THE PYTHAGOREAN CLOSURE OF FIELDS

MALCOLM P. GRIFFIN

0. Introduction.

A field is called Pythagorean if any sum of squares is a square. Since the intersection of any two Pythagorean fields is Pythagorean, there is a minimal Pythagorean field containing any field K; this is called the Pythagorean closure and denoted K_p .

Since any field of characteristic two is Pythagorean, because $\sum a_i^2 = (\sum a_i)^2$, we assume that all fields (except residue class fields) have characteristic not two. We use \overline{K} to denote the algebraic closure of K, K^* to denote the multiplicative group of K, and $\sum K^2$ to denote the sums of squares of elements in K. Where necessary we are working inside a fixed algebraic closure. KH denotes the compositum of the field K and H in \overline{K} . G_K denotes the galois group of \overline{K} over K. $\operatorname{Cd}_2(G)$ denotes the cohomological two dimension of G; for definitions of cohomological dimension, pro-finite groups, and for the related theorems on Galois cohomology the reader is referred to Ribes [5]; some of the results are in Serre [8].

If σ is a K-automorphism of \overline{K} then $\sigma(K_p)$ is Pythagorean, so $K_p \subseteq \sigma(K_p)$, and K_p is a galois extension; the corresponding galois group is called the *pythagorean group*, denoted $\operatorname{PG}(K)$. The purpose of this paper is to investigate this group.

In the first section dealing with arbitrary fields, we show that Z_2 , the infinite pro-cyclic-2-group, which is isomorphic to the 2-adic integers, is a quotient group of PG(K) provided $K \neq K_p$. The second section deals with fields which are complete with respect to rank one valuations, and the third with global fields.

I am indebted to Paulo Ribenboim who thought of investigating this topic and made helpful suggestions.

1. General results.

LEMMA 1. If K is not formally real then K_p is the quadratic closure of K.

PROOF. It is clear that K_n is always contained in the quadratic closure.

Received October 22, 1974.

Let $-1 = \sum a_i^2$. If $x \in K_p$, then

$$x = (\frac{1}{2} + x)^2 + \sum (a_i/2)^2 + \sum (a_i x)^2 \in \sum K_p^2$$
,

so $\forall x \in K_p$.

Py(K) may be constructed as follows: Let $K_0 = K$; define K_{n+1} by adjoining \sqrt{a} for all $a \in \sum K_n^2$. Then $K_p = \bigcup_n K_n$.

LEMMA 2. For all n, K_n is a Galois extension of K.

PROOF. By induction. The statement is clearly true for n = 0. Assume it holds for n. Let σ be a K-isomorphism of K_{n+1} into the algebraic closure of K. By induction $\sigma K_n \subseteq K_n$. If $a_i \in K_n$, then

$$(\sigma(\sum a_i^2)^{\frac{1}{2}})^2 = \sigma(\sum a_i^2) = \sum \sigma(a_i)^2 \in \sum (K_n)^2,$$

so that

$$\sigma\!\big((\textstyle\sum a_i{}^2)^{\frac{1}{2}}\big) \;=\; \pm \left(\textstyle\sum \sigma(a_i)^2\right)^{\frac{1}{2}} \in K_{n+1} \;.$$

Let $G_n = \operatorname{Gal}(K_n \mid K)$, so $\operatorname{PG}(K) = \varprojlim G_n$.

Lemma 3. Gal $(K_{n+1}|K_n) \cong Direct$ product of copies of $\mathbb{Z}/2$.

