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THE PYTHAGOREAN CLOSURE OF FIELDS

MALCOLM P. GRIFFIN

0. Introduction.

A field is called Pythagorean if any sum of squares is a square. Since
the intersection of any two Pythagorean fields is Pythagorean, there is
a minimal Pythagorean field containing any field K; this is called the
Pythagorean closure and denoted K, . »

Since any field of characteristic two is Pythagorean, because Ya,2=
(3 a,)?, we assume that all fields (except residue class fields) have charac-
teristic not two. We use K to denote the algebraic closure of K, K* to
denote the multiplicative group of K, and X K? to denote the sums of
squares of elements in K. Where necessary we are working inside a fixed
algebraic closure. KH denotes the compositum of the field K and H in K.
Gy denotes the galois group of K over K. Cd,(G) denotes the cohomo-
logical two dimension of @; for definitions of cohomological dimension,
pro-finite groups, and for the related theorems on Galois cohomology the
reader is referred to Ribes [5]; some of the results are in Serre [8].

If ¢ is a K-automorphism of K then ¢(K,) is Pythagorean, so K, <
o(K,), and K, is a galois extension; the corresponding galois group is
called the pythagorean group, denoted PG (K). The purpose of this paper
is to investigate this group.

In the first section dealing with arbitrary fields, we show that Z,,
the infinite pro-cyclic-2-group, which is isomorphic to the 2-adic integers,
is a quotient group of PG (K) provided K + K,,. The second section deals
with fields which are complete with respect to rank one valuations, and
the third with global fields.

I am indebted to Paulo Ribenboim who thought of investigating this
topic and made helpful suggestions.

1. General results.
Lemma 1. If K is not formally real then K, is the quadratic closure of K.

ProoF. It is clear that K, is always contained in the quadratic closure.
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178 MALCOLM P. GRIFFIN
Let —1=3a2 If xe K, then

€= (3+2)+3 (@2 +2 (ax) e 3 K2,
80 Jxe K,.

Py(K) may be constructed as follows: Let Ky=K; define K, ,; by
adjoining }/a for all a € 3 K,2 Then K,=U, K.

LemMma 2. For all n,K,, 18 a Galois extension of K.
Proor. By induction. The statement is clearly true for n=0. Assume

it holds for n. Let o be a K-isomorphism of K, ,, into the algebraic clos-
ure of K. By induction oK, c K, . If a;€ K, then

(0(X ad)i)? = o(3 a) = 3 o(ay)e Y (K,)?,
o(Xadt) = (X o(@)P)ek,,.

Let G,=Gal(K,|K), so PG(K)=lLm@,.

so that

Lemma 3. Gal(K,,,|K,) = Direct product of copies of Z/[2.

Proor. Since the product of any two sums of squares is again a sum
of squares, and a/b=a-b/b?, it follows that those elements of K,* which
are sums of squares form a group. The corresponding subgroup of
K, *[(K,*)?is a vector space over F,, and has a basis. Let representatives
of this basis in K,* be {b; | ¢ € I}. If a is a sum of squares in K *, then

a=2c%;...5, and JaeK,(Vby,...,Vb);

thus K,.;=K(U,Vb,). We prove that Gal(K,,|K,)=~T1;;Z/2. This
isomorphism is given as follows: o€ Gal(K,,,|K,) corresponds to
(04) € T141 Z/2 where o,=0 if o(yb;)=yb; and o;=1 if a(yb;)= — V/b;.

LemMa 4. The maximum order of an element in G, 18 2™,

Proor. The proof is by induction. The case n=1 is lemma 3. Use the
exact sequence

1->Gal(K,K,,)>G,>G,,—~>1.

Let 0 €@,; then by induction hypothesis [p(c)]?" =1, s0 ¢(c®")=1
and ¢ € Gal(K,|K,_,), so ¢¥"=1.
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The object of this section is to show that if K,+ K then Gal(K,|K)
has Z, as a quotient group. We first investigate prime fields since if L
is the prime field of K, then L,cK,.

