MATH. SCAND. 38 (1976), 211-239

ON LONGEST PATHS AND CIRCUITS IN GRAPHS

TUDOR ZAMFIRESCU

0. Introduction.

In this paper we are concerned with undirected connected graphs,
without loops or multiple edges. Let p(@) (¢(@)) be the maximal number
of vertices that a path (circuit) of the graph G may have. The length of
a path or circuit will be its number of vertices (not edges!). A path (cir-
cuit) in @ of length p(Q)(c(®)) is also called longest path (circuit) of Q.
In [19] we introduced the numbers P,J,C,J, P,3,C)f (j and k are natural
numbers). They are defined as follows:

Let P, =o00(C)=oc) if there exists no k-connected graph @ such that
for each j of its vertices there exists a longest path (circuit) in @ avoiding
them. If, on the contrary, there are such graphs @, then let P,3(C,7)
denote the minimal number of vertices G may have. Analogously are
defined P,/ and C,J, for which the above definitions are restricted to
planar graphs. (In the case of circuits (and for k=1), & is supposed not
to be a tree.)

T. Gallai has asked (we reformulate his question by using one of the
above numbers): ’Is P,! < 00 ?”’ [5]. This surprisingly nontrivial question
was answered by H. Walther in the affirmative (his example is a graph
derived from part of Figure 2 of W. T. Tutte [15]). Thus, the desire of
determining (or at least to know more about) all the above numbers
appears as quite natural. Some results in this direction are given in this
paper.

I am very much indebted to the referee, who read in great detail
the manuscript and so found out several errors and made precious im-
provements. The present form of Lemma 13 belongs to him.

1. On the B,"s and C,Vs.

1.1. First we remark that P,/ and C)/, involving k-connected planar
graphs, have a sense only for k<5.

The graph used by Walther to answer Gallai’s question is planar;
it shows P! < 25 [17].

Received May 31, 1974; in revised form December 8, 1975.
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The graph of Figure 1 provides P, <20 and will be used later.
Now, we consider the graph A of Figure 2. 4 has 15 vertices. The
proofs of the following lemmas are easy.

Fig. 1. Fig. 2.
LemMma 1. The longest paths of A joining a with b have 12 vertices.

Lrmma 2. For each vertex v of A different from a and b, there exists a
path of length 12 joining a with b and avoiding v.

LeMMmA 3. There exists a path of length 14 in A, which has an endpoint
in a and misses b (by symmetry, there also exists a path of length 14, with
an endpoint in b and missing a).

LemmMma 4. The graph A has no hamiltonian path.
TrroRrEM 1. P,1 <19,

Proor. Consider the graph B of Figure 3. B has 19 vertices.

First we prove that p(B)=16. Obviously 4 is a subgraph of B. Follo-
wing Lemma 1, the longest paths of B joining ¢ with d have 16 vertices.
Thus, p(B) = 16. Let W be a path in B. If one of the endpoints of W is a,
¢, or the vertex between them, and the other endpoint b, d, or the vertex
between them, then W has at most 4 vertices more than a subpath of

Fig. 3.
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W joining @ and b, which by Lemma 1 has at most 12 vertices. If one of
the endpoints of W is a, ¢, or the vertex between them, and the other
endpoint is different from b, d, and the vertex between them, W clearly
does not contain the vertex d and that between b and d. Also, it cannot
contain all the other vertices, because otherwise its restriction to A
would be a hamiltonian path of 4, which contradicts Lemma 4. Finally,
omitting a case symmetric with the preceding one, if W has no endpoint
outside A, then all 4 vertices of B not in 4 do not lie on W. Thus p(B) = 16.

Now we prove that for each vertex v of B, there exists a path of length
16 avoiding v. If v is in A, but is different from & and b, then such a path
is provided by an obvious extension of the path of length 12 joining a
with b in 4 and avoiding », given by Lemma 2. If » is b, d, or the vertex
between them (similarly if v is a, ¢, or the vertex between them), then a
path of the demanded kind can be obtained by an obvious extension
of the path of length 14 in 4, which has an endpoint in @ and misses b,
given by Lemma 3.

1.2. The inequality P,! < 82 (Zamfirescu [19]) which first demonstrated
the finiteness of P,! can be drastically improved.

THEOREM 2. P,1< 32,

Proor. Consider the graph C of Figure 4, the subgraphs 4 and A’
of which are isomorphic with the graph of Figure 2. C' has 32 vertices.
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First we prove that p(c)=29. Consider a path W, of length 12 joining
in 4’ the vertices a’ and b’ (the existence of W, is guaranteed by Lemma 1)
and a path W, with 14 vertices lying in 4, having an endpoint in a,
and missing b (the existence of which is guaranteed by Lemma 3). Then
b, r, W,, ¢, W, determine a path of length 29 in C. Thus p(C) = 29.

Let W be a path in C.

CasE 1. No endpoint of W isin A —{a,b}. If Wn A —{a,b}=0, then
W has at most 19 vertices. Otherwise, W contains ¢ and b, and all the
vertices of A belonging to W lie on the subpath W* of W joining a with b.
But Lemma 1 asserts that at least 3 vertices of 4 do not belong to W*,
whence W has at most 29 vertices.

Casg II. No endpoint of W is in A'—{a’,b'}. (Analogous to Case I.)

Case IIL. One endpoint of W is in A — {a,b}, and the other endpoint of
W isin A’ —{a’,b'}. In this case it is clear that exactly one of the vertices
g and r is in W. Also, we easily see that Wn 4 and W n A’ are both
paths. But, since by Lemma 4 W n 4 is not a hamiltonian path of 4
and W n A’ is not a hamiltonian path of A’, there exist two more ver-
tices not lying on W, whence W has at most 29 vertices.

Thus p(C)=29.

Now we prove that for each vertex » of C there exists a path of length
29 avoiding v. Remember first that we already constructed a path of
length 29 determined by b, r, W, q, W,. Let v be a vertex of 4’ different
from a’ and b'. By Lemma 2, there exists a path W, in A4’ joining @’
with &', missing v, and having 12 vertices (as many as W,. Then clearly
b, r, W,, g, W, determine a path of length 29 avoiding v. 4 symmetrical
construction can be performed if v is in 4, different from a and b. If
vis b, r, or b’, consider a path W,’' in 4’ of length 14 which has an end-
point in @’ and misses b’ (and existing by Lemma 3). Then W', q, W,
determine a path of length 29 which misses v. (Analogously, if v is a,
g, or a'.)

