A SET OF GENERATORS FOR $\text{Ext}_{R}(k,k)$

GUNNAR SJÖDIN

Introduction.

Let in the following R denote a local ring with maximal ideal m and residue field k. Then $E = \operatorname{Ext}_R(k,k)$, with the Yoneda multiplication, is a connected cocommutative Hopf algebra over k (see Gulliksen and Levin [5] or Levin [9]). It was conjectured in [5] page 115 that E is finitely generated. However, as shown by an example of Roos [11] this need not be so. In this paper we construct the algebra structure of E from its definition by projective resolutions of k. Then, using the minimal algebra resolution of k (see Tate [14] and Gulliksen [7]), we obtain a set of generators which essentially are the so-called derivations of [7]. This set of generators are then used to study the structure of E. In particular we completely characterize those rings R such that E is commutative and finitely generated. We also give an explicit formula for E in the case when R is a local complete intersection. Here, as in the sequel, commutative means strictly commutative i.e.

$$xy = (-1)^{\deg(x) \cdot \deg(y)} yx$$

and $x^2 = 0$ if deg(x) is odd.

I wish to thank J.-E. Roos who called my attention to the relevance of the Milnor-Moore-André structure theorem to these matters.

1. The Yoneda product.

Let, for the time being, R be any commutative ring and let A be an R-module. Then the Yoneda composite provides $\operatorname{Ext}_R(A,A)$ with the structure of a graded algebra over R. For details see Mac Lane [10, III 5]. The classical definition exploits the interpretation of $\operatorname{Ext}_R(A,A)$ as the set of equivalence classes of certain long exact sequences. Let instead $\operatorname{Ext}_R(A,A) = H \operatorname{Hom}_R(P_*A,A)$, where P_*A is a projective resolution of A. How are we to interprete the Yoneda product?

The answer is given below.

Received June 1, 1975.

Lemma 1. Let $P_*A \stackrel{e_A}{\to} A$, $P_*B \stackrel{e_B}{\to} B$ be projective resolutions of A and B respectively. Then

$$H \operatorname{Hom}_{R}(1, \varepsilon_{B}): H \operatorname{Hom}_{R}(P_{*}A, P_{*}B) \to H \operatorname{Hom}_{R}(P_{*}A, B)$$

is an isomorphism.

PROOF. For complexes X_* , Y_* Hom_R (X_*, Y_*) is given the structure of a complex as in [10, VI 7.6]. We filter Hom_R (X_*, Y_*) by

$$F^{p} \operatorname{Hom}_{R}(X_{*}, Y_{*}) = \{ f \mid f(x) = 0 \text{ for } \deg(x) \leq p - 1 \}$$

= $\operatorname{Hom}_{R}(\bigoplus_{n \geq n} X_{n}, Y_{*})$

It is obvious that $F^* \operatorname{Hom}_R(X_*, Y_*)$ is bicomplete (P- and I-complete in the terminology of Eilenberg-Mac Lane [4]) if X_* is bounded below. Now, in the corresponding spectral sequence,

$$E_1 \operatorname{Hom}_R(1, \varepsilon_B) = H \operatorname{Hom}_R(1, H\varepsilon_B) : \operatorname{H} \operatorname{Hom}_R(P_*A, HP_*B) \rightarrow H \operatorname{Hom}_R(P_*A, B)$$

is an isomorphism and hence so is $H \operatorname{Hom}_{R}(1, \varepsilon_{R})$.

Note that the lemma above essentially is the classical lifting theorem of homological algebra (it is sufficient for the proof to assume that P_*A is projective over A and that P_*B is exact over B).

Now we define a product

by

$$\operatorname{Ext}_{R}(B,C) \otimes_{R} \operatorname{Ext}_{R}(A,B) \overset{\circ}{\to} \operatorname{Ext}_{R}(A,C)$$

$$H \operatorname{Hom}_{R}(P_{*}B,C) \otimes H \operatorname{Hom}_{R}(P_{*}A,B)$$

$$\approx \begin{array}{c} 1 \otimes^{H} \operatorname{Hom}_{R}(1,\epsilon) \\ R \end{array}$$

$$H \operatorname{Hom}_{R}(P_{*}B,C) \otimes H \operatorname{Hom}_{R}(P_{*}A,P_{*}B)$$

$$\downarrow^{\mu}$$

$$H(\operatorname{Hom}_{R}(P_{*}B,C) \otimes \operatorname{Hom}_{R}(P_{*}A,P_{*}B))$$

$$\downarrow^{H}$$

$$H \operatorname{Hom}_{R}(P_{*}A,C)$$

where ζ is the natural morphism of complexes given by $\zeta(g \otimes f) = g \circ f$. It is straight-forward to check that this product provides $\operatorname{Ext}_R(A,A)$ with the structure of a graded algebra over R with unit given by

$$\eta: R \xrightarrow{\bullet} \operatorname{Hom}_{R}(A,A) \xrightarrow{H \operatorname{Hom}_{R}(s,1)} H \operatorname{Hom}_{R}(P_{*}A,A)$$

where v(r)(a) = ra.