ProrosiTION 5. Let K be an algebraic extension of F, where q 18 an odd
prime. Let H=U,_ Fn. Then K,=K-H, and if K, + K then PG(K)=Z,.

Proor. By lemma 1, K, is the quadratic closure of K. Let x € K,,;
then z € Fy(x) where Fyc K and [Fz): F]=2" Thus the order of
Fy(z) is t*" and Fy(z)< Fy-H, so that K, KH. Since every element in a
field of characteristic not two has two distinct roots and only half the
elements in finite fields of odd characteristic have square roots, (F,),
must be infinite. Since (F,), < H it follows that (F;),=H. Thus

Gal(F,), | Fy) = limGal(Fym|Fy) = Z,.

H is the field obtained by adjoining the 2™ roots of unity to F, for all n.
Since Hc K, KH, K,=KH and Gal(K,|K)=Gal(L|KnL) is either

Z, or zero.

ProrosrrioN 6. Let &, be a primitive 2**2 root of unity, h,=§&,+&,7,
H,=Q(h,) and H=U, H,. Then HcQ, and Gal(H|Q)=Z,.

Proor. Let R be any real closure of Q. Let ¢ be the B automorphism
of Q. Since o(£,)=£,, H,<R. &, satisfies X2—h,X+1=0, so that
Q(¢,) is a quadratic extension of H,. It is well known that

Gal(Q(£,)|Q) = Z/2»x Z/2.
Since y—1¢ H,, H, contains only one quadratic extension of Q and
Gal(H,|Q) = Z/2™.

H, is obtained from Q by a sequence of quadratic extensions; since
every ordering of Q extends to H, each of these quadratic extensions
must be obtained by adjoining the square root of an element which is
positive in all orderings, and thus is a sum of squares. Thus H,cQ,
and consequently H < Q,. Finally

Gal(H|Q) = lim Gal(H, |Q) = limZ/2"=Z,.

We continue to use H to denote the extensions of the prime field
defined in the two previous propositions.
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CoROLLARY 7. Let K be any field. Either Gal(KH |K)=2Z, or K2H.
In the first case Z, is a quotient group of PG (K); the second case occurs if
and only if K(i) contains the 2"-th roots of unity for all n.

Proor. Since Hc K,,, Gal(KH |K)=Gal(H| KnH) is a quotient group
of PG(K). But if Gal(H |KnH) is not Z, it must be trivial so that H < K.
Since H already contains the 27th roots of unity unless X has charac-
teristic zero, we need only prove that if K has characteristic zero,

K(i)=2 H(¢) implies that K 2 H. Suppose K $ H(3).
Gal(K(i)|K) = Gal(H(#)K |K) = Gal(H(:)|KnH(1)) .

Since [K(¢): K152, [H(3): KnH(i)]<2, so H(i)nK is a subfield of H(:)
having index two. Since

Gal(H(3)|Q) = Z,x Z/2

there is only one subfield of index two in H(z); it must be H.

Let ¢c=1+a? be any element in K but not in K2 Define f, inductively
as follows:

fi=cet fan=2781+)1.

fro1 = 2¥1—f )b for nx1

Let

and f,'=ac-t. Let g, =f, +1f,’.
LemMma 8. f, e K,.

Proor. We prove by induction that f, e K, and 1-f,2e3(K,_,)2
Denote K by K,. Clearly f, € K,, and

1-f2=1-1/c = a*/ce Y K?.
Assume the statement holds for =.
(fard)?® = H14fp) = 1A+ +HIA LD e K2+ 3 (K, 1) € 3 K2
thus f,,, € K, ;.

1_(fu-1v-1)2 =1-§1 +fn) = i(l—fu)g'*'i(l ""fnz) EKJ‘*‘Z (Kn—l)z s
SKz2.

