to use the < sign instead of the = sign, since it seems
convenient to include the case when ||f]|,z(,,=0.
With these assumptions, we have the following estimate of Berwald’s

type [3]:

THEOREM 5.1. Let ¢: [0, + o[ - R, ¢(0) =0, be a strictly increasing con-
tinwous function, and «: range (¢) - [0, + o[, x(0) =0, a strictly increasing,
continuous, and convex function. Set yw=o(p). Furthermore, suppose
@(f) € Ly(u) \ {0} and choose v € R such that

wle(f) = §o(t—)+)do() .

w(p(f) = §p(t—0)*)dd() .
Equality occurs if f=(&[|1&l )t where & € B’ and & (u)=%0.

Then

Here @ is as in (3.1), and ¢+ =max(0,¢).

Proor. By definition,
we(f) = §¢ u(fz8)dg(s)

(- =)*) = {7 D((- — 1)+ z8)de(s)

respectively. Here we identify @ and the canonical Gauss measure on R.
Suppose ;>0 and

(5.1) w(f<sg) 2 P((- —1)t <) .

Using Theorem 3.1 and the assumptions on f, we have

and

u(f<sy+t) = B((- —7)t<8p+t), t>0.
Let s, denote the infimum of all s,> 0 such that (5.1) is valid, and choose
85 € 181, + oo arbitrarily but fixed. Writing dy = adp, where & increases,
we get
Sulfze)dy(s) - (3 ((- — 7)* 2 8)dy(s)
= {1 (u(f2 8)— D((- — 7)* 2 9))a(s)dep(8) +
+§a(ulf28) - B(( — 7)* 28))&(s)do(s)
< a(8)[§ o u(f2 8)dg(s) - §2 P((- —7)* 2 8)dg(s)] -
The desired estimate now follows at once. This concludes the proof of
Theorem 5.1.

Math, Scand. 88 — 18
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CoROLLARY 5.1. Let u and f be as in Theorem 5.1, and suppose
y: [0, + o[ —> [0, + o[ @8 a strictly increasing continuous function such
that y((+ — 7)*) € Ly(P) for every 7€ R.

Then y(f) € Ly(u).

(Compare [11, pp. 10-15], [21], [24], and [6, Th. 5.2].)

Proor. Set first ¢(f) =arctant, 20, and «(f) =tant, 0 <t <z/2. Theo-
rem 5.1 then tells us that f e L,(u). Then by setting ¢(t)=wx(t)=t, 20,
and assuming, as we can, that (0)=0, the result follows at once from
Theorem 5.1.

6. Extension of Anderson’s inequality.

A function f of E into [0, + o[ is called a symmetric quasi-convex
function, if all the level sets {f<¢}, t=0, are convex and symmetric
about the origin. The following result is proved by Anderson in Euclidean
n-space [1].

THEOREM 6.1. Let u,» € Go(E). Then the following statements are equiv-
alent :

(i) Var(u)2 Var(»),

(ii) there exists a o € G(H) such that u=vx*a,

(iii) w(f)Zv(f) for every Borel measurable, symmetric, and quasi-convex
Junction on E.

Furthermore, if any of these conditions are fulfilled and
(6.1) dims#(») < +o0,
then
o > u(f?) z »(f?),

for every u-measurable additive function on E.

Later on we shall see that the condition (6.1) can be omitted. Note
here that 5£(»), clearly, is embedded into 5#(u) so f is, clearly, contin-
uous on supp (») = (v) by Corollary 4.2 a).

Proor. (i) = (ii). As in the proof of Theorem 2.1, denote by F the
completion of £ and let j: £ — F' be the canonical injection. Clearly,
there exists a centred Gaussian cylinder measure 7 on F such that
j(u)=j(»)»7. Let ¢>0 be given. Since F is a j(u)-Lusin space, there
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exists a compact and convex subset K of F, symmetric about the origin,
and so that j(u)(K)>1—e¢. Let G be a closed subspace of F with finite
codimension, and denote by Iy, the canonical surjection of F onto F/G.
Using the same notation as in [29, pp. 172], we have

1—¢ < [(§0)me * TwelIpe(K)) .

