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CONGRUENCE PROPERTIES FOR A CLASS
OF ARITHMETICAL FUNCTIONS

GUNNAR DIRDAL

1.
Let s(n) denote an arithmetical function satisfying

8(0) = 1, s(n)—s(n—1) = ys((n—pg)/m), n>0,

where 9=0,1 and y+0,m> 1 are integers.

We make the convention that an arithmetical function is zero when
the argument is not a non-negative integer.

Mahler [7] proved that

s(n) = O(m=4r-Dyrnrfrl)
where 7 is the integer for which
mrlr £ n < m(r+1),

and he also obtained an asymptotic formula for s(r), the first term of
which is

loga(n) ~ (logn)?/(2 logm) ,
when s(n) is greater than a positive constant for all sufficiently large n.
Mahler’s work was later improved and extended by the Bruijn [2] and
Pennington [8].

Knuth [6] mentioned in his paper that s(n) probably also have inter-
esting congruential periodicities, and Andrews [1], Churchhouse [3],
Gupta [4], [5] and Rédseth [9] have found a number of arithmetical
Properties for s(n).

The purpose of the present paper is to prove that a more general
class of arithmetical functions also have certain congruential periodici-
ties.

Let s,, , ;(n) satisfy the functional equation

(L1) 2—0 (—l)qz(f)sm,g,z(”"l) = 2«0 ?’z,t‘m,a,x((”"‘l)/m)v n2q,

where g=0,1 and 1> 0, 0<gS4, y,, are integers.
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8m,0.4(1), 0S9=<g—1, are chosen as arbitrary integers. For simplicity
we pub

(8m,e,41(0):' . "Sm,q,l(q_ 1)) =

which imply no restriction. (-,..,-) denote the greatest common divisor.
For p a prime we define a valuation =, by

pap(a) I a, pn,,(a)+1 1; a

for any integer a. If a =0, we write conventionally 7,(a)=cc and regard
any inequality z,(0) >b as valid. Clearly

71,(be) = 7,(b) +my(c) ,

and
7p(b+c¢) = min(z,(b),7,y(c)) .
If
op(m,m) = min (7,(m), max, ;. ,7,(7)) ,
we pub
_ m[TT, p*™™ if >0
- 1 if n=0.
Further let
Y*u1 = Dheol = D%0)8m, 0,1 (L= 1) = 72,4 8,02 (L= 1)fm), 0s5l=g-1,
(1.2) ¥ = ¥ n0g = Ddoi-i( = 1erd0-00_y%,
(1.3) €= Coae = Dgaai( — 1eD-0=0C 1y,
and

0 if g<2
(= 1)ed-Dy*, oy if g=1.

p always denote a prime unless otherwise stated.
Let ¢;=%0, which is in fact no restriction when g=y, o=1. The case
¢;=0 is examined in section 5. We shall prove

TaEOREM 1. Let k> 0,n> 0. Then
8, o A(MEH I — 1) — Co8p o, 2(mFn —1)

k-1 if (—1)e+bim+D =]
= — ¢ )( — 1)e+Dimn+1) (mod H'-od u-wa)) o (—1)
= pg(1—cq)(—1)erbimnt { mod dm/2.l—1) if (—1)e+dmed= 1,
and if cy=c, =0 then
8, .2 (M*1—1)
(modd*,, ,) if (= 1yesmen = 1

= -1 (o+1Xmn+1) _ v
e =1) (M0dd,, syd¥ily_y if (—1)erbmd = 1,



CONGRUENCE PROPERTIES FOR ARITHMETICAL FUNCTIONS 249

where
A 11 if k=1
mk = dm,}.—ldm,7.+1 ”f k=2
dm, 1-1%m, a+2-v/G-11 Hi‘:lz A, oa-rzn of k>2

d*

THEOREM 2. Let k>0, n>0, A<p—1 and p be a prime. Then
sp,g,i.(pk‘l-ln—' 1) _cosp,g,l(pkn— 1) = luq(l "co)( - 1)(g+1)(n+1) (modpk) ’
and if co=c,=0 then
8p, o a(Pn—1) = p,(—1)C+Dn+D (mod p*)

THEOREM 3. Let q=y, ¢=1, k20, p+0>2 and p be a prime. The inte-
gers v,v are given by

v(p—1) = A < (v+1)(p-1),
pPlso+l, p>v+l.
If (p—1)=22 and ¢;=0; t=0,...,0(p—1)—1; then

'sp,e, 1(pk+y+ln - 1) + ( - l)v(p_lchv(p—l)sp,o, z(pk‘wn - 1) =0 (mOdpk +1) .