PROOF. Since the product of any two sums of squares is again a sum of squares, and $a/b = a \cdot b/b^2$, it follows that those elements of K_n^* which are sums of squares form a group. The corresponding subgroup of $K_n^*/(K_n^*)^2$ is a vector space over F_2 , and has a basis. Let representatives of this basis in K_n^* be $\{b_i \mid i \in I\}$. If a is a sum of squares in K_n^* , then

$$a = c^2b_1 \dots b_t$$
 and $\forall a \in K_n(\forall b_1, \dots, \forall b_t);$

thus $K_{n+1} = K(\bigcup_{i \in I} \gamma b_i)$. We prove that $\operatorname{Gal}(K_{n+1} | K_n) \cong \prod_{i \in I} \mathbb{Z}/2$. This isomorphism is given as follows: $\sigma \in \operatorname{Gal}(K_{n+1} | K_n)$ corresponds to $(\sigma_i) \in \prod_{i \in I} \mathbb{Z}/2$ where $\sigma_i = 0$ if $\sigma(\gamma b_i) = \gamma b_i$ and $\sigma_i = 1$ if $\sigma(\gamma b_i) = -\gamma b_i$.

LEMMA 4. The maximum order of an element in G_n is 2^n .

PROOF. The proof is by induction. The case n=1 is lemma 3. Use the exact sequence

$$1 \to \operatorname{Gal}(K_n K_{n-1}) \to G_n \overset{\varphi}{\to} G_{n-1} \to 1.$$

Let $\sigma \in G_n$; then by induction hypothesis $[\varphi(\sigma)]^{2^{n-1}} = 1$, so $\varphi(\sigma^{2^{n-1}}) = 1$ and $\sigma^{2^{n-1}} \in \operatorname{Gal}(K_n | K_{n-1})$, so $\sigma^{2^n} = 1$.

The object of this section is to show that if $K_p \neq K$ then $Gal(K_p \mid K)$ has Z_2 as a quotient group. We first investigate prime fields since if L is the prime field of K, then $L_p \subseteq K_p$.

PROPOSITION 5. Let K be an algebraic extension of F_q where q is an odd prime. Let $H = \bigcup_n F_{q^{2^n}}$. Then $K_p = K \cdot H$, and if $K_p \neq K$ then $PG(K) = \mathbb{Z}_2$.

PROOF. By lemma 1, K_p is the quadratic closure of K. Let $x \in K_p$; then $x \in F_t(x)$ where $F_t \subseteq K$ and $[F_t(x) : F_t] = 2^n$. Thus the order of $F_t(x)$ is t^{2^n} and $F_t(x) \subseteq F_t \cdot H$, so that $K_p \subseteq KH$. Since every element in a field of characteristic not two has two distinct roots and only half the elements in finite fields of odd characteristic have square roots, $(F_q)_p$ must be infinite. Since $(F_q)_p \subseteq H$ it follows that $(F_q)_p = H$. Thus

$$\operatorname{Gal}(F_q)_p | F_q) = \lim_{\longleftarrow} \operatorname{Gal}(F_{p^{2^n}} | F_p) = \mathsf{Z}_2.$$

H is the field obtained by adjoining the 2^n roots of unity to F_p for all n. Since $H \subseteq K_p \subseteq KH$, $K_p = KH$ and $Gal(K_p \mid K) = Gal(L \mid K \cap L)$ is either Z_2 or zero.

PROPOSITION 6. Let ξ_n be a primitive 2^{n+2} root of unity, $h_n = \xi_n + \xi_n^{-1}$, $H_n = Q(h_n)$ and $H = \bigcup_n H_n$. Then $H \subseteq Q_p$ and $Gal(H \mid Q) = Z_2$.

PROOF. Let R be any real closure of Q. Let σ be the R automorphism of \overline{Q} . Since $\sigma(\xi_n) = \xi_n^{-1}$, $H_n \subseteq R$. ξ_n satisfies $X^2 - h_n X + 1 = 0$, so that $Q(\xi_n)$ is a quadratic extension of H_n . It is well known that

$$Gal(Q(\xi_n)|Q) = Z/2^n \times Z/2$$
.

Since $\gamma - 1 \notin H_n$, H_n contains only one quadratic extension of Q and

$$Gal(H_n|Q) = \mathbb{Z}/2^n$$
.

