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A SET OF GENERATORS FOR Extg(k,k)
GUNNAR SJODIN

Introduction.

Let in the following R denote a local ring with maximal ideal m and
residue field k. Then E=Ext,(k,k), with the Yoneda multiplication, is
a connected cocommutative Hopf algebra over k (see Gulliksen and Le-
vin [5] or Levin [9]). It was conjectured in [5] page 115 that E is finitely
generated. However, as shown by an example of Roos [11] this need not
be so. In this paper we construct the algebra structure of £ from its de-
finition by projective resolutions of k. Then, using the minimal algebra
resolution of k (see Tate [14] and Gulliksen [7]), we obtain a set of gene-
rators which essentially are the so-called derivations of [7]. This set of
generators are then used to study the structure of E. In particular we
completely characterize those rings R such that £ is commutative and
finitely generated. We also give an explicit formula for E in the case
when R is a local complete intersection. Here, as in the sequel, commuta-
tive means strictly commutative i.e.

xy = (_. l)deg(m)' dEg(’U)yx

and 2%=0 if deg(x) is odd.
I wish to thank J.-E. Roos who called my attention to the relevance
of the Milnor-Moore-André structure theorem to these matters.

1. The Yoneda product.

Let, for the time being, R be any commutative ring and let 4 be an
R-module. Then the Yoneda composite provides Ext(4,4) with the
structure of a graded algebra over R. For details see Mac Lane [10, III 5].
The classical definition exploits the interpretation of Extz(4,4) as the
set of equivalence classes of certain long exact sequences. Let instead
Ext z(4,4)=H Hom 4(P,A4,4), where P,A is a projective resolution
of 4. How are we to interprete the Yoneda product?

The answer is given below.
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Lemma 1. Let P, A% A,P,B 3 B be projective resolutions of A and B
respectively. Then
H Homg(1,e5) : H Hom 5(P,A,P,B) -~ H Hom (P, A,B)
18 an isomorphism.
Proor. For complexes X,,Y, Homg(X,,Y,) is given the structure
of a complex as in [10, VI 7.6]. We filter Hom (X, Y,) by

FrHomg(X,, ¥,) = {f| f(@)=0 for deg(@) sp—1)
= HomR(@u?.pXm Y*)

It is obvious that F* Hom z(X,, Y, ) is bicomplete (P- and I-complete
in the terminology of Eilenberg-Mac Lane [4]) if X, is bounded below.
Now, in the corresponding spectral sequence,

E, Hom g(l,e5) = H Hom g(1,Hey) : H Hom (P, A,HP,B) ->
— H Hom g(P,A4,B)

is an isomorphism and hence so is H Hom »(1,¢5).
Note that the lemma above essentially is the classical lifting theorem
of homological algebra (it is sufficient for the proof to assume that

P, A is projective over 4 and that P,B is exact over B).
Now we define a product

Ext z(B,0)QzExt z(4,B) > Ext 5(4,0)
by
H Hom (P, B,C)®H Hom (P, A,B)
R

~ | 1QH Homa(t,
H Hom (P4 B,C)RH Hom 5(P,4,P,B)
.
H(Hom (P, B,C)® Hom (P,4,P,B))
i He
H Hom g(P,4,0)

where { is the natural morphism of complexes given by ((g®f)=go/f.
It is straight-forward to check that this product provides Ext n(4,4)
with the structure of a graded algebra over R with unit given by
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7n: R Homg(d, ) ZE0FD, F Hom o(P, A, )
where »(r)(a) =ra.
The reader may check that the product o differs from the usual Yoneda
product S in a sign. Precisely:

aob = (—1)dee(@ degllgsp ,
This makes no difference since we have an isomorphism of algebras
1 : (Ext g(k, k), 0) - (Ext z(k, k), 0)

given by y(a)=(—1)*™a, where 7(n)=0,1,1,0 for n=0,1,2,3 mod4.
From now on we assume R to be local. Let P, =P,k be a minimal
ree resolution of k. Then the differential on Hom g(P,, k) is zero, whence

Ext 5™k, k) = Hom g(P,,k)
We want to describe

Hom (P, k)® Hom g(P;, k) S Hom r(Piipyk)
R
Let g € Hom p(P,, k), f € Hom g(P;, k). We have
H Hom g(1,¢) : H Hom g(Py, Py) = H Hom g(Py, k) = Hom z(Py, k)