If 21 <p then
dp, oa-larefl = P

hence in this case Theorem 2 is actually a corollary of Theorem 1. As
an illustration of Theorem 1 we put 1=1, then

k-1 mk if m is odd
=0 Om,2-l1/2 = m¥[2%-1  if m is even .

Hence if (—1)@+Xm+D=1 and g=y, o=1 Theorem 1 gives

(1.4) 8, g, 1(MF M — 1) —Co8p o, A(mfn—1)
_ [ (modmk) if m is odd
=0 { (modm¥/2%-1)  if m is even .

(1.4) is known when g=1, ¢,=0, and was first proved by Gupta [5].

In section 4 we will study the effect of including more terms on the
left hand side of (1.4).

A technique frequently used when studying arithmetical functions
which are coefficients in Fourier expansions of modular forms is to apply
Newton’s formulae to the roots of modular equations. In this paper we
will use this technique, which in fact has an elementary nature, to prove
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congruence properties of a class of arithmetical functions for which the
generating functions are not assosiable with modular forms.

We use [a] to denote the integral part of a, (}) denote the binomial
coefficient with the usual conventions. An empty sum and an empty
product are defined as zero and one respectively.

2.
Define a linear operator U, acting on any power series

F(z) = ooy aln)z™,

U F(x) = D pnsy a(mn)z® .

by

Clearly
Um(F @) Fy(a™)) = Fy(x)U,Fy() .

If w is a primitive mth root of unity, it is easily seen that

U, F(x) = (1/m) 37! F(wlal/m),
Let

f@) = En=o m, 0 a(M)Z™
Then (1.1) gives

(L+(=1f2)f () = 320 v*i@+ i_o va, @ (™) .
From (1.2) and (1.3) we obtain
¥ = (=DR 3} (e*y,
Y1 = (— 1)1" 2:1 (;')Cz—t .
Hence we conclude that

(2.1) f@) = 3 ai- qc*tg,,‘(w)+2 0 Ced (@) f(=™)

where
g(®) = 1/(1+(—1)x).
All roots of the equation
(2.2) z = (—1)edm(1—1/y)m
regarded as an equation in y, are given by
y = glotglm) 0si<m,

where  is a primitive mth root of unity. Thus, if 4,(x) denotes the sum
of the ith powers of the roots of (2.2) we have

Ungi(z) = (1/m)d(=) .
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Writing (2.2) as

Y™+ G, o(®) Zney (DD =0
where

Im,o(@) = gy((—1)erDm+Dz) ,
we find by Newton’s formulae that
(2.3) A=)
_fm if 1=0
I (= 1)) g, (@) Ay o2) +6( = 1P g, o (2) i $>0.
In particular we note that

Umgq(x) = gm,g(x) .
If we put

bro, (@) = g (@) =g H@); P, g, 4(®) = by, o (— 1))
then
Umhq,i(x) = (I/m)(Ai+1(x)_Ai(x)) ’
and (2.3) gives
Unhe,d) = 3oy (= VHUP) g, o @) U, 1(x)  $21.
When noting that
U hg 0(‘”) = hm,q,o(x) H4

we obtain by induction on ¢

(2.4) b, i(x) = Z;=1 m, 4,1 Pm, of®@ 121,
where

2 (D) Oy g5 1 2 25j51
(2-5) ‘sm LY A { (- 1){..1(:(&) " if =1.

Hence from (2.5) and induction on 4

(2.6) mis = (=1 TG

where the summation is taken over all j-tuples (l,. . .,l;) satisfying the

conditions
zg_llp =1, L=zl.
In particular (2.6) gives
(2.7) Bt = Mby Oy g gq = (1—4) fm(m—1)m?=2.
We shall need the lemma
Lemma 1. We have
- 0 if j<[i/m]
m4d = | (=1)oym  if j=[i/m],
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0p,4, = 0 (modp/-¢-Hip-11) |
8 ,,=0 (moddj, ;) i j=[4/2]
m, 4, = (modmﬂ—id;n—,%) if §>[i/2],

and

dg;»,»lam,i,j if 15n,
where

_ [0 if 420 (modm)
@m = {1 if =0 (modm).