The reader may check that the product \circ differs from the usual Yoneda product \circ in a sign. Precisely:

$$a \circ b = (-1)^{\deg(a) \cdot \deg(b)} a \circ b.$$

This makes no difference since we have an isomorphism of algebras

$$\chi: (\operatorname{Ext}_R(k,k), \circ) \to (\operatorname{Ext}_R(k,k), \circ)$$

given by $\chi(a) = (-1)^{\tau(n)}a$, where $\tau(n) = 0, 1, 1, 0$ for $n \equiv 0, 1, 2, 3 \mod 4$.

From now on we assume R to be local. Let $P_* = P_*k$ be a minimal ree resolution of k. Then the differential on $\operatorname{Hom}_{R}(P_*,k)$ is zero, whence

$$\operatorname{Ext}_{R}^{n}(k,k) = \operatorname{Hom}_{R}(P_{n},k)$$

We want to describe

$$\operatorname{Hom}_R(P_i,k) \underset{R}{\otimes} \operatorname{Hom}_R(P_j,k) \overset{\circ}{\to} \operatorname{Hom}_R(P_{i+j},k)$$

Let $g \in \operatorname{Hom}_{R}(P_{i}, k), f \in \operatorname{Hom}_{R}(P_{i}, k)$. We have

$$H \operatorname{Hom}_R(1,\varepsilon): H \operatorname{Hom}_R(P_*,P_*) \underset{\approx}{\to} H \operatorname{Hom}_R(P_*,k) = \operatorname{Hom}_R(P_*,k)$$

Choose $F \in \mathbb{Z}^j$ Hom_R (P_*, P_*) such that $\varepsilon \circ F = f$ that is F is a chain paping of degree j $(F_n : P_n \to P_{n-j}, d \circ F = (-1)^j F \circ d)$ lifting f. Then by definition

$$g \circ f = g \circ F_{i+i} : P_{i+i} \to k$$
.

We are going to use the minimal algebra resolution of Tate (cf. [14], [5] and [7]). Thus as in [5, page 50]

$$P_* = R\langle \dots S_i, \dots ; dS_i = s_i \rangle$$

with ε_{j-1} variables S_i of degree j and with the indexing such that i < j if $\deg(S_i) < \deg(S_j)$. Then

$$\sum_{n=0}^{\infty} \dim_{k}(\operatorname{Tor}^{R}_{n}(k,k))z^{n} = \prod_{i=0}^{\infty} \frac{(1+z^{2i+1})^{s_{2i}}}{(1-z^{2i+2})^{s_{2i+1}}}$$

According to [5, p. 46] there exist so-called derivations $J_i \in \operatorname{Hom}_R(P_*, P_*)$, associated with the variables S_i , which (with a change of signs) satisfy the following relations, where J stands for an arbitrary J_i :

- a. $d \circ J = (-1)^{\deg(J)} J \circ d$ that is, $J \in \mathbb{Z}^{\deg(J)} \operatorname{Hom}_{\mathbb{R}}(P_*, P_*)$
- b. $J(xy) = J(x) \cdot y + (-1)^{\deg(J) \cdot \deg(x)} x \cdot J(y)$
- c. If x is of positive even degree then $J(x^{(n)}) = x^{(n-1)} \cdot J(x)$
- d. $J_{i}(S_{i}) = \delta_{i,i}$ if deg $(J_{i}) = \deg(S_{i})$.

Let, as in [5],

$$X^{(n)} = R\langle S_1, \ldots, S_{\epsilon_0 + \ldots + \epsilon_{n-1}}; dS_i = s_i \rangle$$
.

Then it follows from formulas b. and c. that $J(X^{(n)}) = 0$ for $n < \deg(J)$.

DEFINITION. $Y_i = \{ \varepsilon \circ J_i \} \in \operatorname{Ext}_R^{\deg(J)}(k, k).$

THEOREM 1. The set $\{Y_i\}_{i\geq 1}$ (possibly finite) generates $\operatorname{Ext}_R(k,k)$ as a k-algebra with the Yoneda product.