Choose F € Z7 Hom g(Py, P,) such that o F ={f that is F is a chainmap-
ping of degree j (¥, : P, -~ P,_;, doF =(—1)/Fod) lifting f. Then by de-
finition

gof = goFyy: Pry—>k.
We are going to use the minimal algebra resolution of
Tate (cf. [14], [5] and [7]). Thus as in [5, page 50]

P* = R(. . 'Si" .o ;dS‘=8{>

with ¢;_, variables S; of degree j and with the indexing such that
1<j if deg(S;) <deg(S,). Then
_ o (Lz2ety
3 gdimyTor®, b, e = TTZo {1~ seayecs
According to [5, p. 46] there exist so-called derivations J; & Hom g(P,, P,),

associated with the variables S;, which (with a change of signs) satisfy the
following relations, where J stands for an arbitrary J:

a. doJ =(—1)deeNJod that is, J € Zdes D Hom g(Py, Py)
b. J(zy)=J(x) y + (— 1)dest) - deg@z. J ()

c. If z is of positive even degree then J (™) =z®-D-J(x)
d. J(8)) =3, if deg (J,) =deg(S)).



202 GUNNAR SJODIN
Let, as in [5],
X® = By B von s 5 = 8.
Then it follows from formulas b. and c. that J(X™)=0 for n <deg(J).

DErFINITION. Y= {eoJ,} € Ext pdee)(k, k).

THEOREM 1. The set {¥};-, (possibly finite) generates Ext p(k,k) as a
k-algebra with the Yoneda product.

Proor. We have an R-basis for P, given by elements of type
Seu-.rm . § N(rzv) ,gN(izg--x) . Sz(rz) Sl(’l)

where N=¢y+ ... +¢,_;, 3r;-deg(8;)=n and 2@=1,20=2 when z is of
odd degree. Order the N-tuples (r,,...,ry) by

(T« ury) > (75 .. 7rN)

if the last non-vanishing r, —r, > 0. Corresponding to this R-basis of P,
there is a dual k-basis {b™ "} of Hom g(P,,k) given by

Lo TW) QOLse W) = g 7N (Kronecker delta).

Let
YO = Yo, oY A = eoJ Mo, . .oJ ¥,

Then it easily follows that

1 for (ry,...,ry)=(7ys...,s7x")

Y(rlvn-:'N) S('l'»---vflv') —
0 for (rg,...,7N)> (s . .s78)

i.e. if we express the elements Y% in the basis {y*:-"M} then
we obtain a triangular matrix with only 1:s in the diagonal. Thus
{¥Cr--M} iy also a basis for Hom (P, k) and it follows that {¥}
generates Ext , (k,k) as a k-algebra.

DErFINtTION. Let PE denote the graded k-vector space generated by {¥,}.

Note that Y; € Hom g(P,, k) is the element in the dual basis corres-
ponding to S,.

TurorEM 2. PE is a graded Lie algebra satisfying x? € PE if x € PE
18 of odd degree.

Proor. It is sufficient to show that [¥,, ¥,] € PE and that, if deg(Y,)
is odd, Y2 € PE. Let n=4+1. Note that
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P” = X”(n-l)® ®M<.‘§NRSi, Where M=80+ .« v +8”_2
and N=M+e¢,_,,

and that a basis of X,®-V is given by the §¥+--"®: 5 with r +... +
+7y>1 (notation as in the proof of theorem 1). Using J, X, < X(u-deg J)
it is easy to see that the only basis element of X,®-D, which is not anni-
hilated by J;J; and JJ,, is:

a. 8,8; if iy,

b. 8@  if ¢=j and deg(J,) is even,

c. none if ¢=4 and deg(J,) is odd.

In case a. we get
JoT 88y = T((J;8;)8+ (—1)%BUD g (] .8,)) =
= Jij‘ JiS’i + ( - l)dag(Ji) ’ deg(Sj)JiSj .JjSi = 1.

Similarly we obtain JuJ,8,8;=(—1)%9 d)  which ghows that
[V, J;]1X,®D=0. Case b. is even simpler since then, trivally, [J,, J,]=0.
In case c. we get J,2X,®-D=0. This concludes the proof.