Proor. If j<[i/m] or j=[i¢/m] and 420 (modm), it is seen from (2.6)
that there exists in each term of the sum an integer I;>m, hence
() =0 and d,;=0.

When j=[i/m] and :=0 (modm) the sum in (2.6) contains exactly one
term. In this term all the [;; f=1,...,j; are equal to m.

Put m=p in (2,6) and let j > [i/p]. If z, denotes the number of integers
ly,. . .,l; which is equal to p in the nth term of the sum in (2.6) we have

Peyt+j—2, S 0,
hence

z, S [E-P/(@-1],
and

7p(8p,4,9) Z J—MaxX(2y,...,2) 2 j—[(E-J)/(p— 1),
where 6 denotes the number of terms in the sum of (2.6).
When j <[¢/2] in (2.6) there always exists a j-tuple (,,...,1;) Zg',ll',=i
such that all ;> 1, g=1,...,j. Since
l, <4, p=1,....5,
then

31 ap(m,ly) < jop(m,i) .
Hence

d‘iz,i[am.i,f .
Further, if j>[4/2] at least 2j—i of the numbers I;; f=1,...,j; in
(Ls- - 51y, 3j1lp=1; are equal to 1. Thus

M B -
From the definition it is immediately seen that
d;’;,’,,ld,’;,’,- when ¢<n,

and since

dgs,ilom, 1,5
the proof of Lemma 1 is complete.
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Put
H(z) = (=1)*a(f(2) — cof (2™) — ueg,(2)) ,
G(x) = UmH(x) - 6O‘H'(x) )

A-[a/2%] 4+ 1)i-1 . gkt
Befz) = 3 ah@)+ 3 adpi®itUETDR (),
i=1 i=A+1—[4/2%]

where a here and in the following denotes an unspecified integer not
necessarily the same one each time it occurs.

LeMMA 2. Let k21 and (—1)etDdm+D =1, Then
UntQ(z) = TTi=3 Bon, 23-tw201" B, 12(@) + By, 14 (2) f(2)}
and if cg=c,=0 then
¥y, e 2H2T "0, o () + 387k, 4 (2)f (2) if k=2

U kH(x) = :
n H@) d*m,kEk—-l,l+2-—[1/(i. 0i(®) + By 1,z+z-u/u—1)1(x)f () of k>2.

Proor. For the definition of d*,, ; see Theorem 1.
Since
(- 1)0+1xg¢,‘+1(x) = ho,i(x) ,
(2.1) gives
H(z) = 3}, ah, ;_1(%) +2h cihy, 1a(2)f (™) .
Using (2.4) and Lemma 1 we obtain
U, H(z)
= 2-2“2}3 O, 11,7 1, 1 (%) + {C17,,0 (%) +2=2ct2§';i Om, 11,71, 1 (2)}f ()
= E?; { 2=j+1a6m,i—1,jh , 1(“’) + {clh ,o(-”) + Zj-:{ 2}=j+10i6m,i—1,:ih0.1(x)}f ()
= A=1 “dm,;._ 0.1 (%) +{C1h, 0 (%) +Z};i ad'r’;t,l—lhq,;i (@)}f (@)
= ZLl“ i(x)+2.=z+1 :;1-1 ko, (@) +
+{eoCahy, 0 () + Xiagaky o (%) + 2i;+1ad:’;ﬁ—lhp,i(x)}f(xlm) .
Hence

A(z) = ¢($)+Z=A+1“d"_1— ot () +
+{26-1“ 01 (%) + '=A+1ad:r;:l—-1 by, ¢ (2)}f (™) .
Thus
(3.1) .
U, G(z) = 2 E a8y, 4,1y, (%) + Z Z :::-ﬂsm.t.l 1 (@) +

J=1 g j=1 ¢=max(j,A+1)
2i-1  2i-1

+{E Eaﬁm,¢, 0d () + Z > “d:n—ﬁ- m, i, 0,1 (2)} (@) .

Jm1dm=j j=1 f=max(j,4+1)
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From Lemma 1 we obtain
(moddf, ;)  if 1sj<[4/2]

A =
zt'-ja’am,’t,f - (modmzj"l) if [}./2] +1 §j = A )
Fi s = (moddi;3_,) if j=[3/2]
md-18m05 = O (modaied_mu—t) it 5> [i/2],

By, 21Bpn, 11 -
Further we note that
[A+1)/2] = 1—-[4/2],
and
2—-Asi—4 if js[/2].