Proof. We have an R-basis for P_n given by elements of type

$$S^{(r_1,\ldots,r_N)} = S_N^{(r_N)} S_{N-1}^{(r_{N-1})} \ldots S_2^{(r_2)} S_1^{(r_1)}$$

where $N = \varepsilon_0 + \ldots + \varepsilon_{n-1}$, $\sum r_i \cdot \deg(S_i) = n$ and $x^{(0)} = 1, x^{(1)} = x$ when x is of odd degree. Order the N-tuples (r_1, \ldots, r_N) by

$$(r_1,\ldots,r_N) > (r_1',\ldots,r_N')$$

if the last non-vanishing $r_1 - r_i' > 0$. Corresponding to this *R*-basis of P_n there is a dual *k*-basis $\{b^{(r_1, \dots, r_N)}\}$ of $\text{Hom}_R(P_n, k)$ given by

$$b^{(r_1,\ldots,r_N)} \ S^{(r_1',\ldots,r_N')} = \delta^{(r_1',\ldots,r_N')}_{(r_1,\ldots,r_N)} \quad \text{(Kronecker delta)}.$$

Let

$$Y^{(r_1,\ldots,r_N)} = Y_1^{r_1} \circ \ldots \circ Y_N^{r_N} = \varepsilon \circ J_1^{r_1} \circ \ldots \circ J_N^{r_N}.$$

Then it easily follows that

$$Y^{(r_1,\ldots,r_N)} S^{(r_1',\ldots,r_{N'})} = \begin{cases} 1 & \text{for } (r_1,\ldots,r_N) = (r_1',\ldots,r_{N'}) \\ 0 & \text{for } (r_1,\ldots,r_N) > (r_1',\ldots,r_{N'}) \end{cases}$$

i.e. if we express the elements $Y^{(r_1,\ldots,r_N)}$ in the basis $\{b^{(r_1,\ldots,r_N)}\}$ then we obtain a triangular matrix with only 1:s in the diagonal. Thus $\{Y^{(r_1,\ldots,r_N)}\}$ is also a basis for $\operatorname{Hom}_R(P_n,k)$ and it follows that $\{Y_i\}$ generates $\operatorname{Ext}_R(k,k)$ as a k-algebra.

DEFINITION. Let $\tilde{P}E$ denote the graded k-vector space generated by $\{Y_4\}$.

Note that $Y_i \in \operatorname{Hom}_R(P_*, k)$ is the element in the dual basis corresponding to S_i .

THEOREM 2. $\tilde{P}E$ is a graded Lie algebra satisfying $x^2 \in \tilde{P}E$ if $x \in \tilde{P}E$ is of odd degree.

PROOF. It is sufficient to show that $[Y_i, Y_j] \in \tilde{P}E$ and that, if $\deg(Y_i)$ is odd, $Y_i^2 \in \tilde{P}E$. Let n = i + l. Note that

$$P_n = X_n^{(n-1)} \oplus \bigoplus_{M < i \le N} RS_i$$
, where $M = \varepsilon_0 + \ldots + \varepsilon_{n-2}$ and $N = M + \varepsilon_{n-1}$,

and that a basis of $X_n^{(n-1)}$ is given by the $S^{(r_1,\ldots,r_N)}$: s with $r_1+\ldots++r_N>1$ (notation as in the proof of theorem 1). Using $J_iX_u^{(u)}\subset X^{(u-\deg J_i)}$ it is easy to see that the only basis element of $X_n^{(n-1)}$, which is not annihilated by J_iJ_j and J_jJ_i , is:

- a. $S_i S_j$ if $i \neq j$,
- b. $S_i^{(2)}$ if i=j and $\deg(J_i)$ is even,
- c. none if i=j and $\deg(J_i)$ is odd.

In case a. we get

$$\begin{split} J_i J_j S_j S_i &= J_i ((J_j S_j) S_i + (-1)^{\deg(J_j) \cdot \deg(S_j)} S_j (J_j S_i)) = \\ &= J_j S_j \cdot J_i S_i + (-1)^{\deg(J_j) \cdot \deg(S_j)} J_i S_i \cdot J_i S_i = 1. \end{split}$$

Similarly we obtain $J_iJ_jS_iS_j=(-1)^{\deg(J_i)\cdot \deg(J_j)}$, which shows that $[J_i,J_j]X_n^{(n-1)}=0$. Case b. is even simpler since then, trivally, $[J_i,J_j]=0$. In case c. we get $J_i^2X_n^{(n-1)}=0$. This concludes the proof.

REMARK. If $char(k) \neq 2$ then the statement about x^2 obviously follows from $\tilde{P}E$ being a graded Lie algebra.

2. $\operatorname{Ext}_{R}(k,k)$ as a Hopf algebra.

