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THE DIOPHANTINE EQUATION «2+11 = 3t AND
RELATED QUESTIONS

EDWARD L. COHEN*

Dedicated to the memory of W. Lj'unggren

A review of recent contributions to the study of diophantine equa-
tions of the form
22+D = p*¥, D = 3(mod4),

is presented and an alternative proof that the diophantine equation
22+ 11=3%(x = 0) has as its only solution (z,k) = (4,3) is given.

1. Review of recent contributions.
A. We consider diophantine equations of the form

(1.1) 224D = pk,

p prime, mainly when D=3 (mod4). D is assumed to be greater than
zero unless otherwise specified. We generally do not examine fully all
the results of the papers discussed below. It is well known that equa-
tions of the forms (1.1)—(1.7) have only a finite number of solutions

(e.g., see [3], [11], [19], [28], [29]).

B. S. Ramanujan in 1913 [22, 23] asked whether there were other
solutions to the diophantine equation

(1.2) QT = 2%

besides the known ones, namely, k=3,4,5,7,15. This problem was again
posed by W. Ljunggren [16] in 1943. It was first solved by T. Nagell
[20, 21], who showed that the above-mentioned are the only five solu-
tions. After that many different proofs were given (for an extensive list
cf. [10]; for recent discussions, cf. [5] and [17]). It is interesting to note
that the equation (1.2) has applications to binary error-correcting codes
[10], [24] and to differential algebras [17].
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C. Other papers involving the prime p=2 are those of Browkin and
Schinzel [6], Skolem, Chowla and Lewis [28] and Hasse [12]. These deal
mainly with the equation
(1.3) ¥+ D = 2%,

In [6], special attention is paid to the cases DeZ =0,4,7 (mod8) and
D=1 (modS8). Different proofs of the solution to the Ramanujan-Nagell
equation (1.2) are given in [12], [28]. Also in [12] a through survey of the
literature on the equation

(1.4) @+ D = I,

especially when =2 and D is odd, is presented; and further results are
obtained.

D. An extension of equation (1.2) was investigated by the author [9, 11].
Let D=3 (mod 8) such that (D + 1)/4=1p, a prime. The main result shows
that there are no solutions to the equation (1.1) when D2=19. When
D=1, we are reduced to the Ramanujan—-Nagell equation (1.2). Alter
and Kubota [1] extended these results, confirming the results of [9, 11],
and providing solutions to numerous equations of the type (1.1) when
D=3 (mod4).

E. The only equation remaining of the type mentioned in section D
ocours when D =11, from which the diophantine equation

(1.5) 22411 = 3%, zz0,

arises. Ljunggren and the author prove [10] that this equation has only
one solution, namely, (x,k) = (4, 3). The result is found in Alter and Kubota
[2], who also show that for each z the diophantine equation 2%+ 112%= 3%

has at most one solution. Another proof of the uniqueness of the solution
(*,k)=(4,3) of equation (1.5) is presented in section 2.

F. A related equation to (1.1), viz.,
(1'6) 2243 = y", k22, wzyeZ,
was considered by T. Nagell [19] and E. Brown [7]. They showed by

different congruence arguments that the only solutions to equation (1.6)
are (w’y3k)=( + 19 + 2! 2)'

G. Bender and Herzberg [4] have considered the bounds on the num-
ber of integral solutions to the equation

(1.7) ax?+D = N*¥,
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where a,N,D are positive integers. They have also prepared a survey
article [5] on diophantine equations associated with the positive definite
quadratic form ax?+ by% Bounds on solutions of many types of diophan-
tine equations including the kind discussed above are among the topics
investigated.

H. Two procedures are frequently used to obtain bounds for the num-
ber of solutions of diophantine equations or to find solutions to them:
(a) p-adic methods occur in [3], [14], [28]; (b) linear recurrences (of order
two) are employed in obtaining solutions in, e.g., [1], [2], [6], [8], [10],
[14] and [28]. Interesting expositions on p-adic methods can be found in
Skolem [25, 26, 27], Mordell [18, Chapter 23] and Lewis [15] plus several
of the references in this last study. We note also that through p-adic
methods many results on second order linear recurrences can be obtained.
There is considerable literature on this subject that we cannot go into
here (e.g., see [13]).

2. The diophantine equation in the title.
I. It is now shown that the diophantine equation

(2.1) 22+11 = 3%, 220,

has as its only solution (x,k)=(4,3). Some of the ideas of Hasse [12] as
recorded in Mordell’s book [18, pp. 2056-206] are used.