From Fubini’s theorem and Corollary 3.1, we get vz(IIpa(K))>1—e.
The cylinder measure 7 thus comes from a Radon measure on F, again
denoted by 7 [29]. Now it only remains to be proved that there exists
a Radon probability measure ¢ on E such that v=j(c¢). To this end let
¢> 0 be given, and choose a compact subset K of £ such that u(K)>1—e.
From Fubini’s theorem we now get an x € E such that 7(j(K +z))>1—e.
Hence 7(Uj(K,))=1 for an appropriate denumerable family of compact
subsets K, of E. The existence of a ¢ with the above mentioned proper-
ties now follows from [29, Theorem 12, p. 39]. This proves (i) =~ (ii).

(ii) = (iii). Suppose first 4 is a convex Borel set, symmetric about
the origin. Fubini’s theorem and Corollary 3.1 yield u(4)<»(4). From
this the result follows at once.

(iii) = (i). Choose f=£&2, where £€ E’.

We shall now prove the last part of Theorem 6.1. First note that
u(f?) < + oo by Corollary 5.1. Let ¢ be as in (ii), and suppose @ is a
u-measurable additive subgroup of £ with u-measure one and such that
f|@ is additive. There is no loss of generality to assume that @ is Borel
measurable. Furthermore, Corollary 2.2b) shows that 5#(u)<@. Hence,
supp(») <@ and »(@)=1. By Fubini’s theorem, we also get o(z+G)=1
for a suitable z € supp (»). Hence o(@)=1. By assumption, the function
ExE> (z,y) > f(x+y) € R is o®Qv-measurable. Fubini’s theorem thus
yields

§f2du = (gdo(@)[§af*(x+y)dr(y)]
= {odo(@)[f*(@)+ 2f @p(f) +2(f*)] -

Since »(f) =0, the result follows at once.

CoroLLARY 6.1. Let u € 9y(E) and suppose {h,,. . .,h,} is a finite ortho-
normal family in 3 (u). Then

wA) £ w33 hibye A)
Jor every convex Borel set A in E, which is symmetric about the origin.

Proor. Note first that the function g=3hHk, is u-measurable. There-
fore the image measure v=g(u) € %o(E) since dim(supp(»))< +co. Fur-
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thermore, the random variables £(g) and & —&(g) are orthogonal in Ly(u)
for every & € E'. Hence

(6.2) [Var(w)(€) = u(((69))?) +u((€—£@))2)
z w((§@)) = [Var()¢), éeE'.

Corollary 6.1 now follows from Theorem 6.1.

7. The RKHS is separable.
We shall thus prove

TuroreM 7.1. Suppose ue Y(E). Then the RKHS (o€ (u), |- ||) is separ-
able.

A wrong proof of this result is given in [19, Theorem 2] when ¥ is com-
plete. Furthermore, the paper [10, p. 403] claims that the RKHS need
not be separable when E is a u-Lusin space and y is a Gaussian Borel
measure. In view of Prohorov’s theorem this statement contradicts
Theorem 7.1. Finally, the paper [2, footnote 1, p. 376] imagines that
supp () need not be separable when u € 9(E). As we shall see below
this would contradict Theorem 7.1.

To prove Theorem 7.1 we need the following well-known

Lemwma 7.1. Let (B,||*|lg) be a Banach space, and (a,) a denumerable
sequence in B, which converges weakly to zero and such that inf|a,| 5> 0.
Then there exist an infinite subsequence (a,,), and a positive number C
such that
maXogpgmltel S ClI2T titn,lln

forall ty,...,t,, R, and all m e N.

Proor. By a familiar theorem, the sequence (a,) contains an infinite
subsequence (a,,), which is a basic sequence [4, Corollary 1]. The result
thus follows by an application of the Banach-Steinhaus theorem.

Proor or TaroreM 7.1. It can be assumed that u € Zy(E). Let (k,),c0
be an orthonormal family in (3#(u),||*|)). It shall be proved that @ is at
most denumerable. To this end it is, clearly, no loss of generality to
assume that F is a u-Lusin space. Let us choose a compact convex sub-
set K of E, symmetric about the origin, and with positive u-measure.
Set B=U, nK, and denote by |||z the Minkowski functional of K
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in B. The zero-one law tells us that u(B)=1 and Corollary 2.2 b) that
' (u) € B. Furthermore, Corollary 6.1 implies the inequality

(1.1) (2 b blps1) 2 wK),

valid for every nonempty, finite subset I of Q.
Now let ¢>0 be a given real number. We claim that the set

(7.2) {xe@| |h,)lg2e} s finite .