It is well-known (see [5] page 107) that

$$\operatorname{Ext}_{R}(k,k) = \operatorname{Hom}_{R}(P_{*},k) \xrightarrow{\beta} \operatorname{Hom}_{k}(P_{*} \otimes_{R} k,k) = \operatorname{Hom}_{k}(\operatorname{Tor}^{R}(k,k),k),$$

where $\beta(f)(x \otimes_R 1) = f(x)$, is an anti-isomorphism of algebras (for a proof not relying on Yoneda's interpretation of Ext, and in a situation where this interpretation is not even available, see [12]).

Thus, if we change the usual diagonal in $\operatorname{Tor}^R(k,k)$ for its opposite we may say that $\operatorname{Ext}_R(k,k)$ is the dual of a Hopf algebra with divided powers. The diagonal in $\operatorname{Ext}_R(k,k)$ is the dual of the multiplication in $P_*\otimes_R k$ via β and it is not hard to check that it is given by

$$\operatorname{Hom}_R(P_{\textstyle *},k) \xrightarrow{\operatorname{Hom}_R(\varphi,1)} \operatorname{Hom}_R(P_{\textstyle *} \otimes_R P_{\textstyle *},k) \underset{\thickapprox}{\longleftarrow} \operatorname{Hom}_R(P_{\textstyle *},k) \otimes_k \operatorname{Hom}_R(P_{\textstyle *},k)$$

where φ is the product of the minimal algebra-resolution P_* of k. Let $Q \operatorname{Tor}^R(k,k)$ be as in André [1, theorem 17]. Let $P'E \subset \operatorname{Ext}_R(k,k)$ correspond to the dual of $Q \operatorname{Tor}^R(k,k)$ via β . Note that P'E equals the set of primitive elements of $\operatorname{Ext}_R(k,k)$ when $\operatorname{char}(k)=0$ but is strictly contained in this set otherwise. It is easy to check that

$$P'E = \{ f \in \operatorname{Hom}_{R}(P_{*}, k) \mid f(DP_{*}) = 0 \}.$$

Here DP_* denotes the decomposable elements of P_* considered as an algebra with divided powers that is DP_* is the graded submodule of P_* generated by I^2P_* , where IP_* is the augmentation ideal of P_* , as a connected algebra over R, that is $IP_* = P_1 \oplus P_2 \oplus P_3 \oplus \ldots$, and by divided powers $x^{(n)}$, where $n \ge 2$.

Note that DP_* = the graded R-module with $\{S^{r_1, \dots, r_j} \mid r_1 + \dots + r_j > 1\}$ as a basis. Let B_* be the graded R-module with $\{S_i\}$ as a basis. Then $P_* = B_* \oplus DP_*$. Thus we have

$$\operatorname{Hom}_{R}(P_{*},k) = \operatorname{Hom}_{R}(B_{*},k) \oplus \operatorname{Hom}_{R}(DP_{*},k)$$

and hence

$$\tilde{P}E = \text{Hom}_{R}(B_{*}, k) = \{f \mid f(DP_{*}) = 0\} = P'E.$$

According to [1, theorem 17] we have the following result

THEOREM 3. If $char(k) \neq 2$ then, as a Hopf algebra, $Ext_R(k,k)$ is isomorphic to $U(\tilde{P}E)$, the universal enveloping algebra of the Lie algebra $\tilde{P}E$.

Thus, at least when char $(k) \neq 2$, the Hopf algebra structure of $\operatorname{Ext}_R(k,k)$ is known as soon as we know the Lie algebra structure of $\tilde{P}E$.

3. The generators of degree 1 and their 2-dimensional relations.

It is easy to see that the algebra $\operatorname{Ext}_R(k,k)$ remains unchanged under completion of R. Thus, without loss of generality, R is supposed to be complete and we can put $R = \tilde{R}/\mathfrak{A}$, where \tilde{R} is a regular local ring and $\mathfrak{A} \subset \tilde{\mathfrak{m}}^2$. In the following let $n = \varepsilon_0 = \dim_k(\mathfrak{m}/\mathfrak{m})^2$, $r = \varepsilon_1$ and let $X_i = Y_i$, $T_i = S_i$ for $1 \le i \le n$, $Y_i = the$ old Y_{i+n} , $S_i = the$ old S_{i+n} for $1 \le i \le r$. Assume that s_1, \ldots, s_r is a set of cycles inducing a k-basis of $H_1X^{(1)}$. Let x_1, \ldots, x_n be a minimal set of generators for \mathfrak{m} . Then we may assume

$$dT_i = x_i$$
 and $dS_p = s_p = \sum_{i,j} a_{p,ij} x_i T_j$.