1.3. The first to prove the finiteness of P;! was B. Griinbaum, who
established Pyl < 484 [9].

Let @ and G* be two graphs. The vertices of G* have degree at most
3; three of the vertices of @ are defined as endpoints. Let Q(Q,G*) be a
graph (in general not unique), with the following properties:

1) (@,G*) admits the family & of subgraphs, with UZ = (&, G*),
2) each @' € ¢ is isomorphic to @,
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3) each two distinct graphs of ¥ are disjoint or have one vertex in
common, which corresponds in both of them to an endpoint of G,

4) there exists a bijective function from % to the vertex-set of G*
such that two distinct graphs in & are not disjoint if and only if the
corresponding vertices of G* are adjacent.

5) no vertex of (@, G*) belongs to more than two graphs of 4.

If now three vertices of degree two of G* are defined as endpoints,
then each graph G of ¥ which corresponds to an endpoint of G* has
exactly one endpoint which belongs to no graph in ¥ except G'. These
three vertices we define as endpoints of (@, G*).

Throughout the paper, graphs of the type (@,G@*) will repeatedly
play a central role.

In this subsection we consider the complete graph K, on 4 vertices
and the graph K of Figure 5, which first appeared as a subgraph of a

Fig. 5.

graph in [9]. The vertices a, b, ¢ of K we call endpoints. The graph
LK,K,) (here one has unicity!) possesses 478 vertices and is 3-connec-
ted. It can be obtained by just contracting 6 of the edges of the graph
used by Griinbaum in the proof of the second part of Theorem 1 from [9].

Theorems 4, 5, and 12 suggest that &(K,K,) could be used to prove
P,l<478. This is however wrong! All its longest paths (which have
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length 474) contain the six 4-valent vertices. Very much responsible
for this is the fact that K is hamiltonian.

1.4. W. T. Tutte [16] proved that each 4-connected planar graph is
hamiltonian; thus P,j=co for all j. Then, of course, Py = oo too (j arbi-

trary).
1.5. Tueorem 3. C,'=6,0,2=9 and C,/ < 3j+3.

Proor. It is easy to see that there exists a connected graph with
3(j+1) vertices which contains j+1 disjoint triangles and no other
circuits. Any such graph demonstrates the inequality C,7 < 3j+ 3. That
0! >5 and C,%> 8, it may be seen by investigating all connected planar
graphs on up to 8 vertices.

1.6. C. Thomassen (private communication) found the graph of Figure
6, which shows C,!<15. This improves considerably the inequality
0,1 <105, which can be derived from an example of Walther [17], who
first established the finiteness of C,!. I believe Cyl=15.

TFig. 6.

1.7. Griinbaum [9] was the first who proved the finiteness of Ol
To do this he used the graph 7' of Figure 7. Thomassen [14] found re-
cently planar hypohamiltonian and planar hypotraceable graphs. I am
indebted to B. Toft and to the referee, who informed me about Thomas-
sen’s discoveries. The existence of a 3-connected, planar, hypohamil-
tonian graph with 105 vertices proves C,! < 105.

1.8. Tutte’s paper [16] yields C,/ = 047 = o for every j.



ON LONGEST PATHS AND CIRCUITS IN GRAPHS 217

Fig. 7.

2. On the P,?’s and C,2’s.

2.1. We consider now the graph J of Figure 8a and again the graph
K of Figure 5. The vertices I, m, n of J and a, b, ¢ of K we shall call
endpoints of J, respectively K. J has 14 vertices, K has 121 vertices.
The following lemma is straightforward.

Lemma 5. The longest paths of J joining two of its endpoints have length 12.

LemMa 6. For each vertex w in J, there exist two endpoints of J and a
path of length 12 joining them without containing u.

Proor. Figures 8a-8e show for all essentially different vertices of J

longest paths avoiding them.
The following two lemmas result from comments made by Griinbaum
In [9] on the graph 7' (our Figure 7).
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Fig. 8a. Fig. 8b. Fig. 8c.

Fig. 8d. Fig. 8e.

Lemma 7. The longest paths of K joining two of its endpoints have length
118.

LemmA 8. For each vertex v in K, there exist two endpoinis of K and a
path of length 118 joining them without containing v.

The existence of the circuit indicated on Figure 5 proves
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LrzmMma 9. The graph K is hamiltonian.

Let U be the graph of Figure 9. This is a nonhamiltonian graph, dis-
covered (independently) by E. J. Grinberg [7] and Tutte (see [8, p. 1145]
and [6]). U has 44 vertices, while ¢(U)=43 [9].

Lemma 10. For each pair of nonadjacent edges in U, there exists a cir-
cuit of length 43 in U avoiding those edges.

Proor. Table 1 contains longest circuits in U. We shall now indicate
for each pair of edges of U a longest circuit avoiding them. V&EWX =z
means: the circuit numbered with z on Table 1 does not contain the
vertex V and the edge WX. VW&XY =2 similarly means that VW
and XY are not on the z-th circuit of Table 1. VEWX(V'&W'X' =z)
indicates that we replace V and WX through V' and WX’ by symmetry
and V'&W’'X'=z. (Analogously for VW&XY(VW'&X'Y’ =2).)

The symmetry of U allows us to reduce the number of considered
cases. We have:

A&CD,=1; A&D,D,=2; A&D,E,(A&D,E;=1); A&E,F,(A&E,F, =
1); A&E,G,=1; A&G,H,(A&GH,=1); A&H,J,(A&H,J,=1); A&F,J,
(A&FyJ3=3); A&G,Gg(A&G,G;3=1); A&H,K,=1; A&K,L(A&K,L=1);
A&C,Cy(A&C,Cy=1). AB&B,C,=5; AB;&B,C,=12.

C,&C,D,=7; C,&D,E,=5; C,&E,G,=17; C,&G;G3=5; C,&G,E;=7;
Ci&EgDy=5; C,&D3C3=7; C,&C4C,=5; C,&E,F,=8; C,&FJ,=9;
C,&J,H,=5; C,&H,G,=6; C,&H,K;="7; C,&K,H,=5; C,&H,G,=6;

TaBrLr 1
Missed Nr Circuit
vertex
A 1 B;C;CeB;C;D;DEGCG,H,J,F,E,D,D,E,G,H,K,LK,H,

J ¥ Ey G H K, H, G B, F,J,H G, E; D, D,C,B,C5Cy

A 2 B,C,D:E G H,K,HGeEgDeCoBsCiDs EgF3d s H GG (E(D,
0,B,C,D,E,F,J,H,K,LK,H,G,GyH,J,F,E,D,C,

A 3 B,C,04B,CsD;DEqF;EgCy HyJ sHeGeG, H, K, LK, H,G, E,
¥,J,H;K H,J,F, E; D, D, E,GyG3E,D;D,C,B,CyCy

B, 4 AB,C,DD,C,C;D,E Gy Gy EFLE G H I H, K H,J, FL By
D,0,CsDE Fyd ;H,GeG H, K, LK, H G E;D;C; B,

C, 5 AB,CyD,D.E;GyH,J F1EyGyH, K, LK, H,GoEgF 3T H K,
H,J,H,G,E FyE GG EsDyDyCyByCsCD(DsC3 By

c, 8 AB,C,D,D,E,GH,K,LK,H,J;H,GeEeFsEsCyGH,J,H,
KSHIJIFIE 2GﬁGGESFIElDlDSCSBQCGCBDGD CCBB 8
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TABLE 1 (cont.)