ReMARK. If char(k)+ 2 then the statement about 22 obvmusly follows
from PE being a graded Lie algebra.

2. Extp(k,k) as a Hopf algebra.
It is well-known (see [5] page 107) that

Ext g(k,k) = Hom R(P*,Ic) Hom(P,®grk, k) = Homy(Tor®(k, k), k) ,

where B(f)(*®gz1)=f(x), is an anti-isomorphism of algebras (for a proof
not relying on Yoneda’s interpretation of Ext, and in a situation where
this interpretation is not even available, see [12]).

Thus, if we change the usual diagonal in Tor ®(k, k) for its opposite we
may say that Extp(k,k) is the dual of a Hopf algebra with divided po-
wers. The diagonal in Ext4(k,k) is the dual of the multiplication in
P, ®gk via # and it is not hard to check that it is given by

Hom g(P,, k) 22292 Hom 4(P,®xPy. k) £ Hom (P, k)@, Hom p(P,, k)

where ¢ is the product of the minimal algebra-resolution P, of k. Let
Q Tor E(k, k) be as in André [1, theorem 17]. Let P’'E < Ext z(k,k) corres-
pond to the dual of Q TorE(k,k) via 8. Note that P'E equals the set of
Primitive elements of Ext (k,k) when char(k)=0 but is strictly contai-
ned in this set otherwise. It is easy to check that

P'E = {fe Homg(Py,k) | f(DP4)=0}.
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Here DP, denotes the decomposable elements of P, considered as an
algebra with divided powers that is DP, is the graded submodule of P,
generated by I%?P,, where IP, is the augmentation ideal of P, as a
connected algebra over R, that is IP, = P,OP,®P;®D. .., and by divided
powers ™, where n = 2.

Note that DP, =the graded R-module with {S™---"? | r;+ ... +7;>1}
as a basis. Let B, be the graded R-module with {S,;} as a basis. Then
P,=B,®DP,. Thus we have

Hom (P, k) = Hom g(B,,, k)DHom (DP, k)
and hence
PE = Hom g(B,,k) = {f| f(DP,) =0} = P'E.

According to [1, theorem 17] we have the following result

TreorEM 3. If char(k)s+2 then, as a Hopf algebra, Ext n(k,k) is iso-
morphic to U(PE), the universal enveloping algebra of the Lie algebra PE.

Thus, at least when char (k) 4 2, the Hopf algebra structure of Ext (%, k)
is known as soon as we know the Lie algebra structure of PE.

3. The generators of degree 1 and their 2-dimensional relations.

It is easy to see that the algebra Ext 5(k,%) remains unchanged under
completion of R. Thus, without loss of generality, B is supposed to be
complete and we can put R-—-—-R/QI, where R is a regular local ring and
A<mm? In the following let n=egy=dim,(m/m)?, r=¢, and let X;=Y,,
T,=8;for 1i<n,Y,;=the old Y,,,,S;=the old §;,, for 1si<r. As-
sume that g,,...,8, is a set of cycles inducing a k-basis of H, X®. Let
Z4,...,%, be a minimal set of generators for m. Then we may assume

AT, =z, and dS, =8, = 3,8,,4%T;.
Now

A Sy = —Jud8y = —Jy Tty uy®Ts = —2ppi = —d 20T
i.e. we may assume that
J uSp = "z'tap.tuT{
and then JJ, 8, = —a, ,, which shows that
XtXuSp = "‘d-p,tu = ‘8(ap.tu) .
Let % be minimally generated by
Gy = i1y 1SpPsST,
where the Z;: s form a minimal set of generators of m such that %+ A =z;.
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Put r,;=#,;+ A. Then according to [5, page 43] we can choose
8p = 27artpiT
and in particular r =7’ =¢; = dim, (%/m). Since ¥ =m? we have

Oy = iy, %
and consequently

8p = Disi%,u% T

(i.e. we may choose a, ;; above such that a,, ;;=0 for i > j) where

Op,45 = Gp,y+ A and &,y =, yek.
It follows that if we let [X,, X,]=X2 for ¢=wu then
[Xt’xu] = _Z-ld ytu YP

for t < u. To illustrate we write down the corresponding “matrix of two-
dimensional relations’ (all empty entries are to be regarded as 0: s) for
the case n=38,r=2:

XeX; XsXi XsXs [X1,X5] [X1,X5] [XX5] Xo2 Xy? Xyt

T,T, 1

T.T, 1

TsTs 1

-8 G102 | G183 | Gres | G | Gree | Giss
=8y Gang | Gs,s | A0 | Gan | Gas | Qs

In particular the 1-dimensional elements are striotly commutative iff
all @, ,, =0 that is iff % <3, Since

m2md = m2id+ U

this can also be expressed by
o n+1
dim,(m?/m?) = dimy(m?/m®) = ( 2 )

which gives a criterion that does not require B to be complete.
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A basis of P, is given by T,T;, i <j and the S,,:s. In the dual basis
T[T, corresponds to X, X,. Using this we see that

] Ext 22k, k) _
dlmkm = r-—- raank(ap’ﬁ)

where (@,, ;) is regarded as an r x ("; 1)-ma,trix. In particular

Ext z'(k,k) generates Ext p%(k,k) iff the vectors (@, ;)i p=1,...,r are
linearly independent and hence iff

20,15 tp0p, %) € WP
implies that ¢, e, 1 £ p < r that is iff A/MmA -~ m2/m3 is a monomorphism

that is iff m3nY =mA, which is a condition which was first obtained by
J.-E. Roos, using different methods. Furthermore, the exact sequence

0 — U/Ft® > FEJ® — m2/ms > 0
. ~or ser 1 1 . i
shows that m*nWA =mA iff dim,(m?/m3)= (n;— ) —~r and this condition
does not require R to be complete. We summarize in

THEOREM 4. Let the notations be as above. Then
[Xt,Xu]+z;=ldp.tu Yp =0.

The one-dimensional elements are strictly commutative iff A <m® that is, iff

dimy(m?/m?) = ("; 1) .

They generate the two-dimensional elements iff Anmd="mA that is, iff

'n+1)
Ll &

dim, (m?/m?) = ( 2

Finally, consider the homogeneous linear system over %

Disisisndp, 2y =0 1Spsr,

that is, {z,; | 154<j<n} are the “unknown” and we have r equations).
Choose a basis (£;@),<¢<j<n 1 S¢=N, for the solutions of this system.
Then a basis for the two-dimensional relations of the one-dimensional
generators is given by the relations

Sicisisaly@ X X1 =0, 15¢sN.
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4. Local complete intersections.

In this section we assume that R is a local complete intersection. We
keep the previous notations. Thus we may suppose that % <m? is gene-
rated by an R-sequence and the length of this must then equal r=¢,=
=n—dim(R). We know from [14] that P, = X®. Hence, using theorem 1,
we obtain the result of [5] that Ext p(k,k) is generated by its 1- and
2-dimensional elements. We have more precisely (k(...) means non-
commutative free algebras and k[...] commutative free algebras. The
sufficiency of % = m3 for commutativity was first shown in [5, page 114]):

THEOREM 5. Let R be a local complete intersection and assume that
char(k)# 2. Then, as a Hopf algebra

Extg(k,k) = kKX,,.. ., X, Yy,. .., Y )/([X;, X;] +2:,=17ip,inp,
[le Yp]?[Yp’ Yq])

In particular, Bxtgl(k,k) generates Extp(k,k) off AnmP=mYA and
Ext p(k, k) is commutative iff W < m®. The subalgebra generatedby Y,,..., Y,
18 the polynomaal algebra k[Y,,...,Y ). The product

[,): B.ExP,E > P,E

may be chosen at will. Precisely, given any Lie algebra L=L,®L, with
dim, L, 2 dim, L, there is a local complete intersection with PE=L.