 H_n is obtained from Q by a sequence of quadratic extensions; since every ordering of Q extends to H_n each of these quadratic extensions must be obtained by adjoining the square root of an element which is positive in all orderings, and thus is a sum of squares. Thus $H_n \subseteq \mathbb{Q}_p$ and consequently $H \subseteq \mathbb{Q}_p$. Finally

$$\operatorname{Gal}(H | Q) = \varprojlim \operatorname{Gal}(H_n | Q) = \varprojlim \mathbb{Z}/2^n = \mathbb{Z}_2.$$

We continue to use H to denote the extensions of the prime field defined in the two previous propositions.

COROLLARY 7. Let K be any field. Either $Gal(KH|K) = \mathbb{Z}_2$ or $K \supseteq H$. In the first case \mathbb{Z}_2 is a quotient group of PG(K); the second case occurs if and only if K(i) contains the 2^n -th roots of unity for all n.

PROOF. Since $H \subseteq K_p$, $Gal(KH | K) = Gal(H | K \cap H)$ is a quotient group of PG(K). But if $Gal(H | K \cap H)$ is not \mathbb{Z}_2 it must be trivial so that $H \subseteq K$.

Since H already contains the 2^n th roots of unity unless K has characteristic zero, we need only prove that if K has characteristic zero, $K(i) \supseteq H(i)$ implies that $K \supseteq H$. Suppose $K \supseteq H(i)$.

$$Gal(K(i)|K) = Gal(H(i)K|K) = Gal(H(i)|K \cap H(i))$$
.

Since $[K(i):K] \le 2$, $[H(i):K \cap H(i)] \le 2$, so $H(i) \cap K$ is a subfield of H(i) having index two. Since

$$Gal(H(i)|Q) = Z_2 \times Z/2$$

there is only one subfield of index two in H(i); it must be H.

Let $c=1+a^2$ be any element in K but not in K^2 . Define f_n inductively as follows:

$$f_1 = c^{-\frac{1}{2}}, \quad f_{n+1} = 2^{-\frac{1}{2}}(1+f_n)^{\frac{1}{2}}.$$

Let

$$f'_{n+1} = 2^{-\frac{1}{2}}(1-f_n)^{\frac{1}{2}}$$
 for $n \ge 1$

and $f_1' = ac^{-\frac{1}{2}}$. Let $g_n = f_n + if_n'$.

LEMMA 8. $f_n \in K_n$.

PROOF. We prove by induction that $f_n \in K_n$ and $1 - f_n^2 \in \sum (K_{n-1})^2$. Denote K by K_0 . Clearly $f_1 \in K_1$, and

$$1-f_1^2 = 1-1/c = a^2/c \in \sum K^2$$
.

Assume the statement holds for n.

$$(f_{n+1})^2 \, = \, {\textstyle \frac{1}{2}} (1 + f_n) \, = \, {\textstyle \frac{1}{4}} (1 + f_n)^2 + {\textstyle \frac{1}{4}} (1 - f_n^{\ 2}) \in K_n^{\ 2} + \sum \, (K_{n-1})^2 \, \subseteq \, \sum K_n^{\ 2} \, ;$$

thus $f_{n+1} \in K_{n+1}$.

$$1-(f_{n+1})^2 = 1-\tfrac{1}{2}(1+f_n) = \tfrac{1}{4}(1-f_n)^2+\tfrac{1}{4}(1-f_n^2) \in K_n^2+\sum{(K_{n-1})^2} \subseteq \sum{K_n^2} \ .$$

LEMMA 9. $g_m^{2^m}$ is in the same square class over K(i) as c.