Missed Nr Circuti
vertex
C, 7 AB,C,C,B,C,C;D,E.F,J,H.G,G.E,D,D,E,F,J,HK,L

KyHyGyGoHod 1 FL E, D DL Ey G H K H G EgDgCo By

C, 8 AB,C,C;B,C,CyD,EyGyH, K, H,GE,D,DyE,F,J,H,G,G,
E,D,D,E,F,J,H,K,LK,H,G,GHJ F,E.DC,B,

C, 9 AB,C,D,D,E,F,E,G,G,E.F,B,G,C,HyJ H, K, LK, H,J,
H K H,J, H,G,GEF,ED;D¢C,B;C;C,D,D,C;B,

C, 10 AB,C,CyD,EFy);H,G30,H,K,LK,H,J,F,E,D,D,E,G,
GeH e 3 FsEeDCoB3Cs D E; G H K, H,G,E,D,C,B,

C, 11 AB,C,D,DE,CyH,J F E;GoH, K, LK, HoGeEF,d s H K,
H,G,G5EsDyDgCeByCsC,D,E F,T,H,G,E,D,C, B,

D, 12 AB,C;CeByC;D;DeEqCeH I FoE,G,H, K, LK, H,G,E.F,
J,H,K,HJ,H,G,E,F,E,G;G,E,D,C,C,D,D,C,B,

D, 13 AB,C,CeB;CyDsDeEeGeH KoLK H I 1K, HyJ yFoEgGry
G,EF,E,G,G,H,J,H,G,E,F,E,D,C,C,D,D,C,B,

D, 14 AB,C;D;D,0,C;D,DEeF,E;CyG B F,E G, H,J, H, K, H,
T H GG, E,F, T, H,K,LK,H,G,E,D,C,B,C,C,B,

D, 16 AB,C;D,E Fod ;H, K, HyJ yFy EeGeHo K, LK HyGyOp Hyd s
HIGIE1F1E2D202BICICGDGD5E5G5G4E4DACACSB3

D, 16 AB,C;CeD EeGeHKH, G E,FJ (H,GE,DyCoC,B,CsD,
D,E,G,H,K,LK,H,J,F,E,G,G:H T, F,ED,C;B,

D, 17 AB,C,CoDD;E;G;GH,K,HJ FpEeCeH K, LK, H,J . F,
E,D,D,E;G,G,H,J, H,G,E,F,E,D,C,C,B,C,C;B,

E, 18 AB,C,C;D,D,E,F,E,G,G,H,K;HyJ,H,G,CsE,D,DeEqF,
J,H,K,LK,H,GG,H,J,F,E,D,D,C,C¢B,C;C,B,

F, 19 AB,C,C,B,C,CeDD,E,GH K, LK H,J, H, K, HoJ FyEq
G¢G4E,D,D,E,G,GsH.J, H,G,E,F,E;D;D,C,Cy By

F;, 20 AB,C,D,E,G,H,J,H,KH GG E;D;C;CeB;C;C,D,E.Fy
J,H,G,CsE; DD EoFy T H K, LK, H,G,E,D,C,B,

Gy 21 AB,C;0yDeDsEyFsEqCH o) Hy0p Gy D Dy EyF o0 . H,K,
LK,H,J,H,K,H,G;G,E,F,E,D;D,C,C;B,C,C; B,

G, 22 AB,C,D,E,F,J,H,K,H,GoEFoJ ;H, K, LK;H,G,E,D,C,
CSD8DAE4F!E3G8H3J2H4G4GEE5D5DGCCBSCSC4B2

G; 23 AB,C,D,EsF{E,D,C,CeB,C;C,D,E,Fyl ;H,K,LK,H,G,
G H,J,F,EyDyDyEoGeH K, H,J,H,(,G,E,D,C,B,

G; 24 AB,C;04B,CyDsDeEeCeH I o FoEs G H, K, LK, H,J, H,K,
H’J2H4G4E4F2E3G3GIEIFlElDlDﬁcﬁcaDaDLCGBﬂ

H, 25 AB,C,D,E.FyJ,H,G,G,E,F,J,H,K,LK,H,J,F,EG.H;
K,H,G,ED,C,C;D;DsEGG1E, D, D,C,B,C,CsBy

J. 26 AB,C,D,E,GyHyJ,F,E.D,C,CsD;D.EF,E;G;CH,K,H,

T3 H,GGH,K,LK,H,G,E,F,E,D,D,C,B,C,CeB,
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C,&HyJ,=17; C&JFy=5; C,&F,E;=11; C,&F,E,=7; C,&E,D,=5;
C,&DD;=10; C,&D,C,=6; C;&CB,=5; C,&B,C,;=10; C,&E,G,=6;
C,&G,G;=8; C,&G;E;=7; C,&E;Dy=6; C,&D,C;=5; C,&C,C,=10;
C,&G,H,=5; C,&H,J,=8; C;&H,K,=6; C,&K,H;=17; C,&H,G;=5;
C,&HJ;=8; C&J;F3=6; C,&F;E;=5; C,&F;E;=7; C,&ED¢=5;
C&DgDs=17; C,&ByC;=6; C,&EgGe=8; C &G¢G,=5; C,&G,E,=8;
0,&JHg=5; C,&HG=9; C,&HK,=6; C,&K,H,=5; C,&H,G,=10;
C,&H,J,=6; C,&E,F,=5; C,&K,L=17; C,&LK;=6; C,&LK,=5.
C,B,&CeB,=4; C;B,&CD;=18; C,B,&D,E,=18; C,B,&D,D,=4;
0,D,&CeB;=19; C,D,&CDy=12; C,D,&B,C,=12; C,C&D,E;(C,Cs&
D,E,=5); C,Ce&D,D,=2; C;C,&B,C, = 22.