LeMMa 9. g,.2" is in the same square class over K(3) as c.
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Proor. We first show that if n 2 1, then f, ., f,., =3/, and (§p+1)2=0p-
If n>1,

fn+1f:t+l = %(1 —fn)}(l +fn %(1 "'f'n (1 - %(1 +fn—-1))
= %2_}(1 "'f'n—l)} = éfn ’

fofd' = 3A=f2)F = 1 -1fe)t = fact = 1y .
Thus if n=1
(9n+1)® = (fanr +if;,+1)2 = (fas)?— (f:z+1)2 + 2ifn+1f;c+1
= Y1 +fo—(L=f)) + 281 = futifs' = gn-
The lemma is now clear for g,,2" =g,2=c-1(1+1a)? which is in the same
square class as c.

and

REMARK. Since f, ., =13f, [fass for n=1 and f’ =af1, it follows by
induction that K(f,")=K(f,) and hence that K(g,)=K(f,)().

TrEOREM 10. If K is not pythagorean then there exists a galois extension
L of K contained in K, such that Gal(L|K)=Z,.

Proor. If K3 H the theorem follows from corollary 7. If K contains
the 27th roots of unity for all » and K+ K, then K has a quadratic
extension K()/a), and it follows by Kummer theory that if L=U, K(a®™"),
then Gal(L|K)=Z,. Thus the only case of interest is K+K,, K2 H
and K+ K(%).

If K is not formally real then there is a minimum value of »n such
that 1+ a,%24+ ... +@,2=0. Since 7 ¢ K, n= 2, and as is well known, n+1,
the level of the field, must be a power of two, so = 3. Thus if c=1+a,?,
¢ is not in the same square class as —1. By the previous lemma, K(g,)
is a cyclic extension of K(¢) of degree 2" and [K(g,):K]=2"+1. If K is
formally real, choose ¢=1+a? ¢ K2; then [K(g,): K]=2"+! and K(g,) is
a cyclic extension of K(z).

We shall prove that K(f,) is a cyclic extension of K having degree 2".
The result then follows by setting L=U, K(f,).

Let ¢ be the generating automorphism of K(f,)(#)|K(f,). Since

I K o(futifn) = fa—ifa -

If n>1,
gna(gn) = (fn+ifn’)(fn"ifn,) = fn2+(f"')8
= 31+fud) +31—fad) = 1
g10(g1) = fi*+(f)? = le+a*fc = 1.

Consequently, o(g,)=g,""
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Let £ be a primitive 27th root of unity. Since H < K it follows that o
must interchange the roots of the polynomial

X2—-(f+&)X+1 =0,

i.e. that o(£)=¢&-1. Gal(K(g,)|K (7)) is generated by v where (g,)=£g,,.
Consequently

07(g,) = 0(ég,) = o(£)a(g,) = 79,71
= (ggn)-l = T(gn)—l = T(gn_l) = ‘ta(gn) .

Thus v and ¢ commute. Since K({)nK(f,)=K, v and ¢ are K-auto-
morphisms of K(g,) and [K(g,): K]=2"*; K(g,) is a galois extension of
K with group Z/sn x Z/2. Thus K(f,) is cyclic of degree 27.

The result that Gal(K, | K) is either trivial or has Z, as quotient group
generalizes the result of Diller and Dress [2] that if Gal(K,|K) is non-
trivial, then Z/4 is a quotient group. It is possible to have Gal(K, |K)=
Z,. Take K a maximal subfield of Q which does not contain y2. Inter-
sect this field with some real closure of the rationals if a formally real
field is desired cf. [3, exercise 3, chapter 8]. By forming fields of the type
K=k((Xy))((X,)...((X,)) where k is algebraically closed, we obtain
fields such that PG (K)=T1I,Z,, as we shall see later.

PG(K) contains no torsion elements, for if o?"=1 then the fixed
field L of o has finite index in K, and since L,=K,, PG(L) is finite,
8o Z, is not a quotient group, L=L,=K,,, and ¢ is the identity.

Prorosrrion 11. If the fized field L of an abelian subgroup A of PG (K)
does not contain H then LH=K, and A=1Z,.