PROOF. We first show that if $n \ge 1$, then $f_{n+1}f'_{n+1} = \frac{1}{2}f'_n$ and $(g_{n+1})^2 = g_n$. If n > 1,

$$\begin{array}{lll} f_{n+1}f_{n+1}' &=& \frac{1}{2}(1-f_n)^{\frac{1}{2}}(1+f_n)^{\frac{1}{2}} &=& \frac{1}{2}(1-f_n^2)^{\frac{1}{2}} &=& \frac{1}{2}(1-\frac{1}{2}(1+f_{n-1}))^{\frac{1}{2}} \\ &=& \frac{1}{2}2^{-\frac{1}{2}}(1-f_{n-1})^{\frac{1}{2}} &=& \frac{1}{2}f_n' \ , \end{array}$$

and

$$f_2 f_2' = \frac{1}{2} (1 - f_1^2)^{\frac{1}{2}} = \frac{1}{2} (1 - 1/c)^{\frac{1}{2}} = \frac{1}{2} a c^{-\frac{1}{2}} = \frac{1}{2} f_1'$$

Thus if $n \ge 1$

$$\begin{split} (g_{n+1})^2 &= (f_{n+1} + if_{n+1}')^2 = (f_{n+1})^2 - (f_{n+1}')^2 + 2if_{n+1}f_{n+1}' \\ &= \frac{1}{2}(1 + f_n - (1 - f_n)) + 2i\frac{1}{2}f_{n}' = f_n + if_n' = g_n \;. \end{split}$$

The lemma is now clear for $g_m^{2^m} = g_1^2 = c^{-1}(1+ia)^2$ which is in the same square class as c.

REMARK. Since $f'_{n+1} = \frac{1}{2}f'_n/f_{n+1}$ for $n \ge 1$ and $f'_1 = af_1$, it follows by induction that $K(f'_n) = K(f_n)$ and hence that $K(g_n) = K(f_n)(i)$.

THEOREM 10. If K is not pythagorean then there exists a galois extension L of K contained in K_p such that $Gal(L|K) = \mathbb{Z}_2$.

PROOF. If $K \not\equiv H$ the theorem follows from corollary 7. If K contains the 2^n th roots of unity for all n and $K \not= K_p$, then K has a quadratic extension $K(\not|a)$, and it follows by Kummer theory that if $L = \bigcup_n K(a^{2^{-n}})$, then $\operatorname{Gal}(L \mid K) = \mathbb{Z}_2$. Thus the only case of interest is $K \not= K_p$, $K \supseteq H$ and $K \not= K(i)$.

If K is not formally real then there is a minimum value of n such that $1+a_1^2+\ldots+a_n^2=0$. Since $i\notin K$, $n\geq 2$, and as is well known, n+1, the level of the field, must be a power of two, so $n\geq 3$. Thus if $c=1+a_1^2$, c is not in the same square class as -1. By the previous lemma, $K(g_n)$ is a cyclic extension of K(i) of degree 2^n and $[K(g_n):K]=2^{n+1}$. If K is formally real, choose $c=1+a^2\notin K^2$; then $[K(g_n):K]=2^{n+1}$ and $K(g_n)$ is a cyclic extension of K(i).

We shall prove that $K(f_n)$ is a cyclic extension of K having degree 2^n . The result then follows by setting $L = \bigcup_n K(f_n)$.

Let σ be the generating automorphism of $K(f_n)(i) | K(f_n)$. Since $f_n' \in K(f_n)$, $\sigma(f_n + if_n') = f_n - if_n'.$

If n > 1,

$$\begin{split} g_n\sigma(g_n) &= (f_n + if_n')(f_n - if_n') = f_n^2 + (f_n')^2 \\ &= \frac{1}{2}(1 + f_{n-1}) + \frac{1}{2}(1 - f_{n-1}) = 1; \\ g_1\sigma(g_1) &= f_1^2 + (f_1')^2 = 1/c + a^2/c = 1. \end{split}$$

Consequently, $\sigma(g_n) = g_n^{-1}$.