Hence, from this and (3.1) we conclude that
A—[4/2)

24—-1 .
UnG(@) = dpa1y 3 6h;(@)+ 3 adili%Oh, ;(x)+
j-l j-).+1—-[i.l2]

A-[42) 2-1 ,
(3 a3 addlh, ) @),
j=1 J=a+1~-[4/2]

which proves the first part of Lemma 2 when k=1. Assuming the first
part of Lemma 2 for all £, 1 k< K, for some K > 1, we obtain from (2.1)

K-2 24— [4/2K-1] 22-[1/2K-1]
(32) U,XG(z) = ,rgdm,wm{ S 3 il
- j= i=g

(K+1)A-1 (B+DA-1
. /oK
+ 3 > adZ¢iri-we ’])om,i,jhe,j(x)'*‘
J=1 $=max(j, 24+ 1-[4/25~1])

24— [4/2B-1] 21-[4/2B-1]
+ ( @81n, 1,5, 5 (%) +

PR

(B+Da-1  (E+Da-1 e 11— a3
w3 S ey, b @) f).
jm1 $=max(j, 24+ 1-[4/2E-1])

Note that
[#(22—[A/25-1])] = A—[4[2K].

rd

From Lemma 1 we obtain
21~ [1/2K~1]

“am.i.f

=0 (mOddzs.m—sz-l]) if 1sjs1-[1/2K]

= 7 l(mod m¥-@-w2")  if 24+1—[A/2K] <5< 24— [A[2K1],

i=F
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S v,
maxGi, 24+ 1- (e gisKama-1 ™
(moddzf,_)) if 154~ [42K]
(modmy) if 2+1-[A/2K]<5js(K+1)A—-1,
where
(2 if 24[A25Y
== i 2] [AfeE-T,
and
(mod dZi5@i+1- 252D if j<[4/2]
m; = K2 op s B
1 {(moddm SARI-BETED i) i 5> [4)2].

Since ¢ = 24+ 1 —[1/2X-1] we note that

. o [2i—(@AH1-[A2E) i js[if2]
- (-2 = { i—(4A+1—[25-2)+ 2] i j>[3[2].
Hence
my = 0 (moddE-WeE)

From this and (3.2) we conclude that

U EG (@) = TIES O ss-wei{B e, 1-1(2) + B, 14 (@) f (2)}

which proves the first part of Lemma 2. The second part is proved quite
similarly.

LemMa 3. Let k21, (—1)etDmtD =~ ] qnd
I(@) = s 0hpm,g,1-1 () + Diep0hp 0,01 () f (2) .

U,kG(x) = d,,;/z,z—ll (=) ,

Then

and if cy=c,=0, then
U *H(z) = d,, A-—1dlrfz721,z—1l () .

Proor. From (2.1) and (2.4) we obtain
U, H(z)
= 31:} adm,}.-— m0.3 (%) F {C1hm,q,0 (%) + ;:% a'dj =1 0,1 (X)}S (2).
Hence

G(x)

= 21-2“ 0, 5-1(T) + By 0,0 () 2—1“9:(‘”) ;:1“’%,9,1 () 2}-1“99‘(“7) +
+ Z‘-zah ,1-1(®) + {a(gm, o (%) — 7, (@) + bm, 0,0 () p3 agt(z) +
+ 32021 by o, 5 (@) 33009, (2) + Xje 2 0B 51 ()} (™)
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= 2=2a’hm,o,i-—1 (=) + Z;‘Lz A, e (x®)h, Li-a (%) +
+ 3 10agh,  (#)) + 345 Ok o @, g, -4 (%) +

1<j+1

+ ZM “gfntel (x®)hy, 152 () + Z:,Lz aky, 41 (%) +

j+i<i
+ {0, (®) — g, (@) + Di_ 2 A, o (@), g () +
+ Z:"= 1 a‘”!}:n,q (=®) + Zm agfn,g (@) * i, g, 5-4() +

i<j+1

+ 347 AL @y, i (%) + Dhogaby iy (%)} (@) .