Proor. We suppose that LH+K, and deduce that Hc L. Let c=
1+ a2 be chosen as in the preceding theorem if )/ —1 ¢ L; otherwise take
¢ an arbitrary non square. Thus LH has a cyclic extension M of degree
m generated by f,, (respectively ¢ ). Since M | L is abelian, f,, (respect-
ively ¢*™) generates a cyclic extension of L. In the case of ¢ the
automorphism is given by ¢ " - £,c* " where £, is a primitive 27th
root of unity, and hence &,, € L, so §,,+§,,7* € L. Otherwise 7: ¢,, > £,.9m
is the generating automorphism over L(s) so that

(fo) + T Hfm) = T+ + T HIm+In™)
= Smgm + Em-lgm—l + 5m_1gm + ‘gmgm.1
= lntén DV In+In™) = Ent+&am-
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Thus ¢,,+&,,~1 € L. Since m is arbitrary this proves H < L, a contradic-
tion. It follows that LH = K,, and consequently that 4 =2Z,.

ProrosririoN 12. If Cdy(Gyx) =1 and K + K,,, then the maximal abelian
closed subgroup of PG(K) is Z,.

Proor. Let 4 be a maximal abelian closed subgroup with fixed field L.
Suppose A4 Z,; then L2 KH, so that Cd,(G.)<1 by Proposition 5.1,
page 271 of [5]. In particular this implies that L is not formally real.
It follows by corollary 3.2, page 255 of [5] that PG (L) is a free pro-2-
group. Since it is also abelian, and contains Z, it must be Z,.

The hypothesis of this proposition holds if X is any algebraic extension
of Q which is not formally real (see theorem 8.8, page 302 of [5]). The
example quoted previously where PG (K)=1I],Z,, shows that the maxi-
mal abelian closed subgroup may be larger than Z,.

2. Fields complete with respect to a rank one valuation.

K is a field complete with respect to the rank one valuation v. k is the
residue class field. If v is discrete, = denotes a uniformizing element.
Although we exclude the case where K has characteristic two we now
generalize our notation to deal with the case k& has characteristic two.
If k& has characteristic two, define k,=% and %, , to be the union of all
separable quadratic extensions of k,; define k,=U,k, and PG(k)=
Gal(k, | k).

Let K, , denote the maximal unramified extension of K in K, and
K, ., that of K in K,

ProrosiTioN 13. Let K be complete with respect to a rank one valuation.
The residue field of K, is k, and there is an exact sequence

0 > PG(K,,,) -~ PG(K) » PG(k) - 0.

Proor. If % is not formally real, —1 is a sum of squares in k£ and by
Hensels lemma, —1 is a sum of squares in K. Thus K, coincides with
the quadratic closure of K, and k, with the separable quadratic closure
of k. The one to one correspondence between the unramified extension
of K and the separable extensions of k established by going to residue
class fields gives isomorphic Galois groups and establishes Gal(K,, ,|K)~
PG (k).

If k is formally real we need to establish that the above correspondence
takes subfields of K, , into subfields of k,. It suffices to do this for
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quadratic extensions, since any such subfield of finite degree is obtained
by a sequence of quadratic extension. Let L= K(3a,?)! be such an ex-
tension. Since L is unramified we may assume that v(a,)=0 and that
v(a;)2 0. The corresponding residue class field is L=£((3a;%)), where
bar denotes the map to the residue class field, and clearly Lck,.

The final result now follows from the exact sequence:

0 > PG(K,,,) - PG(K) - Gal(K, ,|K) > 0 .

ProrositioN 14. If K is complete with respect to a rank one valuation
and the residue class field has characteristic two, then PG (k) is a free
pro-2-group of rank dime,(k|f(k)) where f: & - x*—x. In particular, if k
i8 finite then PG (k)=Z,. If k is perfect and 21 [k:k,], then PG (K, ,) is
a free pro-2-group of rank dim (K *: (K ,)?]. In particular, if k is algebraic
over Fy then PG (K, ,) is a free pro-2-group of countable rank.