J. Even solutions. When k is even, (3%/2)2—22=11; therefore,
(342 + z) =11, (32 F ) =1.

Hence, there can be no even solutions. (We shall see in the remark in
section L another proof of the impossibility of even solutions.)

K. Odd solutions. Now, we can suppose that % is odd and write equa-
tion (2.1) as
(2.2) 3V =22+11 = (z+8)(x—9),

where y is odd and 2= —11. The equation has thus been factorized in
the field Q(d), in which the integers have the form (u+vd)/2, where
u=v (mod2), and in which unique factorization occurs.

Since 3=[(1+48)/2][(1 —8)/2], we have (x +d)= +[(1 +J)/2]¥; thus,

(2.3) [(1+8)/2—[(1—8)/2" = + 25.
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This can be written as
(2.4) a¥—b¥ = +28 = +2(a-b).
We show that the positive sign in equation (2.4) is impossible. Note
that a2=1 (modb). Then
a¥ = a(a?)V-V/2 = g (modb) ;

hence,
2(a—b) = a¥—-b¥ = a—b (modb) ;

or a = 0(modbd),

establishing a contradiction.
Using the binomial expansion (B.E.) in equation (2.3), we obtain

_ 9yl Y\_(Y Y\qq2_ :'/) w-12| .
2 2[(1) (£ (Yre-. 2 (%))

and so y= —2¥ (mod11). This has the odd solutions y=3,31,37,45,49
(mod110). It suffices to show then that (i) y=31,37,45,49 (mod110)
cannot occur; and (ii) there cannot be two solutions y,z with y~2z=0
(mod 110)—thus making y =3 the unique solution.

L. To show (i), let us list the powers of a that will be used:

20 = 146 ad = —4-9 2at = 7—54

205 = 31+6 2a° = 136—745 2a'l= 67+2535.
Note that
2011 = 67+ 2530 = 320 (mod253), or ol! = 160 = — 93 (mod 253).
Therefore,

allr = +1, +93, +47, +70, + 68 (mod253) .

We have then the following four relations:

(a) 2qilr+9 — ar +6 H,.,
where H, = +74, +51, +64, +120, + 28 (mod263);

(b) 20117+ = @, +6H,,
where H, = +5, +41, +18, +97, +87 (mod253);

(c) 2a1r41 = @, +6H,,
where H, = +1, +93, +47, +70, + 68 (mod253);

(d) 2011745 = @, +6H,,
where H, = +1, +93, 47, +£70, + 88 (mod253) ;
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eliminating, respectively, the possibility that y=31,37,45,49 (mod 110),
i.e., demonstrating that the coefficient H_ /2 of d in the above a¥ cannot
be +1, or the form x + 8 cannot occur.

Remark. The same type of argument shows that y=11r+s (mod 110)
is eliminated for 8=2,6,7,8,10 (mod11). Thus we have another proof
that even solutions, where y=8,10,46, 62,94 (mod 110), cannot exist.

M. To show (ii), we suppose that 117 is the highest power of 11 dividing
z—y. Then
(2.6) @ = Vo = av(FFI(1+8) ;

and, using the B.E., we obtain

(2.6) (B = ((3Y0)=-97° = 1 (mod 11m+1) .
Also we want to obtain the following modulus:

(2.7) (148)*Y = 1+ (2—y)d (mod 11m+1) |

Letting P=(1+6)1"", and using the B.E., we get that P=1+11m)
(mod11m+2), Since 11™ divides z—y and (2—y)/11™= 2, we have (again
using the B.E.)

Pe-v/m™ = 14 (z—y)8 (mod 11m+1) |

proving relation (2.7). Now,
av = [(1+8)/2] = (1+y6+(g)62+ . .)/2v = (1+8)/2¥ (mod11).

Hence,

(2.8) Wa¥ = 14+yé+ 11T .
From relations (2.5) — (2.8), we have, therefore, that
(2.9) a® = a¥+ (z—y)8/2Y (mod 11m+1) |
Similarly,

(2.10) b* = ¥ —(2—y)d/2¥ (mod 11m+1) ,

By subtracting (2.10) from (2.9), and recalling that av—b¥=a?—b*=
— 28, we find that
(z—y)8/2v-1 = 0 (mod 11m+1)

This yields the fact that Z— y=0 (mod11m+') gince z and y are both
rational; hence, a contradiction is established.

N. It was proved in [11] and noted in section D that there are no so-
lutions to equation (1.1) when p= (D + 1)[4, 19 < D=3 (mod8). This prob-
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lem can also be resolved for each p by the procedure used in section L
by letting @=(1+ )/ —D)/2. This is guaranteed because we already know
that no solutions exist. However, as D increases, the computation would,
in general, become unwieldy.
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