Suppose on the contrary that this is wrong. Then there exists a de-
numerable subset {A,,} of the set {A,} such that |4, |lz=¢ and &, +
h,,s m*n. Let f be a continuous linear form on the Banach space
B, ||:||g) with the norm one. The inequality (7.1) then yields

w120 fh, )b, |<1) 2 W(K), meN.

Since the random variable ZB"f(ha,,)ﬂa,, is a centred Gaussian random
variable with variance J7'f%(h, ), we deduce that 33°f%(h, )< +oo. The
sequence (h, ) thus converges weakly to zero in the Banach space
(B,|l*|lp). Lemma 7.1 now applies to the sequence (a,)=(%,,). The in-
equality (7.1) together with Lemma 7.1 yield

MmaXogygm |7':a,,k| s0) z wK), meN.

Hence
(P(O)-D(-C))™ =2 w(K) >0, meN.

This contradiction proves (7.2). The family (h,),.q is thus at most de
numerable, which proves Theorem 7.1.

We shall discuss some applications of Theorem 7.1 in the following
section.

8. Applications of Theorem 7.1.

Suppose u € ¥y (E). We shall say that a u-measurable additive funec-
tion f on E is equal to zero, if there exists an additive u-measurable
subgroup @ of E with u-measure one so that f|G'=0.

TarorEM 8.1. Suppose u€ Gy(E), and let {e,},.n be an orthonormal
basis for By'(1), where each e, belongs to E'. Furthermore, let f be a y-meas-
urable additive function on E. Then,

8) f=0 iff f vanishes on H#(u),
b) fe By (n),
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c) there exist a Borel measurable additive subgroup G of E, with u-meas-
ure one, and an (a,) € I3(N) so that the series

(8.1) 2 0y ,()
converges for every « € G, and has the sum f(x).

Note that 5#(u) and E,’(u) are isomorphic so the existence of the basis
{e,.} follows from Theorem 7.1.

Theorem 8.1 is well-known on many spaces. (See [7], [12], [18], [17,
Theorem 2.3], and [16, Section 7].) These papers essentially prove Theo-
rem 8.1 when F is a u-Lusin space which also is Souslin. Note that Theo-
rem 7.1 is trivial when E is a Souslin space, since the Borel o-algebra in
such a space is countably generated.

Proor. Corollary 2.2 b) proves the “only if”’ part of Part a). Let us
now prove the “if”’ part of Part a). To this end let @ be a u-measurable
additive subgroup of £ with u-measure one so that f|@ is additive. Set

A_={xe@| f(x)s0}, A, = {re@]| f(x)20}.
Then 4_=—A,and A_ud, 2G. Hence u(A_)=pu(A.,)= % Furthermore,
AH+H(p) = AG)

since f|#(u)=0. The last part of Theorem 3.1 thus gives u(d4,)=
u(A4_)=1. The p-measurable additive subgroup 4_nA4, of E therefore
has u-measure one and f vanishes on this subgroup. This proves the “if”
part of Part a).

Let us now prove Part b). Theorem 6.1 shows that fe Ly(u). Let g
denote the orthogonal projection of f onto E,'(x). We can choose ¢
(as a point-function) so that g is a u-measurable additive function on E.
(See Section 2.) Set a=f—g, and note that a is a y-measurable additive
function on E. It only remains to be proved that a=0 in Ly(u). To this
end choose & € 5 (u) with [|h|| =1, arbitrarily but fixed. We can choose k
(as a point-function) so that % is a u-measurable additive function on E.
Set »=(hk)(u) and observe that Var(u)=Var(») by (6.2). The last part
of Theorem 6.1 thus tells us that

(8.2) w((h+ta)?) 2 »((h+ta)?), teR.

The zero-one law and Corollary 2.2 b) show that A(h)=u(f?)=1. Corol-
lary 4.2 now easily gives that »(52)=1. Furthermore, u(fa)=0. From
(8.2), we therefore have

2u(a?) 2 2tv(ha)+t(a?), teR.
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Hence »(ha)=0. But a(h)=v(ka). Part a) now shows that a=0 as a
u-measurable additive function on E. This also proves that a =0 in Ly(u).
Part b) is thereby completely proved.