Proor. The first result is corollary 3.4, page 257 of [5]. If k is finite,
k|f(k) contains two elements, so the rank is one, so PG(k)=2Z,. By
theorem 6.1, page 277 of [5],

Cdy(Gg,,,) = 1+Cdy(Gy,) = 1,

for, since 2t[k:k ), Cd 2(Gg,) =0, corollary 2.3, page 208 [5]. Conse-
quently PG (K, u) is a free pro-2-group by corollary 3.2, page 255 of [5].
By the remark on page 262 of [5] the rank of this free group is
dim (K, |(Kp,)?). For a local field, [K*:(K*)?] = 4(#k)* where (7)'=(2).
Consequently [K "‘u (Kp..)?] is countable in this case. It is also true in
this case that 2¢ [Ic k ] The result follows.

ProposITION 15. Let K be complete with respect to a rank one valuation
v with k not of characteristic two. Then PG (K, ,) is a torsion free abelian
pro-2-group. If v is discrete and k 18 not formally real, then PG (K, ,)=Z,,
and if in addition k contains the 2"-th roots of unity for all n then PG (K) =~
Z, PG (k).

Proor. First observe that if k is formally real, then K,=K, , so
that PG (K, ,)=0. For suppose that
o =", «® with s;e K.
Let v(x;) =min, ;.. {v(x;)}. Then v(x)=2v(x;), for otherwise the map ¢

‘to' the residue class field would give 0=37", (x/x,), contradlotmg the
-agsumption that k is formally real.
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If k is not formally real, %, and hence K, , contains the 2"th roots
of unity for all n. Thus, by theorem 3, page 64 of [6], PG (K, ,) is abelian.

If k is not formally real then neither is K and » is a sum of squares;
so PG(K,, ,) contains Z,, but every tamely ramified galois extension is
cyclic for a discrete valuation so PG(K,, ,)~Z,. If k contains the 27th
roots of unity so does K; consequently adjoining the 27th roots of =
to K is a cyclic extension for all n. Thus K has a totally and tamely
ramified extension with galois group Z, and consequently PG (K)=
Z,®PG (k). '

ProrosrTioN 16. Let K be complete with respect to a discrete valuation
having as residue class field k an algebraic extension of F, where p is odd.
If Hck then PG (K)=2Z,; otherwise knH =F,, with ¢=p¥" and PG (K)=
lim @, where G, is given by generators and relations:

{o,7] o = 1" = o-ltlo7! = id}

and t=281 1 is the residue of ¢ mod 25+ where s s the largest integer such
that g= + 1 (mod 2¢%).

Proor. If H<k the proof is clear from our previous results. Thus to
complete the proof we must calculate G,=Gal(K,|K). K,=K, ,(u)
where y is a 27th root of . K, , corresponds to k, = Foon- k. Let d= 28+,
Let x be a primitive dth root of unity over F,and y be a square root of x.
We show that y ¢ k,,, k,=Fk(z) and ¢:x - a' generates the galois group
of k, over k. k, is a field with ¢°™ elements where b is odd. Now

¢t —1 = (a28+ 1)1
1 + 27+3gh — 1 mod 2n+5+1
2n+s mod 2n+¢+1 = d mod 2d .

i

I

Consequently y raised to ¢*®—1 is the same as y? which is —1. Thus
y ¢k, but y2=z € k. It follows that £, = k().

t2n—1 (23 + 1)27%1 =1 + 98+n-1 +c223+n_2

1+ 3d modd .

it

Thus ¢*"'(x)=2+¥2= —x so ¢ has order 2%, and thus generates the
galois group.

Let & be a primitive dth root of unity in K which maps into z in the
residue field. Then K, ,=K(£) and & — & generates the galois group.
o: & - & also generates the galois group of K(u,&) over K(u). Let e=2*
and f=2», Then 7: u — £%u generates the galois group of K, over K,, ,,
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since &° is a primitive fth root of umity. K, =K(& u)=K(&+u), for
since K(%+ p) has the same residue class field as K(£), K(&)c K(&E+ p).
o and v define K-automorphism of K, by

:é+pu—>E+8u and o:é+u-—>E4p,
and
o =17 =id.