Proor. The Hopf algebra Ext z(k, k) is isomorphic to the free algebra
KX,,...,X,,Y,,...,Y,) divided by the ideal generated by the elements
describing the Lie product of PE=P,E@P,E and from this the first
formula follows with the aid of theorem 4. The statements about genera-
tion and commutativity follow from theorem 4. Suppose that f(Y;...,Y,)
is a polynomial in the now commuting variables Y,. We can take f to be
homogeneous. Let ¥,™...Y,™ have non-vanishing coefficient in f. Then

Ym..ym8m™, .8, =1 and Y. Yr8m . 8 =0
Whell (l].) DI ,lr) :k (n].! e ’nr) a‘nd hence
f(yl” L] Y,.)S,(”’), . -Sl(nl) *+ 0,

which shows that f(¥,,...,Y,)+0. It follows that the subalgebra gene-
rated by Y,,...,Y, is the polynomial algebra k[Y,...,Y,]. The arbi-
trariness of the Lie product follows from the following lemma (cf. Kap-

lansky [8, theorem 124]) applied to yy,...,y, € M? chosen at will and
8=3,
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Lemma 2. Let R be a Cohen-Macaulay ring of dimension n and let
Yi s Y, €M, where r sn. Then for any 821 there is an R-sequence
24,. . .,2, 8uch that z,—y; € me.

Proor. By induction it may be asumed that r=1. Then we have to
show that if y € m then

y+m" ¢ U{p‘il piEABS(R)} .

Let yepy,....,p, and yép,y...,0,. Now ménp,,n...np, ¢ p, for
1<t and hence there is a

zE m’np,_,_ln e ﬂ.pu-—plu “ee Up‘ .
Obviously
y+ze(y+m)—ufp;| p; € Ass(R)} .

REMARKS 1. Theorem 5 remains true when char(k)=2 (recall our
convention that [X,,X,]=X?). This follows from the results of [13].
2. With a suitable change of basis of P,E we can arrange it so that
Y, .1,..., Y, is a basis of the linear space spanned by the [X,;,X,]: s and
then
Ext gk, k) = k(Xq,..., X )/ BRk[Y,,..., Y]

where 8 is the ideal generated by elements of type [[X;, X 11, X;] and by
the elements corresponding to the two-dimensional relations between the
X, )

3. The three-dimensional relations [[X,, X ;1,X;] =0, in remark 2 above,
may be essential i.e. not a consequence of the two-dimensional relations.
An example is provided by

R = k[[xnxz:xs]]/ (2423 + 3%, 23)

Then the two-dimensional relations are X,?=X,?=X;?=[X,,X,]=0,
which shows that Ext (%, k) is a quotient of

4 = k<x1»Xs:Xs>/(X1=»Xaa,Xs’» [Xst]) .

But obviously 4 =k[X,, X,]»k[X,], where » denotes the “free product”
of graded algebras. Then, using (7) of Cohn [3, page 5], we get the Hilbert-
series

(1+2)8

P = 14+824+6224828+4...

H,(2) =

whereas
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(1+2)p®  (1+42)
Hyeopin(?) = = = e~ 1432+ 522+ 725+ ...

which shows that there is exactly one additional relation in dimension 3.
1t follows that

Ext p(k, k) = k[X;, Xp] * B[ X]/([[X 5 Xa], X4]) -
4. Suppose that we are given a graded Lie algebra L=L,L,®L;D. ..

over a field & such that there exists a local ring R with k=R/mand ¢;_, =
dim, L,. Is it then possible to choose R such that PE=L?

5. The finitely generated commutative case.
We have

TrEOREM 6. The algebra Ext p(k,k) is finitely generated and commu-
tative iff R is a local complete intersection with

dim,, (m2/m?) = (”; 1) .

Proor. We only need to prove that if Ext z(k,k) is finitely generated
and commutative then R is a local complete intersection. According to
[6] it is sufficient to show that ¢,=0 for ¢ large. Assume the contrary
and let {Y,| degY,<M,} generate Extp(k,k). Choose M,> M, such
that ey, + 0. Then there are ¢,,, variables adjoined in dimension M =M,
+1> M, in the minimal algebra resolution of k. Let deg Y,= M. Since
the algebra is commutative ¥; may be written as a linear combination

of monomials of type

YO r® Y.L Y, where N =g+ ... +ep,-1 -
Let 810 =g M _ 8 @D and order the N-tuples (ry,. . .,7y) as in sec-
tion 1.

Let Y®1---7® be the monomial in the expression for Y, with the least
exponent (ry,...,7y). Then

YL QUL %) = 1 gnd Y- rHISUL.rN)

for the other monomials in the expression for ¥, Thus ¥ ,S¢ M40,
which is a contradiction. It follows that R is a local complete intersection.
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