Let ξ be a primitive 2^n th root of unity. Since $H \subseteq K$ it follows that σ must interchange the roots of the polynomial

$$X^2 - (\xi + \xi^{-1})X + 1 = 0,$$

i.e. that $\sigma(\xi) = \xi^{-1}$. Gal $(K(g_n) | K(i))$ is generated by τ where $\tau(g_n) = \xi g_n$. Consequently

$$\begin{split} \sigma\tau(g_n) &= \, \sigma(\xi g_n) \, = \, \sigma(\xi)\sigma(g_n) \, = \, \xi^{-1}g_n^{\,-1} \\ &= \, (\xi g_n)^{-1} \, = \, \tau(g_n)^{-1} \, = \, \tau(g_n^{\,-1}) \, = \, \tau\sigma(g_n) \; . \end{split}$$

Thus τ and σ commute. Since $K(i) \cap K(f_n) = K$, τ and σ are K-automorphisms of $K(g_n)$ and $[K(g_n):K] = 2^{n+1}$; $K(g_n)$ is a galois extension of K with group $\mathbb{Z}/_2 n \times \mathbb{Z}/2$. Thus $K(f_n)$ is cyclic of degree 2^n .

The result that $\operatorname{Gal}(K_p|K)$ is either trivial or has Z_2 as quotient group generalizes the result of Diller and Dress [2] that if $\operatorname{Gal}(K_p|K)$ is nontrivial, then $\mathsf{Z}/4$ is a quotient group. It is possible to have $\operatorname{Gal}(K_p|K) = \mathsf{Z}_2$. Take K a maximal subfield of $\overline{\mathsf{Q}}$ which does not contain $\mathsf{V}2$. Intersect this field with some real closure of the rationals if a formally real field is desired cf. [3, exercise 3, chapter 8]. By forming fields of the type $K = k((X_1))((X_2))\dots((X_n))$ where k is algebraically closed, we obtain fields such that $\operatorname{PG}(K) = \prod_n \mathsf{Z}_2$, as we shall see later.

 $\operatorname{PG}(K)$ contains no torsion elements, for if $\sigma^{2^n}=1$ then the fixed field L of σ has finite index in K_p and since $L_p=K_p$, $\operatorname{PG}(L)$ is finite, so \mathbb{Z}_2 is not a quotient group, $L=L_p=K_p$, and σ is the identity.

PROPOSITION 11. If the fixed field L of an abelian subgroup A of PG(K) does not contain H then $LH = K_n$ and $A = \mathbb{Z}_2$.

PROOF. We suppose that $LH
otin K_p$ and deduce that $H \subseteq L$. Let $c = 1 + a^2$ be chosen as in the preceding theorem if $\bigvee -1 \notin L$; otherwise take c an arbitrary non square. Thus LH has a cyclic extension M of degree m generated by f_m (respectively $c^{2^{-m}}$). Since $M \mid L$ is abelian, f_m (respectively $c^{2^{-m}}$) generates a cyclic extension of L. In the case of $c^{2^{-m}}$ the automorphism is given by $c^{2^{-m}} \to \xi_m c^{2^{-m}}$ where ξ_m is a primitive 2^m th root of unity, and hence $\xi_m \in L$, so $\xi_m + \xi_m^{-1} \in L$. Otherwise $\tau : g_m \to \xi_m g_m$ is the generating automorphism over L(i) so that

$$\begin{split} \tau(f_m) + \tau^{-1}(f_m) &= \tau(g_m + g_m^{-1}) + \tau^{-1}(g_m + g_m^{-1}) \\ &= \xi_m g_m + \xi_m^{-1} g_m^{-1} + \xi_m^{-1} g_m + \xi_m g_m^{-1} \\ &= (\xi_m + \xi_m^{-1})(g_m + g_m^{-1}) = (\xi_m + \xi_m^{-1})f_m \;. \end{split}$$

Thus $\xi_m + \xi_m^{-1} \in L$. Since m is arbitrary this proves $H \subseteq L$, a contradiction. It follows that $LH = K_n$ and consequently that $A = \mathbb{Z}_2$.