Since the fixed fields of ¢ and 7 are respectively unramified and totally
ramified, (¢dn{r)=id, and the order of the group generated by o and =
is f2=[K,:K]; they generate Gal(X,|K). Finally,

ot(§+p) = o(f+&u) = E+ &% = P8 +u) = To(b+u),

80 o7 ="Tlo.

CorROLLARY 17. If t=28+1 then the largest abelian quotient group of
PG (K) ts Z, x Z[28; otherwise it 18 Zyx Z|2. The latter case occurs if and
only if ¢=3 (mod4) and in this case PG (K) has the dihederal group as a
quotient group.

A more explicit computation of the K, is possible for discrete valua-
tions in the equal characteristic case; here K =k((x)) is a power series
field. We define

E® = |, K((X*).

Prorostrion 18. K, =k,K' where K' =K if k is formally real and other-
wise K'= KW,

Proor. If £ is not formally real then Y is a sum of squares in k((Y)),
and Y is not a square since the square of an element in k((Y)) must start
with a term of even degree. Thus Y# belongs to k((Y)),, and for each
7,X?" e K,,. Consequently K® < k((X)),, provided that £ is not formally
real. Also k,< k((X)), and consequently, k,.K'c K,,.

We need to show that if a,b € k,,. K’ then (a4 b%)t € k,K'. If k is not
formally real then a,b e k,.K® and there is some integer n such that
a,b e b k((XT™")). Let Y=X*". If k is formally real, a,bek,. K, set
Y =X. By multiplying by a suitable power of ¥ we may assume that a
is of the form ay+a,Y +a,Y2+ ... with a0 and that b is of the form
by+b, Y +b,Y%+.... Since a,b are in the compositum %,k((Y)), all the
a,,b; are in some finite extension %, of k¥ with k< k, <%,. Now
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a?+b% = ap?+ b+ 2(a0y + byby) Y + (@2 + by® + 2(aga, + boeby)) Y2 +
+ 2(@g@g + B1@g + boby +bbp) Y3+ . .. .

If ay%+by2+0 (this will always be the case if k is formally real) then
we can solve for the coefficients of a power series ¢ with ¢2=a?+ b2;

o = (@2 +b)t, ¢; = coHagay+bedy)
Cy = (200)~Y(ay%+by% —¢,2 + 2(aya, + boby)) ete.

and we have ¢ € ky((a,2+0,2))((Y)) sk, . K'. If a+b,2=0 let d,¥Y"+
d, 1 Y*1+ ... be the power series for a?+ b2 Since k is not formally
real, d, is a sum of squares. Let k,=k,()/d,). Let Z= Y% and let

¢ = 2" +Cp 2"+ ...
be such that ¢?=a%+ b2 Then
¢, = Vd,, 2¢,¢,., = 0, ete.
and we can solve for ¢,,c,,1,C,4e €tc. Consequently

ceky((2)) = ky((X*") € ky R((X)) € k. K"

CoroLLARY 19. k((X)) 48 pythagorean if and only if k is pythagorean
and formally real. If K is formally real then PG (K)xPG (k).

Norte. In general it is not true that k,((X))=k,.%((X)). For example
take k= Q

Power series provide a good example showing that the compositum of
two pythagorean fields need not be pythagorean. Let B, and R, be two
different real closures of Q in Q. Then R,((X)) and R,((X)) are both
formally real pythagorean subfields of Q((X)); however their composi-
tum is not formally real, and thus not pythagorean (for it does not con-
tain yX).

To end this section we discuss the relationship between pythagorean
closure and completion with respect to a rank one valuation. X denotes
the completion of K.