Part c) follows at once from Part b) and the zero-one law since the
series (8.1) converges in Ly(u) if and only if it converges a.s.[u].

This concludes the proof of Theorem 8.1.

CoroLLARY 8.1. Let uec %(E) and suppose {e,},.n 8 an orthonormal
basis for B, (u), where every e, € E'.

Then, for every Borel set A in E, there exists a set B belonging to the
o-algebra generated by the e, so that

(L —1Igl) =0.
In particular, the space Ly(u) (1S p< 4+ o) is separable.?)

Proor. Corollary 8.1 follows at once from (4.2) and Theorem 8.1.

It is also possible to pick out an orthonormal basis for L,(u) when
u€ GyE). In fact, let H,, n=0, denote the nth Hermite polynomial
normalized in a convenient way and set

fnl,...,nk = Hnl(el)' s 'an(elc)’ Nye oMy 20, kz1,
where the e, are as in Theorem 8.1. The family {f, .. .} then con-

stitutes an orthonormal basis for L,(u). The proof is exactly the same
as in case of classical Wiener measure [8].

CorROLLARY 8.2. Suppose u € Y(E). Then,
(8.3) supp () = b+ (k) .
In particular, supp (u) is a closed, separable, affine subspace of E.?)

Proor. The representation (8.3) follows from [2, Theorem (IX, 2.1)]
and Corollary 2.3. Furthermore, the mapping 6 in Theorem 2.1 is con-
tinuous for the Mackey topologies on (#(u),||*|), £ [27, Theorem 7.4].
The last statement thus follows from Theorem 7.1

9. Estimates of tail probabilities.

Suppose u € %(E) and let f be a y-measurable sublinear function on £,
that is f( + -) are u-measurable, and there exists a y-measurable linear
subspace F' with u-measure one so that f|F is sublinear. Note that
I£ll ¢y < + 00 by Corollary 4.2 b). With these assumptions, we have the
following result, which partly generalizes Corollary 5.1.

1), %) See Note added in proof.
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TrEOREM 9.1. There holds,

a) im, , t-*logu(f2t) = —4- if Wfllopay>0s

_
113

b) [Ifllapey = O #ff f=const. a.s. [u].

(Compare [6, Theorem 5.2] and [24].)

Proor. Let us first prove Part a). Theorem 3.1 easily gives

1

(9'1) lim Supl—»-&-oot-zlog;u(fg t) s ""%'——2'—'

(Compare [6, pp. 12].)

Now let ¥ be as above and observe that b e F by Corollary 2.2 a).
Hence

—b+{f2t}nF 2 {f2t+f(-b)}nF.
If po* denotes the outer u,*-measure, we thus have
p(fzt) = pM({fzt+f(=b)}nF).
Betting g(z) = max(f(z),f(—x)), z € E, we easily get
pfzt) 2 u*({gzt+f(=b)}nF).

Now let h e s#(u) be chosen such that |k||=1 and f(h)>0, and set
v=(hh)(u,). Corollary 6.1 now easily gives

pFz0) 2 gkl 2 ¢+7(-1)).
: Hence
im inf,_t-2 5t > 3t > 3L
hmmt—-»oot log:u(f=t) = * g’(h) g ifs(h).
Combining this estimate with (9.1), Part a) follows at once.

If |Ifll gy =0, Theorem 3.1 easily shows that f=const. a.s.[u]. Con-
versely, if [|f||p,> 0, Part a) shows that f cannot be constant a.s.[x].
" This concludes the proof of Theorem 9.1.

It can clearly, happen that f=1 a.s.[u] and f vanishes on 3#(u). In
fact, this can happen even if u € %,(E) and f is a seminorm. We will
illustrate this in Section 11. On the other hand, if u € ¥ (¥) and f is &
u-measurable additive function on E, which vanishes on 3#(u), then
Theorem 8.1 shows that f=0 a.s.[u].
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10. A log law for Gaussian random variables.

Let E be a metrizable l.c.s. and d a translation-invariant metric on E.
Suppose u € 9(X) and let (X,),.n be an E-valued stochastic process so
that X, (P)=u for every n.