D,&E,G,=13; D,&G,G,=14; D,&G,E;=15; D,&E,D,=12; D,&
E,F,=12; D,&FJ,=13; D, &J,H,=14; D,&H,G,=12; D,&H,K,;=13;
D, &K H,=14; D,&H,Gy=12; D,&H,J,=15; D,&J,F,=12; D,&F,E, =
16; D,&F,E,=15; D,&E,D,=12; D,&DD;=15; D,&E,G,=17; D,&
G,G5=12; D,&G;E;=16; D,&E;Ds=12; D,&G,H,=13; D,&H,J,=17;
D,&H,K,=12;D,&K,H,=16; D, &H,G,=13; D, &H,J,=12; D, &J,F, =
14; D,&F,Ey=15; D,&F,E;=12; D,&ED,=15; D,&D¢D;=16; D,&
E¢Gg=14; D, &GG, =12; D, &J H,=13; D;D,&H Gy(D,D &H,G,=25);
D,E,&HG4(D;E;&H,G,=6); D, &HK,=12; D,&K,H,=13; D,&H,G,
=14; D,&H,J,=12; D,&K,L=16; D,&LK,=12; D,&LK,=13. D,D,&
E,C,=4; D,D,&E,F,=2; D,E,&D,E,(D;E;&D,E,=4).

F,&G,G;=20; F,&G;E,=19; F,&G,H,=19; F,&H,K,=20; F,&
K H,=19; F,&H,Gy(F,&HGe=19); F,&H,J,=20; F,&J,F,=19; F,&
F,E;=20; F,&F,E,(F,&F,E,=19); F,&E,G,=20; F,&G,G;=19; F,&
G, H,(F, &G H,=20); F,&H,J,(F,&HJ,=19); F,&H,K,=19; F,&LK,
(F,&LK,=19); F,E,&LK,=5; F,J,&LK,=26. F,E,&E,G,=18; F,E; &
J,H,=25; F,E,&J,H,=18; F,J,&E,G,=21.

G1&E,G,=23; G,&G3E,=21; G,&EG,=22; G,&G,G;=22; G,&
I H,=22; G,&H,G,=21; G, &H,K;=23; G, &K;H,=22; G, &H,G;=23;
&, &H,J,=21; G, &G,G,=24; G,&G,H,=21; G, &HJ,=23; G, &H,K, =
22; G,&K,H,;=21; G,&H G;=22; G,&HJ,=24; G &J;He=22; G;&
HK,=21; G,&K,L=22; (,&LK,=21; G,E,&LK,=1; G,H,&LK,
=26; (,Ge&LK,=5; G,E,&H,J,=4; GE,&H,K,=1; G,E,&GE;=4;
GiE,&GHy=1; G,H, &G Hg=19; G,G&H,J, =12; G,G&H,K,=5.

J,&KH, = 26; I, H,&HoJ o(J, H, &HeJ, = 7); J,H, &HyJ,=16; J, &J,H,
=26; J,H,&H,K,=18; J,H,&H,K, =4; J,H,&LK;=18; J H,&LK,=4;
J,&LK, =26, J,H,&H,K,(J, H, & H, K, =1).

K,L&KH,=1; K,H,&KH,=19; KH&K,H (K, H;&K;H,=6);
K\ L& K, H,(K,L&K,H, = 19); K, H; &K, H,(K,H &K H,; = 26).

Thus, Lemma, 4 is proved.
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It is now an easy matter to derive from Lemma 10 the following

Lemma 11. For each pair of edges in T, there exists a circuit of length
121 avoiding those edges.

The following two lemmas are consequences of Lemma 11.

LemMma 12. For each pair of edges of K, there exists a hamiltonian cir-
cuit or a path of length 118 joining two endpoints of K, which does not
contain those edges.

LemMA 13. For each edge and each endpoint of K, there exists a hamil-
tonian circuit missing that edge or a path of length 118 joining the other
two endpoinis of K and missing that edge.

TrEOREM 4. P,? < 6050.

Proor. We construct
M = (&J,K),K,),

such that in each of the £(J, K)’s the endpoint ! of each of the J's always
corresponds to an edge of K which is not contained in a triangle or is
an endpoint of that (J,K).

Let P be a longest path of M. We prove that P has 5263 vertices.
There are four different cases with respect to the way in which any
path can go through the four subgraphs L,, L,, Ly, L, of M isomorphic
to &(J,K). They are illustrated in Figure 10.

Case 1. P has an endpoint in the subgraph L, of M, isomorphic to
2(J,K), more precisely in a subgraph J, of L, isomorphic to J. By
Lemma 9, P goes through the interior (i.e. not only the endpoints) of
each of the 121 subgraphs of L, isomorphic to J. Suppose J; is
once revisited (we mean its interior); then P contains all the vertices
of J,. By Lemma 5, P has in each of the other 120 J’s of L, exactly 12
vertices. Thus P has 1333 vertices in L,. If P does not revisit J; but
contains all its vertices, then the same argument implies P has 1334
vertices in L,. Such a path P can be obtained, for example, by developing
a hamiltonian circuit of K reduced to a hamiltonian path beginning at
an endpoint of K. (In this case J; corresponds to a vertex of K adjacent
to an endpoint of K, and the position of J, in L, — see the construction
of M — allows P to include a hamiltonian path of J,.) Therefore, J; is
not revisited. By Lemma 7, P avoids the interior of three of the 121
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subgraphs of L, isomorphic to J. Following Lemma 5, P has in each of
the other 118 exactly 12 vertices. Thus P has 1299 vertices in L,. Ana-
logously, P has 1299 vertices in L, and 1334 vertices in Ls. It follows
that P has length 5263,

g L, i
Ly Case I. L v

ase 11,
Case III. Case IV, h
Fig. 10.

Casg II. P begins now in L, and revisits L, after passing through L, and
L,. Let P,, P, be the two subpaths of P lying in L,. Let J, be the subgraph
of L, isomorphic to J in which P (and P,) begins (it is easily seen that P
cannot begin in a vertex belonging to two different subgraphs of L,
isomorphic to J). Like in Case I we see that J, is not revisited by P,.
Suppose J, is revisited by P,. If « is the number of vertices P, has in
Jy and B the number of subgraphs of L, isomorphic to J through the
interior of which P, passes, then P, has «+ 11(8—1) vertices in L, and
P, has 11(121 — )+ (14— ) =1345— 118 —x vertices in L,. Thus P has
1334 vertices in L,. If P, does not revisit J, but P, contains all the ver-
tices of J,, then P, has 14 + 11(8— 1) vertices in L, and P, has 11(121 —p)
+1 vertices in L,. Thus P has 1335 vertices in L,. Therefore, J; is not
revisited by P,. Like in Case I one sees further that P has 1299 vertices
in each of the subgraphs L, and L,, and 1334 vertices in L,. Since now
four vertices have been counted twice, P has again length 5263.