Now

$$dJ_{u}S_{p} = -J_{u}dS_{p} = -J_{u}\sum_{i,j}a_{p,ij}x_{i}T_{j} = -\sum_{i}a_{p,iu}x_{i} = -d\sum_{i}a_{p,iu}T_{i}$$

i.e. we may assume that

$$J_{u}S_{p} = -\sum_{i}a_{p,iu}T_{i}$$

and then $J_r J_u S_p = -a_{p,tu}$ which shows that

$$X_t X_u S_p = -\bar{a}_{p,tu} = -\varepsilon(a_{p,tu}).$$

Let M be minimally generated by

$$a_p = \sum_{j=1}^n \tilde{r}_{pj} \tilde{x}_j, \quad 1 \leq p \leq r',$$

where the \tilde{x}_i : s form a minimal set of generators of \tilde{m} such that $\tilde{x}_i + \mathfrak{A} = x_i$.

Put $r_{pj} = \tilde{r}_{pj} + \mathfrak{A}$. Then according to [5, page 43] we can choose

$$s_p = \sum_{j=1}^n r_{pj} T_j$$

and in particular $r = r' = \varepsilon_1 = \dim_k(\mathfrak{A}/\tilde{\mathfrak{m}}\mathfrak{A})$. Since $\mathfrak{A} \subseteq \tilde{\mathfrak{m}}^2$ we have

$$a_p = \sum_{i \le j} \tilde{a}_{p,ij} \tilde{x}_i \tilde{x}_j$$

and consequently

$$s_p = \sum_{i \leq j} a_{p,ij} x_i T_j ,$$

(i.e. we may choose $a_{p,ij}$ above such that $a_{p,ij} = 0$ for i > j) where

$$a_{p,\,ij} \,=\, \tilde{a}_{p,\,ij} + \mathfrak{A} \quad \text{ and } \quad \bar{a}_{p,\,ij} \,=\, \overline{\tilde{a}_{p,\,ij}} \in k \;.$$

It follows that if we let $[X_t, X_u] = X_t^2$ for t = u then

$$[X_t, X_u] = -\sum_{p=1}^r \bar{a}_{p,tu} Y_p$$

for $t \le u$. To illustrate we write down the corresponding "matrix of two-dimensional relations" (all empty entries are to be regarded as 0:s) for the case n=3, r=2:

	X_2X_1	X_3X_1	X_3X_2	$[X_1,X_2]$	$[X_1,X_3]$	$[X_2,X_3]$	X_{1^2}	X22	X_{3}^{2}
T_1T_2	1								
T_1T_3		1							
T_2T_3			1						
$-S_1$				$ar{a}_{1,12}$	$ar{a}_{1,13}$	$ar{a}_{1,23}$	$ar{a}_{1,11}$	$ar{a}_{1,22}$	ā _{1,33}
$-S_2$				ā _{2,12}	ā _{2,13}	ā _{2,23}	$ar{a}_{2,11}$	$ar{a}_{2,22}$	$ar{a}_{2,33}$

In particular the 1-dimensional elements are strictly commutative iff all $\bar{a}_{p,ij} = 0$ that is iff $\mathfrak{A} \subset \tilde{\mathfrak{m}}^3$. Since

$$m^2/m^3 = \tilde{m}^2/\tilde{n}t^3 + \mathfrak{A}$$

this can also be expressed by

$$\dim_k(\mathfrak{m}^2/\mathfrak{m}^3) \,=\, \dim_k(\tilde{\mathfrak{m}}^2/\tilde{\mathfrak{m}}^3) \,=\, \binom{n+1}{2}$$

which gives a criterion that does not require R to be complete.

A basis of P_2 is given by T_iT_j , i < j and the S_p : s. In the dual basis T_iT_j corresponds to X_iX_i . Using this we see that

$$\dim_{k} \frac{\operatorname{Ext}_{R}^{2}(k,k)}{(\operatorname{Ext}_{R}^{1}(k,k))^{2}} = r - \operatorname{rank}(\overline{a}_{p,ij})$$

where $(\overline{a}_{p,ij})$ is regarded as an $r \times \binom{n+1}{2}$ -matrix. In particular

 $\operatorname{Ext}_R^1(k,k)$ generates $\operatorname{Ext}_R^2(k,k)$ iff the vectors $(\overline{a}_{p,ij})_{ij}, p=1,\ldots,r$ are linearly independent and hence iff

$$\sum_{p,\,ij} t_p \tilde{a}_{p,\,ij} \tilde{x}_i \tilde{x}_j \in \tilde{\mathfrak{m}}^3$$

implies that $t_p \in \tilde{\mathfrak{m}}$, $1 \leq p \leq r$ that is iff $\mathfrak{A}/\tilde{\mathfrak{m}}\mathfrak{A} \to \tilde{\mathfrak{m}}^2/\tilde{\mathfrak{m}}^3$ is a monomorphism that is iff $\tilde{\mathfrak{m}}^3 \cap \mathfrak{A} = \tilde{\mathfrak{m}}\mathfrak{A}$, which is a condition which was first obtained by J.-E. Roos, using different methods. Furthermore, the exact sequence