LemMa 20. Let K be the completion of K with respect to the rank one
f;gluuticm v. Let a3 K?; then there exists be 3K such that K(/a)=
(V).
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Proor. Let a=37_,a,2 Multiplying by an even power of an element
with value one we may assume 0=<v(a,), 1 <i1<n. Let v(a)=¢. Let b,e K
be chosen such that

v(b;—a;) > 20(2)+t, 1=5i=n,

and set b=37_,b,2 Now apply Hensels lemma [1, page 34] to the field
K(Va).
V X2-b=(X—Va)X+Va)+a—0b,
(X — Va)+ (= 1)(X +ya) = 2/a,
and
v(@—b) = »(3 (a—b?)) 2 min{v(a;—b,)+v(a;+b;)}
> 20(2)+¢ 2 v(22) +w(a) 2 v((2)/a)?),

so X2—b factorizes in K()a). Since v(b)=v(a) the same argument shows
that X2—a factorizes in K(yb) and it follows that K()/a)=K(yb).

ProOPOSITION 21. Let v be a rank one valuation of K. Identify the alge-
braic closure of K in that of K ; then (K )p———Kp.K .

Proor. Since Kg(l?)p, Kpg(K)p and so Kp.Kg_(K)p. Let z e (K)p;
then K(z) may be obtained from K by a sequence of quadratic extensions
in (K),,

R=K,cK,cK,... <K, =R@).

We show there exists a sequence of fields in K,
K=LicL ... €L,

such that L,K = K,; this will show K(r)< K.K,. By induction we need
only prove that if L,K =K, and K,,,=K,()a), then there exists b such
that

beK, Ly/b)K =K,,,.

Choose b according to the previous lemma using the fact that L, = L,K =
K,.

CoroLLARY 22. If K i3 pythagorean so i8 its completion with respect to
any rank one valuation.

- 1t should be noted that (K,)" +(K),. Ks(K,)", so K<(K,)" and
since (K,)" is pythagorean, (K)pg(Kp)“; however the case K =Q(X)
with the valuation given by X provides a counter example to the op-
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posite inclusion. For if 7, is the sum of a primitive 2°th root of unity
and its inverse, then &, € Q(X), so that

h=3h,X"e(QX),)" .
However (Q(X)"),=(Q((X))), =Q,-Q((X)) does not contain k.

3. Global fields.

ProrosiTioN 22. If K is a global field which is not formally real, then
there 18 an exact sequence

0-F,>PGK)>Z,—~0

where F, is the free pro-2-group on a countable number of generators.

Proor. First case: K is a finite algebraic extension of F,(X). Since
F,H has no quadratic extensions, cd,(F,H)=0 and by proposition 5.2,
page 272 of [5], ed,(F,H(X))=1. By proposition 5.1, page 271 of [5], the
same is true of any finite algebraic extension of H(X), in particular of
KH. Consequently PG (KH) is a free pro-2-group by corollary 3.2, page
255 of [5]. The rank of this free group is countable since that is the order
of H(X)*/H(X)*? by remark, page 262 of [5]. Finally Gal(KH |K)=Z,.

Second case: K is an algebraic number field which is not formally real.
2|[K:KH] and at every non archimedian valuation v of KH,
2°|[(KH),:Q,), and so by theorem 8.8, page 302 of [5], ed,(PG(KH))=1,
implying that PG (KH) is a free pro-2-group. By square classes its rank
is countable. Since Gal(KH |K)=Z, the result follows.

The methods used above do not apply to the formally real case since
in this case the cohomological two-dimension is always infinite. I cannot
see how to treat this case.

ProrosiTion 23. Let A be a direct product of a countable number of finite
cyclic two groups, and let K be an algebraic number field; then Z, DA i3 a
quotient group of PG (K).

Proor. Let £, be a primitive pth root of unity for some odd prime p.
&, +&,71 generates a cyclic extension of Q of order §(p~—1), which is in
all real closures of Q. Let n(p) denote the largest power of two dividing
¥p—1), and let U, € Q(&,+&,71) generate the cyclic extension of Q
having order 27®. Q(u,) is obtained by quadratic extensions, and is in
all real closures of Q, so it is contained in Q,,.
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It follows from Dirichlet’s theorem that there are an infinite number
of primes in the arithmetic progression 22+2m + 2¢+14+ 1, and thus that
there are an infinite number of primes with n(p)=a.