Casg III. Like in the Cases I and II, we show that P has 1335 vertices
in each of the graphs L, and L,, and 1299 vertices in each of the graphs
L, and L,. Therefore P has again the expected total length 5263.
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Casg IV. P begins and ends in L;. The subgraphs J; and J, of L,
isomorphic to J in which P begins and ends are distinct. P has in each
of the other 119 subgraphs of L, isomorphic to J 12 vertices and in each
of the graphs J; and J, 14 vertices. Thus P has 1337 vertices in L,. Now,
like in Case I, we prove that P has 1299 vertices in each of the graphs
Ly, Ly, L,. It follows that P has length 5230, which contradicts the
fact that P is a longest path.

In conclusion we can have only Cases I, II, III, and P(M)=5263.

We prove now that for each pair of vertices », w of M, there exists
a longest path missing them.

Case A. v and w belong both to the same subgraph J, of L,, isomorphic
to J. Let u be the vertex of K corresponding to J,. By Lemma 8, there
exists a path of length 118 joining two endpoints of K and missing u.
This path can be easily developed to a path with 1299 vertices lying in
Ly, joining two endpoints of L,, and not containing vertices from J,.
Further this path can be extended to a path of length 5263 in M, like
P in Case II above.

Case B. v and w belong to different subgraphs J, and J, of L,, isomorphic
to J. By Lemma 6, there exists two paths z,,n, of length 12 each, the
first joining two endpoints of J, in J; and avoiding v, the second joining
two endpoints of J, in J, and avoiding w. Let z; be the endpoint of J,
which is not an endpoint of #; (¢=1,2). If 2, is not an endpoint of L,,
then z;, belongs to two subgraphs, each of which is isomorphic to J.
These subgraphs correspond to the endpoints of a certain edge ¢; in K.

Suppose 2, and z, are not endpoints of L,. If some hamiltonian cir-
cuit of K misses both ¢, and e,, then there exists a hamiltonian path
of K having exactly one of its endpoints in an endpoint of K belonging
to a triangle which contains none of the vertices corresponding to J;
and J,, and avoiding both &, and &,. This path can be easily developed
to a path mg in L, of length 1334 (see Case I above) such that =, n, be
subpaths of it, one of its endpoints be an endpoint of L,, and z; be not
on my—n,. Then clearly v and w are not on n,. Further 753 can be exten-
ded to a path of length 5263 in M, like P in Case I above. If no hamil-
tonian circuit of K misses both ¢ and &, then, following Lemma 12,
there exists a path of length 118 in K joining two endpoints of K, such
that ¢, and &; do not belong to it. This path can be easily developed to
a path m, in L, joining two endpoints of L,, being of length 1299, and
admitting x, and n, as subpaths. Clearly again, v and w are not on 7,
and 7z, can be extended to a path of length 5263 in M, like P in Case II
above.
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Suppose z, is an endpoint of L, z, is not. By Lemma 13, there exists
a hamiltonian path in K avoiding e, and having one of its endpoints
in an endpoint of K belonging to a triangle which contains none of the
vertices corresponding to J, and J,, or there exists a path of length
118 in K joining the endpoints of K which do not correspond to J,
and avoiding &, The proof follows like above.

If 2z, and 2z, are both endpoints of L,, we take a hamiltonian path
in K with en endpoint in the endpoint of K which does not correspond
to J, or J,, and proceed again as above.

CasE C. v and w belong to different subgraphs Ly, L, of M. Construct
like in Case B the paths z; in L, and =, in L,, each of which lying in a
subgraph isomorphic with J, and consider also the vertices z;, 2, (intro-
duced as in Case B). If z; is not an endpoint of L;, we define like in
Case B the edge ¢, of K.

Suppose 2z, and z, are not endpoints of L,, respectively L,. Then there
exists in K, by Lemma 13, a hamiltonian circuit missing ¢; or a path of
length 118 joining two arbitrary endpoint and missing e,(i=1,2). Con-
gider the following property:

(P,) ¢; belongs to the same triangle T, as one of the endpoints of K, with-
out being adjacent to it.

Cask 1°. (P,) and (P,) hold. Suppose 2, is not the endpoint of L, be-
longing to L, or z, is not the endpoint of L, belonging to L. There
exists a hamiltonian circuit in K missing ¢. We can reduce in two
ways this circuit to a hamiltonian path =, joining an endpoint of K
with a vertex which is not adjacent to & (¢=1,2). These paths x," and
m,' can be developed to two paths m; in L; and m, in L, including z,
and 7, respectively, and of length 1334 each. Further 7, and 7, can be
extended to a path of length 5263 in M, symmetric to that shown in
Figure 10 (Case I), with the endpoints in L, and L,.

Suppose now that both 2, and z, belong also to L,. There exists a path
n/ of length 118 in K joining two endpoints of K and avoiding 7'; (i =
1,2). The paths ;" and 7, can be developed to two paths @, in L, and
7y in L,, including s, and 7, (respectively), and of length 1299 each.
Further 74 and 7, can be extended to a path of length 5263 in M like in
Figure 10 (Case II).

Casg 2°. (P,) holds, (P;) not. Again, there exists a path =" of length
118 in K joining two endpoints of K and avoiding 7. Also, a) there is a
hamiltonian circuit missing e, or b) there exists a path of length 118

Math. Scand. 38 — 15
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joining two arbitrary endpoints of K and missing ¢,. In the subcase
a), we are able — since (P,) doesn’t hold — to reduce the hamiltonian
circuit to a hamiltonian path z,” beginning in an arbitrary endpoint
of K, that we may choose conveniently. Thus, the two paths #," and x,’
can be developed to two paths 73 in L, and n, in L,, including x, and =,
(respectively), the first of length 1299, the second of length 1334. Further
ng and 7, can be extended to a path of length 5263 in M with a shape
like that shown in Figure 10 (Case I), but with one endpoint in L, and
the other in L, or L,. In the subcase b) we are led to a shape like in Figure
10 (Case I) (L,—L,—L,~—L,), Figure 10 (Case I) (Ly—L,—L,—L,),
or Figure 10 (Case III) (L~ L, ~ Ly~ Ly— L, — Ls).

The case that (P;) doesn’t hold and (P,) holds is symmetric to Case 2°.

Casg 3°. Neither (P,), nor (P,) holds.

SuBcASE a): There exists a hamiltonian circuit missing ¢, (¢=1,2). In
this subcase we are able — since (P;) don’t hold — to reduce the hamil-
tonian circuit to hamiltonian paths beginning in conveniently chosen
endpoints of K. The shape of the final path of length 5263 in M will be
symmetric to that of Figure 10 (Case I), but with the endpoints in L,
and L,.