$$0 \rightarrow \mathfrak{A}/\tilde{\mathfrak{m}}^3 \rightarrow \tilde{\mathfrak{m}}^2/\tilde{\mathfrak{m}}^3 \rightarrow \mathfrak{m}^2/\mathfrak{m}^3 \rightarrow 0$$

shows that $\tilde{\mathfrak{m}}^3 \cap \mathfrak{A} = \tilde{\mathfrak{m}} \mathfrak{A}$ iff $\dim_k(\mathfrak{m}^2/\mathfrak{m}^3) = \binom{n+1}{2} - r$ and this condition

does not require R to be complete. We summarize in

THEOREM 4. Let the notations be as above. Then

$$[X_t, X_u] + \sum_{p=1}^r \overline{a}_{p,tu} Y_p = 0$$
.

The one-dimensional elements are strictly commutative iff $\mathfrak{A} \subseteq \tilde{\mathfrak{m}}^3$ that is, iff

$$\dim_k(\mathfrak{m}^2/\mathfrak{m}^3) \,=\, \binom{n+1}{2}\;.$$

They generate the two-dimensional elements iff $\mathfrak{A} \cap \tilde{\mathfrak{m}}^3 = \tilde{\mathfrak{m}} \mathfrak{A}$ that is, iff

$$\dim_k(\mathfrak{m}^2/\mathfrak{m}^3) = \binom{n+1}{2} - r.$$

Finally, consider the homogeneous linear system over k

$$\sum_{1 \leq i \leq j \leq n} \overline{a}_{p,ij} z_{ij} = 0 \quad 1 \leq p \leq r,$$

that is, $\{z_{ij} \mid 1 \le i \le j \le n\}$ are the "unknown" and we have r equations). Choose a basis $(t_{ij}^{(q)})_{1 \le i \le j \le n}, 1 \le q \le N$, for the solutions of this system. Then a basis for the two-dimensional relations of the one-dimensional generators is given by the relations

$$\sum_{1 \le i \le j \le n} t_{ij}(q)[X_i, X_j] = 0, \quad 1 \le q \le N.$$

4. Local complete intersections.

In this section we assume that R is a local complete intersection. We keep the previous notations. Thus we may suppose that $\mathfrak{A} \subset \mathfrak{m}^2$ is generated by an R-sequence and the length of this must then equal $r = \varepsilon_1 = n - \dim(R)$. We know from [14] that $P_* = X^{(2)}$. Hence, using theorem 1, we obtain the result of [5] that $\operatorname{Ext}_R(k,k)$ is generated by its 1- and 2-dimensional elements. We have more precisely $(k\langle \ldots \rangle)$ means non-commutative free algebras and $k[\ldots]$ commutative free algebras. The sufficiency of $\mathfrak{A} \subset \tilde{\mathfrak{m}}^3$ for commutativity was first shown in [5, page 114]):

Theorem 5. Let R be a local complete intersection and assume that $char(k) \neq 2$. Then, as a Hopf algebra

$$\begin{split} \operatorname{Ext}_R(k,k) \ = \ k \langle \boldsymbol{X}_1, \dots, \boldsymbol{X}_n, \boldsymbol{Y}_1, \dots, \boldsymbol{Y}_r \rangle / \langle [\boldsymbol{X}_i, \boldsymbol{X}_j] + \sum_{p=1}^r \overline{a}_{p,\,ij} \boldsymbol{Y}_p, \\ [\boldsymbol{X}_1, \boldsymbol{Y}_p], [\boldsymbol{Y}_p, \boldsymbol{Y}_q]) \end{split}$$

In particular, $\operatorname{Ext}_R^1(k,k)$ generates $\operatorname{Ext}_R(k,k)$ iff $\mathfrak{A} \cap \tilde{\mathfrak{m}}^3 = \tilde{\mathfrak{m}} \mathfrak{A}$ and $\operatorname{Ext}_R(k,k)$ is commutative iff $\mathfrak{A} \subset \tilde{\mathfrak{m}}^3$. The subalgebra generated by Y_1, \ldots, Y_r is the polynomial algebra $k[Y_1, \ldots, Y_r]$. The product

$$[,]: \tilde{P}_1 E \times \tilde{P}_1 E \rightarrow \tilde{P}_2 E$$

may be chosen at will. Precisely, given any Lie algebra $L = L_1 \oplus L_2$ with $\dim_k L_1 \ge \dim_k L_2$ there is a local complete intersection with $\tilde{P}E = L$.