J+1<e
From the preceding and

Uﬁ(gm,o (x) - gq (x)) = 0) Uﬁxgjn,q (x2) = 0;
we obtain

UZG("‘”) = 2:2“"’71;,9,13—1 (x) +zé=2ahm,g,i—l (w)f(xmm) .
Hence, from (2.1) and Lemma 1 we get
Un@(@) = Upyp(Uy&(x))
= ;:% 1 0ys2, 4,4 P, o, 5 (€) + ;';} 2;; AOns2, 4,5 Pm, 0,5 (€)f (%)
= Ao, 11 {L(@) +1(2)f(z)} ,

which proves the first part of Lemma 3 for k=1, The validity for k> 1
is seen by induction on k. The second part of Lemma 3 is proved quite
similarly.

Theorem 1 is now an immediately consequence of Lemmata 2 and 3

when equating coefficients of the identities involving G(x) and H(x).
Theorem 2 follows similarly from Lemma 4.

Levwa 4. Let k21, A<p—1 and
Jip(@) = 2@11)1— ! ap‘—lho, (@) + 2}’:31)1" ! “Pi_lhg, (@) f(@) .

Up*G(x) = p*J @),

Then

and if cy=c,=0, then
U H(x) = p*Jp(@) .

Proor. Put m=p in (3.f). Noting that
d

p,i-1 = P>

Rp(haj@p,4,5) 2 mingc o (G-[6-4)/(P-1)]) =34,

we obtain
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and

(D x4 PP 8, 1,1) 2 MiNmaxy, 1ngigei1(t =2 +7p(8p,4,9)) > 55
hence
U,G(x) = pJy(2),

which proves the first part of Lemma 4 when k= 1. The first part of this
lemma now follows by induction on %, and the second part is proved
similarly.

We shall need the lemma

LemMA 5. Let g=y, =1, k>0, p+0>2 and v be an integer such that
o(p—1) £ 4 < (v+1)(p—-1), w(ip-1) = 2.
If ¢;,=0;¢=0,1,...,0(p—1)—1; then
Up(— 1) af (1) = {Zlao-or i e, (2) + TES 11 00 e o (@)} (@) -

Proor. Since
(—1)eHlaf(x) = 2=v(p—1)"ihq,i—1 (x)f(@P) .
(2.4) gives
Up (—=1p*laf(x) = ;;i 2=max(j+l,v(p—l)) "4%,{—1,1’%,1 (@)f(2) .
From Lemma 1 we obtain
Wp(ELmu(jﬂ.v(p-—1))ci‘5p,t—1,j) 2j-v; jzv+l;
and
E:Lmax(jn,v(p-l))ciap.i—ld =0
if j<[v—(o+1)p] or j=[v—(v+1)[p] and pto+1.
Hence
U, (= 1)Haf(z) = {Egnv-—[(v-i-l)/p] ah,, () + 2:3+1“pi'”ha.i (@)} () ,
which proves Lemma 5 for k=1. Assuming Lemma 5 for all k,1sk<K
for some K > 1, we obtain from (2.1), (2.4) and Lemma 1

v+A v+4
U,E(—1)eHiaf(x) = {,Z 2 ady,1,5h,5 (@) +
j=1 $=max(j, vp—[(v+1/pE-1])

Ki-1 Ki-1
+2 > aby . p R, (“’)}f (x)

j=1 ¢=max(j,v+1+2)

v Ki-1
= L > ah, ;(@)+ 3 ap’~*h,, (:v)} f(x),
jmv—[(0+1)/pK] jmv+l

which completes the proof of Lemma 5. If the integer » is defined by
plso+l, p>ov+l,
Math. Scand. 88 — 17
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Lemma 5 gives
Uy (—1)etaf(x) = {ah, ,(x)+ 27 a0, ;(@)}f(x); o,is an integer.
Now, using (2.1), (2.4) and Lemma 1 we obtain

Uy (=1)ptzf(x) = {a,.,h,,, (@) + ;v:vl}rll_lapi—vkq,j(x)}f(x) ,
where

Gy = aQ, 2::}1) ci—vap,i,v = (- l)v(p-l)cv(p_l)a’ .

Hence if we put

Q) = Upyr+i(—1)etlaf (@) + (= 1)@ DHey, o Uy (— 1)9+af(z),
then

Q@) = IPINT api~h,, ; ()f (%) .

By induction on £ it is easily proved that
(33)  UrQ() = pk ST tapi-osdh (@)f(2); k20,
and Theorem 3 follows immediately when equating coefficients of (3.3).