SUBCASE b): There exists a path of length 118 joining two arbitrary end-
points of K and missing ¢, and a hamiltonian circuit missing &,. In this
subcase we are again able to reduce the hamiltonian circuit to a hamil-
tonian path beginning in a conveniently chosen endpoint of K, and also
to choose conveniently the endpoints of the path of length 118. Thus
we finally obtain a longest path in M, the shape of which is for example
like that indicated in Figure 10 (Case I), but with the endpoints in L,
and L,.

The subcase obtained from Subcase b) by replacing e, with & and
vice-versa is analogous to Subcase b).

SUBCASE ¢): There exists a path of length 118 joining two arbitrary end-
points of K and missing & (i=1,2). Since the endpoints of these paths
can be chosen arbitrarily (by Lemma 13), we can eventually obtain,
for instance, a path like that of Figure 10 (Case II).

The case that one or both of the points 2,, z, are endpoints of L,, Ls
doesn’t need to be treated separately, because it suffices to immagine
that property (P,;) holds when z; is an endpoint of L;, and then to pro-
ceed as above. Indeed, we used — each time (P,) did hold — paths in
K that missed not only e, but all the triangle 7',. Thus, the developed
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paths 73, 7, didn’t contain the endpoints of L,, L, belonging to J’s
which correspond to vertices (endpoints of K) of 7', 7',.

M has 6050 vertices. It is easily seen that £(J,K) is 2-connected.
Since K, is also 2-connected, M is 2-connected too. Theorem 4 is com-
pletely proved.

2.2. THEOREM 5. P2 < 57838.

Proor. The graph
M = XK,K); K,)

has 57838 vertices. Since K is 3-connected, £(K,K) is 3-connected too,
and because K, is also 3-connected the same can be said about M’.
The proof of the facts that p(M')=255933 and that for each two vertices
v, w of M’ there exists a path of length 55933 which misses both of them
is almost identical with that of Theorem 4. The only modifications con-
sist in considering K instead of J and Lemmas 7 and 8 instead of Lemmas
5 and 6, respectively.

2.3. The graph T of Figure 7 has 124 vertices and 186 edges.

LeMma 14 (Griinbaum [9]). We have ¢(T) =121 and each vertex of T
18 missed by some circuit of T of length 121,

TrHEOREM 8. C,? < 1550.

Proor. The reader who followed the proof of Theorem 4 will have no
diffeculty in understanding that of Theorem 6.

Let §=8(J,T). If G is the graph obtained by replacing each vertex
of T by a copy of J (two adjacent vertices in ¢ belong to different copies
of J only if each of them corresponds to one of the endpoints I,m,n),
then § can be obtained from @ by contracting each edge of T' appearing
in @ (i.e. joining two distinct copies of J). Clearly, § has 1550 vertices.
Label with Jy, . ..,J 4, the (not pairwise disjoint!) copies of J contained
by 8.

By Lemma 14, a circuit W of length ¢(S) in § avoids three copies of
J (excepting perhaps their endpoints). By Lemma 5, W has in each
other J; exactly 12 vertices. Thus ¢(S)=1331.

Let u,» be two vertices of §. We prove the existence of a circuit of
length 1331 in § not containing « and v.
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Cask 1. u and v belong to the same J,. Use again I, m,n to denote the
endpoints of J;. These endpoints also belong to three other copies of
J, say Jy;,J;,J, respectively. By Lemma 14, there exists a circuit W,
in § avoiding J; (excepting perhaps the vertices I,m,n). We show that
W, may be transformed, if necessary, so that it avoids also the point !
(analogously for m and n). Suppose W, contains vertices from J; which
are not endpoints of J;, otherwise of course W, does not contain /. Then
it necessarily passes through the two endpoints of J; different from I.
Now, Lemma 6 asserts that W,nJ; can be modified, if necessary, so
that it does not contain .

CASE 2. u 18 in J, v 18 9n Jy(¢ % j). By Lemma 6, there exist two paths
IT, and II, on 12 vertices each, the first joining two endpoints of J,
within J; and missing », the second joining two endpoints of J; within
J; and avoiding v. Now, it is easily seen that Lemma 11 implies the exi-
stence of a circuit I" of length 1331 in 8, whose intersection with J, is
either IT;, or I, U E(J,), or is included in the set E(J,) of the endpoints
of J;, and whose intersection with J; is either IT,, or II, U E(J}), or is
included in E(J;). An argument similar to that of Case 1 shows further
that I" can be modified so that I'n J;cIT, and I'n J;c IT,.

2.4. THEOREM 7. C,? < 14818,

Proor. Consider S’=g(K,T). This graph has 14818 vertices. The
proof of the fact that for each two vertices of S’ there exists a longest
circuit avoiding them is exactly like in Theorem 6; only, instead of
Lemmas 5 and 6 we use here Lemmas 7 and 8 respectively. The planarity
and 3-connectedness of 8’ are evident. ¢(S') =14157.

Griinbaum [9] conjectured C,f,Pyf < oo for all j; I conjecture the con-

trary.

3. On the P,,! ’s and C,,! ’s.
3.1. We mentioned that the first who proved the finiteness of P,!
was Walther [17]. His graph hgs 25 vertices.

THEOREM 8. P1'<12.

Proor. Consider the graph @ of Figure 11. By identifying the vertices
a,b,c one obtains Petersen’s graph P. Since P is hypohamiltonian, it
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is easily seen that p(G) =10 and each vertex of @ is missed by some lon-
gest path. G has 12 vertices and provides the smallest known graph
answering to Gallai’s original question.

ConNJECTURE 1. P1=12.

3.2. The finiteness of P,! was first proved by using a planar graph
with 82 vertices (Zamfirescu [19]). J. D. Horton [12] then found a 3-
connected hypotraceable graph on 40 vertices. Thomassen [13] has a
2-connected hypotraceable graph with only 34 vertices. Finally, the (pla-
nar!) graph of Figure 4 shows

TaEOREM 9. P, < 32.
Theorem 9 is a consequence of Theorem 2.

3.3. The first to prove the finiteness of P,! was Griinbaum, who found,
as we already saw, P, <484 [9]. The mentioned graph of Horton [12]
Proves P,l < 40.

TrEOREM 10. P, < 36.

Proor. Let F be the graph P of Petersen minus any vertex v of P
(and its adjacent edges). By replacing each vertex of K, with a copy
of F as in Figure 12 we obtain a graph H with 36 vertices and p(H)=34.
Again, it is not hard to see that each point of H is missed by some longest
path. In the terminology of section 5.2, H = 8*(F,K,).
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Fig. 12.