Let T, be the field generated by U,,,Q(&,); then by statement (b)
of chapter VIII of [4], 7,nQ(¢,) = Q. Thus if M, is the field generated by
Uz, g0 Qug)s then M nQ(u,)=Q and it follows by statement (k)
of chapter VII of [4] that if M is the field generated by U, ,q4 Q(z,) then

Gal(M |Q) = TI, Gal(Q(u,)|Q) = II, Z/2"® .
Let K be any algebraic number field; then Gal(KM |K)=Gal(M |Kn M)
which is a subgroup of Gal(M |Q) of finite index. It follows that there is
a subfield of KM which has any direct product of a countable number of
two groups as quotient group. Thus 4 is a quotient group. The result
follows since HK | K is abelian with quotient group Z,.

The above construction gives the maximal abelian quotient group of
PG (Q), since any abelian extension of Q is contained in a cyclotomic
extension. In particular there is a unique subfield of PG (Q) with galois
group Z,; it is precisely H.

PG (Q) has all possible groups of order eight as quotient groups. Since
PG (Q) has all abelian groups of order 2" as quotient groups we need
only be concerned with the dihederal group and the quaternion group.

(i) Dihederal: Let g,f be positive integers with g2>f and none of

g% —f.f,9%[f — 1 squares. If
z = e)f+(g+ V)

then Gal(Q(x)|Q) is dihederal (see Siedelmann [7]). To show that x € Q,
we need only show that g+ |/f is a sum of squares in Q(yf).
g+Vf = 29+ Vf[29)*+9/2- 1|29
= 29(k+Vf/29)* +29(9*—f)(1/29)%;

since 2g and 2g(g®—f) are positive integers this is a sum of squares.

(ii) Quaternions: Q((1+1/y3)(1+1/y2))t is contained in Q, and has
the quaternions as Galois group. The conjugate roots are
zo = (L+1/Y3)1+1/y2), 2 = ((1-1/y3)(1+1/y2))},
2y = (1+1/y3)A-1/y2)}}, =5 = ((1-1/y3)1-1/y2)},
~Zy, — %, —%y and —z5.

If o(x,)=x, and v(z,)=z, then it is easy to show that ¢®=12, ot=id
and ot =70 Since 1+ 1/)/3 is positive in all orderings of Q(1/y/3) it is &
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sum of squares in this field; thus Q((1+1/y3)}) is in Q,; similarly so is
Q((1+1/y2)).

If K is any C, field i.e. every homogeneous polynomial in n variables
of degree less than » has a non trivial zero, then cd,(K) <1 by corollary
4.3, page 269 of [5]. Consequently if A4 is any algebraicly closed field,
PG(4(X)) is a free pro-2-group. The rank of the group is the number of
square classes i.e. 4(X)*/(A(X)*)2.

REFERENCES

1. E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York,
19617.

2. J. Diller and A. Dress, Zur Galoistheorie Pythagoreischer Korper, Arch. Math. 16 (1965),
148-152.

3. 8. Lang, Algebra, Addison-Wesley, Reading, 1965.

4. P. Ribenboim, L’ Arithmetiqgue des Corps, Hermann, Paris 1972,

5. L. Ribes, Introduction to profinite groups and Galois cohomology, Queen’s University,
Kingston, 1970.

6. O. Schilling, The theory of valuations (Mathematical Surveys 4), American Mathemati-
cal Society, New York, 1950.

7. F. Seidelmann, Die Gesamtheit der kubischen und biquadratischen Qleichungen mit Affekt
bei beliebigem Rationalitatsbereich, Math. Ann. 78 (1918), 230-233.

8. J. P. Serre, Cohomologie Qaloisienne (Lecture Notes in Mathematics 5), Springer-Verlag,
Berlin-Heidelberg-New York, 1964.

QUEEN’S UNIVERSITY, KINGSTON, ONTARIO, CANADA