For the sake of completeness we add the case v(p—1)=1 that is,
v=1, p=2. Since ¢=y, =1, g=1=1 and ¢,=0 we have

flx) = gi(@)f (@) .
From (2.6) it is easily seen that

8g.4, = (—1)i-igi-i (i ij)

If we put
R(x) = Ugaf(x)+ Ugxf(2) ,
induction on k gives

(3:4) U R(w) = 20®+D+0m 3212 q, b, (@)f (@) ,
where a; ; are integers and
7@ ) = 0, ma(azy) =1 if k=1 (mod2);
mylag,,) = 4 if k=0 (mod2),

molas ) = 2(60—2) if ix4.
Let 8, ;,,=¢ and note that

8(n) = 0 (mod2), nx=2.
Hence from this and (3.4) we easily obtain
(3.5)  8(2%+3p — 1)+ o(2k+2n — 1) = 2(@E*+D+0/2] (mod 2AGK+D+O/2+1) |

if n=1 (mod 2). However, this result is known. In fact (3.5) was orginally
conjectured by Churchhouse [3] and proved by Redseth [9].
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4.

If we include more terms of the type s, , ,(m¥+~in—1); ¢=0,...,
k—1; on the left hand side of (1.4) the power of m may be raised to
$k(k+1). In fact we shall prove

THEOREM 4. Let A=1, g=y; =1, k>0, m>2 and (—1)e+m+l=1,
Then there exists integers (i) =1, ;(3) such that

k:ol w(i){sm.o, 1 (mk+1—in - l) —Co8m, 0,1 (m’k_in - 1)} =0
(mod m*k+Dr2) |

where
p(0) =1 and y(@) = 0 (modm?) if misodd.

Proor. From (2.1) we obtain
G(x) = 12k, 1(2)f(2™) .
Hence

UnG(z) = clzmho,l(w)f () .

By induction on £, it is now easily proved that

(4.1) UnkQ(z) = 3k 0tm, 1Oy s (@)f (@), k21,

where

(4.2) o‘m,k(i) = z_’;-i “’m,k—l(j)am,i,j; “,m.o(l) =¢?,
Co%m, k-1(1) 1f.7=1

(43)  &'mx-1(d) = | Com, k1) HC10mp1(G—1) i 1<jsk-1
€104, g1k —1) if j=F,

and

.« _ o (mode,t+lmit+1/2) if m is even
(4.4) %m,x(1) = { (modci“lm""“i(“l)/z) if m is odd .

In particular we obtain from (4.2), (4.3) and (2.7)
O k(k) = cllc+1mlc(lc+1)/2 .
(4.1) gives

U Q(@) — e imMk+ 002k, () f(2) = ZET o, (), o(2) () -
For a fixed % there certainly exist constants 2(j) =2, 1(j) such that
U, (@) — ot mbk+0r3h, (@) f(2) = SEo22(i)Und G(2) ,
where 2(j) are given as the solution of the linear equations

i 2k =Dy pg(k—1) = oy 1 (k—1), 15iSk—1.



260 GUNNAR DIRDAL

From this and (4.4) we conclude that y(I), y(I)= —2(k—1), are integers
and
p() = 0 (modm’) if m is odd.
Hence
Uyt Q(x) — oot mik+02h o (2) f(2) = — D421 9(j) Uk 46(x)

and Theorem 4 follows. A corresponding result may be obtained for the
congruence (3.5) in a quite similar way.

5.

Theorem 1 and 2 also hold when ¢;=0, and in this case Theorem 1
can be somewhat improved.

Let (—1)e+Xm+D=]1 and A=max(c,c*,) in the rest of this section.
v and 7* denote the greatest integers such that ¢,+0 and c*_, +0 re-
spectively.

In fact we can prove with a quite similar technique as before that if
7> 0 then

8, g, a(mM**1n — 1) — co'sm ea(m*n—1)
= .uq(l co)( 1)(q+1)(mn+1) (mOd sao dm,l.+1—[rl2‘]): n,k>0,
and
8y, o, 2(MFN — 1)

_ k-2 )
= pg( —1)etXmn+D) (modd,, ;_1@m, 1+a-u/G-01 L [i=t m, 1+5-ter2t));

n>0,k>2;
when ¢y=¢,=0.
If v=0 then
8,2 (M —1) = p (- 1)e+Xmn+D (modd,, ; , by dm,;-—l-—}:_llu-—l)/zil);
n,k>0.

Here we put s, =8, , ; 8ince &, , , is independent of m when 7=0.
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