Set

Y, = (2logn)iX,, nz22,
and
M = n§° Yoo Yosrs-- o} s

where the bar denotes the closure operation in E.
We then have

TrEOREM 10.1. The random set M is contained in O(u) a.8. Furthermore,
if the X, are independent, the random set M equals O(u) a.s.

It is readily seen that Theorem 10.1 implies Strassen’s law of the iter-
ated logarithm for Brownian motion [30] and also various extensions
of this result (see [22], [20], and [19]). We omit the obvious proofs.
Although Theorem 10.1 is very close to these results, it can perhaps be
worth pointing out since it has a simpler character and an almost trivial
proof.

Proor. Choose &> 0 arbitrarily but fixed. We claim that
(10.1) P[Y,€0,largen] = 1,

where O,={d(-,0(u))<e}. To see this let V be a closed, convex, and
symmetric neighbourhood of the origin such that V < {d <¢}. Denote by
f the Minkowski functional of the set O(u)+ V. By Corollary 2.3, there
is & 2> 0 such that O(x) < AV. Hence | f|| (< (1 +4-)-1. Since O(u)+ ¥V =
0,, Theorem 9.1 yields

lim,, , ,(2logn)~*log P[Y, ¢ 0,] S —}-(1+47).
Hence
ZP[Yn¢Oa] < +°°’

which proves (10.1). From this the first part of Theorem 10.1 follows
at once.

Let us now prove the last part.
It can be assumed that u e % (F). Note that Theorem 7.1 implies
‘ that O(u) is a separable subset of E. It is therefore enough to show that

Pld(Y k) < & i0]l =1,
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for every k € O(x) and every ¢ > 0. Now fix % and ¢, and let V be as above,
It suffices to prove that

(10.2) P[X, €(2logn)th+(21logn)tV.i0] =1.

Corollary 2.1 easily implies that the left-hand side I, of (10.2) is greater
or equal to
dnIHI%. (2 logn)¥7)

Hence Y1,= + o, and the Borel-Cantelli lemma proves (10.2) and the
theorem.

11. Some concluding remarks.

Suppose pu € G (H) for simplicity. It is often desirable to have a
slightly different representation of u than that given by Theorem 2.1.
Let namely F be another l.c.s. and «: F — E a continuous linear map-
ping. If F is a “nice” space, the existence of a v € Z,(F) such that

(11.1) b= u»)

is often of great value. Corollary 8.2 shows that F can be chosen as a
separable l.c.s. Better results would be desirable. Here we will point out
that F cannot be chosen too “simple”.

To this end let IT be the canonical product Gauss measure on the
Fréchet space RN. Set

E = {x e RN | limsup,_, . |#,|/(2 logn)t < + oo},

and observe that Theorem 10.1 shows the well-known fact that I7(%)=1.
Let p be the restriction of I7 to F and define

f(@) = limsup, ,|z,)/(2logn)t, zel.

Theorem 10.1 also shows the well-known fact that f=1 a.s. [u]. Note
that u e %\(E) and f|#(x)=0 since 5 (u)=1I1%N). We claim that the
space F above cannot be chosen to be an ultrabornological l.c.s. Suppose
to the contrary that this is possible. Corollary 4.3 then tells us that the
seminorm f(%) is continuous. Hence

(1L.2) Wflu)<i) > 0,
since 0 € supp(v). But (11.1) implies that
Hf(w)<}) = p(f<) = 0.

This contradiction pi'oves the assertion. This discussion extends [19,
Sec. 3].
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It is also easy to see that the l.c.s. F cannot be chosen so that the
seminormed linear space (F,f(u)) is separable. In fact, if that is the case,
there holds

va+{f(x)<i}) > 0

for an appropriate a € F. Corollary 3.1 now implies (11.2) and we have
again a contradiction.

NoTeE ADDED IN PROOF. Independently, H. Sato and Y. Okazaki
(Separabilities of a (Gaussian Radon measure, Ann. Inst. H. Poincaré
Sect. B, 9 (1975), 287-298) have proved that L,(u) is separable for every
Gaussian Radon measure. The same work also shows that supp(u) is
separable, if u is centred or E is a u-Lusin space.
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