3.4. THEOREM 11. Cy1=6, C;®=9 and C £3j+3.

Proor. 0,/ £3j+3 follows from Theorem 3. That C;!>5 and C,2> 8,
it may be seen by investigating all connected graphs on at most 8 ver-
tices (which are not trees).

CoNJECTURE 2. Cy/=3j +3.

3.5. We have C,'=C41=10 (see C. Berge [1], [2] (pp. 213-217), R. G.
Busacker and T. L. Saaty [3] (pp. 43-46), Griimbaum [9], J. C. Herz,
J. J. Duby and F. Vigué [10], Herz, T. Gaudin and P. Rossi [10]).

4. On the P, *s and C;”s.

4.1. Griinbaum was the first to prove the finiteness of P,2. He estab-
lished P,?< 324 [9].

THEOREM 12, P2 < 270.

Proor. Let F be the graph used in the proof of Theorem 10 and let
the three 2-valent vertices of F be considered endpoints. Construct

D = 8(&(F,F),K,).

The graph D has 270 vertices and is 3-connected. We consider as super-
flous to give here a proof of the fact that for each two vertices of D
there exists a longest path avoiding them, since it contains no new ideas,
compared with that of Theorem 4. It is very similar fo and moreover
simpler than that proof because it involves smaller graphs. p(D)=241.
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4.2. Walther was the first who proved the finiteness of C,?; he estab-

lished C,%< 220 [18]. Griinbaum improved this inequality and verified
the finiteness of C,? by establishing C,2 < 90 [9].

THEOREM 13, C32<75.

Proo¥. The proof is analogous to, but simpler than that of Theorem 6.

k/j

[ K -

| U

1

=12
=32
=36
?

1

=19

=32
=484
oo

\

szl
~ 7NN

= o
A

<4

4’

W< X S

e
WLNN

[ SO

/

Py

=270
=270
=270
?

7%

2

=6050
<6050
=57838

-~ -2 e o W

8-0—0—-0 (X}

TABLE 2

k/j

GO RO

) DD e

Ci!
1 2 3
6 9 s12
10 s75 ?
10 =75 ?
? ? ?
Cv
1 2 3
(i 9 =12
S5 =1550 !
S106 14818 ?
=] o o0



232 TUDOR ZAMFIRESCU

The graph we use is very much related to that used by Griinbaum for
the first part of his Theorem 2 from [9]. It is

E = {F,P),

where P is Petersen’s graph and F was introduced in the proof of Theo-
rem 10. The graph E is illustrated in Figure 13. ¢(E)=63.

It is clear that, besides establishing better inequalities than the known
ones, of great interest would be to decide about the finiteness of P,
CL,P3,C3P3, and O3

5. On the families II(j,m) and I'(j, m).

5.1. Griinbaum introduced in [9] the following families of graphs:
IT(j,m) — that of all graphs each of which 1) has m vertices more than
its longest paths and 2) possesses, for each j vertices, a longest path
missing them (j<m), and I'(j,m) — the analogous family, in the defi-
nition of which circuits appear instead of paths, and the graphs are not
trees.

Put P,/=oc if II(j,m) contains no k-connected graphs for every m,
otherwise let us denote by P,/ the minimum number m such that I7(j,m)
contains k-connected graphs. Let €,7 be the analogous number defined
with I'(j,m) instead of I7(j,m) and §,J, €, the numbers obtained if
the considered graphs are planar. Clearly, j< B,/< %,/ and j<€,/ <G}
Griinbaum [9] makes a number of interesting remarks and conjectures
about I1(j,m) and I'(j,m); some of them can be reformulated by using
the numbers introduced above.

5.2. Walther [17] constructed, for each m >4, connected graphs be-
longing to II(1,m). ‘

TaEOREM 14. For each m=1, there exists 2-connected planar graphs
belonging to IT(1,m).

Proo¥. Thomassen’s planar hypotraceable graph belongs to II(1,1)
and is 2-connected [14]. The.graph V' of Figure 14, where V,, V,, V;, Vs
are isomorphic to Thomassen’s planar hypohamiltonian graph ¥V opened
in a vertex v of degree 3, belongs to I7(1,2) and is 3-connected. By in-
serting % new vertices on each of the six edges connecting a ¥V, with
a V, (i+j), we obtain a 2-connected, planar graph belonging to II(1,2 + k).
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COROLLARY 1. P,1=1.

THEOREM 15. For each m =4 639 718, there exist 3-connected planar
graphs belonging to IT(1,m); B! < 2.

Proor. In section 1.3 we defined a certain composition law of graphs
@ and G*, the resulting graph (not unique) being denoted by (&, G*).
We introduce now a variant of this composition in the following manner.
Let 2%(G,G*) be a graph (in general not unique), satisfying the following
conditions:

1) 8%@,G*) admits a family %* of subgraphs which cover all its
vertices,

2) each G’ € ¥* is isomorphic to G,

3) each two distinet graphs G’, @'’ of ¥* are disjoint and either there
is no edge connecting a vertex of @’ with one of @’ (in which case we
say that G’ and G’ are not adjacent) or there is exactly one such edge,
which then necessarily connects an endpoint of @ with an endpoint
of "' and is called connecting edge (in this case we say G’ and Q" are
adjacent),

4) there exists a bijective function from #* to the vertex set of G*
such that two distinct graphs of ¥* are adjacent if and only if the cor-
responding vertices of G* are adjacent,

5) there is no vertex common to (at least) two connecting edges,

6) every edge of Q*(G,G*) either belongs to a graph of ¥* or is a
connecting edge.

It is easily seen that £(G,G*) can be obtained from 2*(0 @*) by
simply contracting all the connecting edges.
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It is in fact easier (and similar) to verify that
M" = Q*8*(K,K),K,)

belongs to some I1(2,m), than that M’ does (see the proof of Theorem 5).
But M’ has more vertices than M’, namely 58 564, therefore it was
not used to provide an upper bound for P,2. Instead, it is regular, of
degree 3.

We choose now an arbitrary vertex « of M’ and denote by 4 the set
of all other 58 563 vertices of M"'. Let M, , be the graph obtained by
replacing each vertex in 4 through a copy of ¥, (see Figure 15) and «
through a copy of Y, (0=<¢=p).

Fig. 165.

Each longest path of M, , misses entirely the copy of Y, which re-
placed «, if ¢ <p. On the other hand, for each 8 € 4, there is a longest
path in M’ that avoids « and B. Thus, for each vertex of M, , there is
a longest path avoiding it.