PROOF. The Hopf algebra $\operatorname{Ext}_R(k,k)$ is isomorphic to the free algebra $k\langle X_1,\ldots,X_n,Y_1,\ldots,Y_r\rangle$ divided by the ideal generated by the elements describing the Lie product of $\tilde{P}E=\tilde{P}_1E\oplus\tilde{P}_2E$ and from this the first formula follows with the aid of theorem 4. The statements about generation and commutativity follow from theorem 4. Suppose that $f(Y_1,\ldots,Y_r)$ is a polynomial in the now commuting variables Y_t . We can take f to be homogeneous. Let $Y_1^{n_1},\ldots,Y_r^{n_r}$ have non-vanishing coefficient in f. Then

$$Y_1^{n_1} \dots Y_r^{n_r} S_r^{(n_r)} \dots S_1^{(n_1)} = 1$$
 and $Y_1^{l_1} \dots Y_r^{l_r} S_r^{(n_r)} \dots S_1^{(n_1)} = 0$

when $(l_1, \ldots, l_r) \neq (n_1, \ldots, n_r)$ and hence

$$f(Y_1,\ldots,Y_r)S_r^{(n_r)}\ldots S_1^{(n_1)} \neq 0$$
,

which shows that $f(Y_1, \ldots, Y_r) \neq 0$. It follows that the subalgebra generated by Y_1, \ldots, Y_r is the polynomial algebra $k[Y_1, \ldots, Y_r]$. The arbitrariness of the Lie product follows from the following lemma (cf. Kaplansky [8, theorem 124]) applied to $y_1, \ldots, y_r \in \tilde{\mathbb{m}}^2$ chosen at will and s=3.

LEMMA 2. Let R be a Cohen-Macaulay ring of dimension n and let $y_1, \ldots, y_r \in \mathfrak{m}$, where $r \leq n$. Then for any $s \geq 1$ there is an R-sequence z_1, \ldots, z_r such that $z_i - y_i \in \mathfrak{m}^s$.

PROOF. By induction it may be assumed that r=1. Then we have to show that if $y \in m$ then

$$y + \mathfrak{m}^s \subset \{\mathfrak{p}_i \mid \mathfrak{p}_i \in \mathrm{Ass}(R)\}$$
.

Let $y \in \mathfrak{p}_1, \ldots, \mathfrak{p}_t$ and $y \notin \mathfrak{p}_{t+1}, \ldots, \mathfrak{p}_u$. Now $\mathfrak{m}^s \cap \mathfrak{p}_{t+1} \cap \ldots \cap \mathfrak{p}_u \notin \mathfrak{p}_t$ for $i \leq t$ and hence there is a

$$z \in \mathfrak{m}^s \cap \mathfrak{p}_{t+1} \cap \ldots \cap \mathfrak{p}_u - \mathfrak{p}_1 \cup \ldots \cup \mathfrak{p}_t$$
.

Obviously

$$y+z \in (y+\mathfrak{m}^s) - \cup \{\mathfrak{p}_i \mid \mathfrak{p}_i \in \mathrm{Ass}(R)\}$$
.

REMARKS 1. Theorem 5 remains true when char(k) = 2 (recall our convention that $[X_4, X_4] = X_4^2$). This follows from the results of [13].

2. With a suitable change of basis of \tilde{P}_2E we can arrange it so that Y_{s+1}, \ldots, Y_r is a basis of the linear space spanned by the $[X_i, X_j]$: s and then

$$\operatorname{Ext}_{R}(k,k) = k\langle X_{1}, \dots, X_{n} \rangle / \mathfrak{B} \otimes k[Y_{1}, \dots, Y_{s}]$$

where \mathfrak{B} is the ideal generated by elements of type $[[X_i, X_j], X_l]$ and by the elements corresponding to the two-dimensional relations between the X_i : s.

3. The three-dimensional relations $[[X_i, X_j], X_l] = 0$, in remark 2 above, may be essential i.e. not a consequence of the two-dimensional relations. An example is provided by

$$R = k[[x_1, x_2, x_3]]/(x_1x_3 + x_2^3, x_2x_3).$$

Then the two-dimensional relations are $X_1^2 = X_2^2 = X_3^2 = [X_1, X_2] = 0$, which shows that $\operatorname{Ext}_R(k, k)$ is a quotient of

$$A = k\langle X_1, X_2, X_3 \rangle / (X_1^2, X_2^2, X_3^2, [X_1, X_2]) .$$

But obviously $A = k[X_1, X_2] * k[X_3]$, where * denotes the "free product" of graded algebras. Then, using (7) of Cohn [3, page 5], we get the Hilbert-series

$$H_{\mathcal{A}}(z) = \frac{(1+z)^2}{1-z-z^2} = 1+3z+5z^2+8z^3+\dots$$

whereas

$$H_{\operatorname{Ext}_R(k,k)}(z) \ = \ \frac{(1+z)^3}{(1-z^2)^2} = \frac{(1+z)}{(1-z)^2} = \ 1 + 3z + 5z^2 + 7z^3 + \dots$$

which shows that there is exactly one additional relation in dimension 3. It follows that

$$\operatorname{Ext}_{R}(k,k) = k[X_{1}, X_{2}] * k[X_{3}]/([[X_{2}, X_{3}], X_{1}]).$$

4. Suppose that we are given a graded Lie algebra $L = L_1 \oplus L_2 \oplus L_3 \oplus \dots$ over a field k such that there exists a local ring R with k = R/m and $\varepsilon_{i-1} = \dim_k L_i$. Is it then possible to choose R such that $\tilde{P}E = L$?

5. The finitely generated commutative case.

We have

THEOREM 6. The algebra $\operatorname{Ext}_R(k,k)$ is finitely generated and commutative iff R is a local complete intersection with

$$\dim_k\left(\mathfrak{m}^2/\mathfrak{m}^3\right) \,=\, \binom{n+1}{2}\,.$$

PROOF. We only need to prove that if $\operatorname{Ext}_R(k,k)$ is finitely generated and commutative then R is a local complete intersection. According to [6] it is sufficient to show that $\varepsilon_q=0$ for q large. Assume the contrary and let $\{Y_i \mid \deg Y_i \leq M_1\}$ generate $\operatorname{Ext}_R(k,k)$. Choose $M_2 \geq M_1$ such that $\varepsilon_{M_2} \neq 0$. Then there are ε_{M_2} variables adjoined in dimension $M=M_2+1>M_1$ in the minimal algebra resolution of k. Let $\deg Y_i=M$. Since the algebra is commutative Y_i may be written as a linear combination of monomials of type

$$Y^{(r_1,\ldots,r_N)} = Y_1^{r_1} \ldots Y_N^{r_N}, \text{ where } N = \varepsilon_0 + \ldots + \varepsilon_{M_1-1}.$$

Let $S^{(r_1,\ldots,r_N)} = S_N^{(r_N)} \ldots S_1^{(r_1)}$ and order the N-tuples (r_1,\ldots,r_N) as in section 1.

Let $Y^{(r_1,\ldots,r_N)}$ be the monomial in the expression for Y_i with the least exponent (r_1,\ldots,r_N) . Then

$$Y^{(r_1,\ldots,r_N)}S^{(r_1,\ldots,r_N)} = 1$$
 and $Y^{(r_1',\ldots,r_N')}S^{(r_1,\ldots,r_N)} = 0$

for the other monomials in the expression for Y_i . Thus $Y_i S^{(r_1, \dots, r_N)} \neq 0$, which is a contradiction. It follows that R is a local complete intersection.

REFERENCES

- 1. M. André, Hopf algebras with divided powers, J. Algebra 18 (1971), 19-50.
- 2. E. F. Assmus, On the homology of local rings, Illinois J. Math. 3 (1959), 187-199.

- 3. P. M. Cohn, Free associative algebras, Bull. London Math. Soc., 1 (1969), 1-39.
- 4. S. Eilenberg and J. C. Moore, Limits and spectral sequences, Topology 1 (1961), 1-23.
- T. H. Gulliksen and G. Levin, Homology of local rings, Queens papers in pure and appl. Math. No. 20 (1969).
- T. H. Gulliksen, A homological characterization of local complete intersections, in Algebraic geometry, Oslo 1970, pp. 39-43, Wolters-Noordhoff Publishing co., 1972.
- T. H. Gulliksen, A proof of the existence of minimal R-algebra resolutions, Acta Math. 120 (1968), 53-58.
- 8. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston 1970.
- 9. Levin, Two conjectures in the homology of local rings, J. Algebra 30 (1974), 56-74.
- S. Mac Lane, Homology (Grundlehren Math. Wissensch. 114), Springer-Verlag, Berlin, Göttingen, Heidelberg, 1967.
- 11. J.-E. Roos, The Yoneda Ext-algebra of a local noetherian ring is not necessarily finitely generated (to appear).
- G. Sjödin, Products in differential homological algebra, preprint at the Dept. of Mathematics, University of Stockholm, No. 4 (1975).
- 13. G. Sjödin, Hopf algebras and derivations, preprint at the Dept. of Mathematics, University of Stockholm, No. 1 (1976).
- 14. J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. (1957), 14-27.

UNIVERSITY OF STOCKHOLM, SWEDEN