Since M’ and its longest paths have 58 564, respectively 56 410 ver-
tioes, the graph M, , and its longest paths have 58 563 (p+3)+(g+3),
respectively 56 410 (p+ 3) vertices. It follows that

M, ,eI1(1,2153(p+3)+(¢+3)) .
The equation

2163(p+3)+ (g +3)=n

has for all n2 4 639 718 positive integer solutions in p and g, such that
p24¢. In other words, for all n > 4 639 718,

M, ,€II(1,n)
for some p, g.
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The graph ¥V’ used in the proof of the preceding theorem is 3-connected
and belongs to I7(1,2), which proves P,! < 2.

CoNJECTURE 3. P,l=1.

The graph 7' of Figure 7 found by Griinbaum [9] shows §;1<3. He
(compare V. Chvétal [4]) conjectured in [9] that €, =3. However this
is false, as the following theorem demonstrates.

THEOREM 16. For each m21, there exist 3-connected planar graphs
belonging to I'(1,m).

Proor. The mentioned planar hypohamiltonian graph ¥V of Thomas-
sen is 3-connected. Moreover it can be used, as noted by the referee, to
construct the graph of Figure 16, where each of the subgraphs V,..., ¥,/

is a copy of V opened up in two nonadjacent vertices of degree 3, lying
on the frontier of the same region. This graph belongs to I'(1,k) (k2 1)
and is evidently also 3-connected.

CoroLLARY 2. Byl =1.

Griinbaum also conjectured that every I'(j,m) contains only finitely
many planar graphs. In this general form, the conjecture can be dis-
proved by considering the sequence of graphs {X,}i>., illustrated in
Figure 17, each of which belongs to I'(1,2). However, the question whet-
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her there exist nonempty families I'(j,m) which contain only finitely
many planar (3-connected) graphs remains open.

TrEOREM 17. The family II(2,m) contains 3-connected planar graphs
Sor infinitely many m's; P,2< 787 and P,2 < 1905.

Proor. Consider again the graph M’ constructed in the proof of Theo-
rem 15. Its use in the present proof is again motivated by its regularity:
each of its vertices has degree 3, and so we can replace all of them by
copies of Y, (see Figure 15). Since M'’ e II(1,2154), our graph belongs
to I1(1,2154(p+3)) (p20).

The differences m =787 and m =1905 occur at the graphs M and M’
from the proofs of Theorems 4 and 5.

ToaEOREM 18. The family I'(2,m) contains 3-connected planar graphs
for infinitely many m's; €,2< 6, €,2< 219 and C,2 < 661.

Proor. We replace each vertex of the graph &*(X,T), where K and T
are the graphs of Figures 5 and 7, by a copy of the graph Y, of Figure
15. The graph we obtain is 3-connected and planar. It belongs to I'(2,
726(p+ 3)), because *(K,T) € I'(2,728).

The differences m =6, m =219, and m =661 occur at one of the graphs
used in the proof of Theorem 3, at the graph S from the proof of Theo-
rem 6, and at the graph S8’ from that of Theorem 7.

Since P,/ = (= oo for all j, we have

TaEOREM 19. P/ =T = co.

5.3. THEOREM 20. For each m =1, there exists 3-connected graphs be-
longing to I1(1,m).

Proor. The 3-connected hypotraceable graph of Horton [12] belongs
to II(1,1).

The 3-connected graph H of Figure 12 belongs to II(1,2) (see Theorem
10).

Further replace every vertéx of Horton’s mentioned graph by a copy
of the graph Y, of Figure 15. Obviously the obtained 3-connected graph
belongs to I7(1,p+3) for all p2 0.

COROLLARY 3. Pyl=1.
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Griinbaum [9] proved %B,2=<50 and €,2<18. The next two theorems
strengthen these inequalities.

THEOREM 21. PB,% < 29.

Proor. The graph D defined in the proof of Theorem 12 belongs to
11(2,29).

TurEOREM 22. €42 <12,

Proor. The graph E of Figure 13, used in the proof of Theorem 13,
belongs to I'(2,12).

TABLE 3
P G
ki7 1 2 3 klj 1 2 3
1 1 <29 ? 1 1 <6 <9
2 1 <29 ? 2 1 =12 ?
3 1 =29 ? 3 1 <12 ?
4 ? ? ? 4 1 ? ?
B! (%]
ki 1 2 3 klj 1 2 3
1 1 <787 ? 1 1 <6 <9
2 1 <787 ? 2 1 <219 ?
3 52 <1905 ? 3 1 <661 ?
4 oo oo 00 4 o 0o -5

5.4. Let #,J(%,7) be the set of all families I7(j,m)(I'(j,m)) which con-
tain k-connected graphs. Let Z,(%,7) be the subset of 2,7(%,7) of all
families I7(j,m)(I'(j,m)) which contain k-connected planar graphs. We
shall say that 2,7 is my-full if it contains all families 77(j,m) for m 2 m,.
2,7 will be called full if it is m,-full for some m,, and the minimum of
the my’s such that 2,/ be m,-full will be denoted by p,? (if #;J is not
full we put p,f=o0). If p,f=4, £, will be said to be completely full.
If p,f=R,7, 2,7 will be called convex. Analogously are defined the above
notions and the numbers ¢,J, p,’, ¢/ for the sets €7, Z, and €7 re-
spectively.

By Theorems 14 and 16, Z,! and Z;! are completely full. By Theorem
15, 2,1 is 4 639 718-full, but we do not know what ! is.

By Theorem 20, #,! is completely full.
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About P and &,? we know that they are infinite (see Theorems 17
and 18), but not whether they are full or not. It is not even known
whether 2,2 or %,?2 is full. It is easily seen that €,/ is 3j-full, but we do
not know what ¢,/ and ¢, are (j = 2).

TaBLE 4
i’ Cx/
klj 1 2 kffj 1 2 3
1 1 ? 1 1 =6 <9
1 1 ? 2 1 ? ?
3 1 ? 3 1 ? ?
4 1 ? 4 ? ? ?
b %)
kij 1 2 kfj 1 2 3
1 1 ? 1 1 <6 <9
2 1 ? 2 1 ? ?
3 =4639718 1? 3 1 ? ?
4 o0 ) 4 oo oo oo
We Obt&ined gg =D, 1 @3 —63 = 1 _$4j =00, @4 = C4 =

st =ps'=1. These equa.htles suggest the question whether all cons1dered
sets of families are convex.

Nore. W. Schmitz recently proved P,1<17, P2<108, and 02170
in Uber lingste Wege und Kreise in Graphen, to appear. Walther proved
independently in his and Voss’ book Uber Kreise in Graphen (VEB-
DVW, Berlin, 1974) that P,!<12 and P,2<108. Thomassen succeeded
to prove Conjecture 2: Cy/=3j+ 3 (private communication). I can prove
now P,?<93 and (< 135.
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