PROPOSITION 12. If $\operatorname{Cd}_2(G_{HK}) \leq 1$ and $K \neq K_p$, then the maximal abelian closed subgroup of $\operatorname{PG}(K)$ is \mathbb{Z}_2 .

PROOF. Let A be a maximal abelian closed subgroup with fixed field L. Suppose $A \neq \mathbb{Z}_2$; then $L \supseteq KH$, so that $\mathrm{Cd}_2(G_L) \subseteq 1$ by Proposition 5.1, page 271 of [5]. In particular this implies that L is not formally real. It follows by corollary 3.2, page 255 of [5] that $\mathrm{PG}(L)$ is a free pro-2-group. Since it is also abelian, and contains \mathbb{Z}_2 it must be \mathbb{Z}_2 .

The hypothesis of this proposition holds if K is any algebraic extension of Q which is not formally real (see theorem 8.8, page 302 of [5]). The example quoted previously where $PG(K) = \prod_n \mathbb{Z}_2$, shows that the maximal abelian closed subgroup may be larger than \mathbb{Z}_2 .

2. Fields complete with respect to a rank one valuation.

K is a field complete with respect to the rank one valuation v. k is the residue class field. If v is discrete, π denotes a uniformizing element. Although we exclude the case where K has characteristic two we now generalize our notation to deal with the case k has characteristic two. If k has characteristic two, define $k_0 = k$ and k_{n+1} to be the union of all separable quadratic extensions of k_n ; define $k_p = \bigcup_n k_n$ and $\operatorname{PG}(k) = \operatorname{Gal}(k_n \mid k)$.

Let $K_{n,u}$ denote the maximal unramified extension of K in K_n and $K_{n,u}$ that of K in K_p

Proposition 13. Let K be complete with respect to a rank one valuation. The residue field of K_p is k_p and there is an exact sequence

$$0 \to \operatorname{PG}(K_{p,u}) \to \operatorname{PG}(K) \to \operatorname{PG}(k) \to 0 \; .$$

PROOF. If k is not formally real, -1 is a sum of squares in k and by Hensels lemma, -1 is a sum of squares in K. Thus K_p coincides with the quadratic closure of K, and k_p with the separable quadratic closure of k. The one to one correspondence between the unramified extension of K and the separable extensions of k established by going to residue class fields gives isomorphic Galois groups and establishes $\operatorname{Gal}(K_{p,u}|K) \cong \operatorname{PG}(k)$.

If k is formally real we need to establish that the above correspondence takes subfields of $K_{p,u}$ into subfields of k_p . It suffices to do this for

quadratic extensions, since any such subfield of finite degree is obtained by a sequence of quadratic extension. Let $L=K(\sum a_i^2)^{\frac{1}{2}}$ be such an extension. Since L is unramified we may assume that $v(a_1)=0$ and that $v(a_i)\geq 0$. The corresponding residue class field is $\bar{L}=k((\sum \bar{a}_i^2)^{\frac{1}{2}})$, where bar denotes the map to the residue class field, and clearly $\bar{L}\subseteq k_p$.

The final result now follows from the exact sequence:

$$0 \to \operatorname{PG}(K_{n,u}) \to \operatorname{PG}(K) \to \operatorname{Gal}(K_{n,u}|K) \to 0$$
.

PROPOSITION 14. If K is complete with respect to a rank one valuation and the residue class field has characteristic two, then PG(k) is a free pro-2-group of rank $\dim_{\mathsf{F}_2}(k|f(k))$ where $f: x \to x^2 - x$. In particular, if k is finite then $PG(k) = \mathsf{Z}_2$. If k is perfect and $2 \nmid [\bar{k}:k_p]$, then $PG(K_{p,u})$ is a free pro-2-group of rank $\dim(K_p^*:(K_{p,u}^*)^2]$. In particular, if k is algebraic over F_2 then $PG(K_{p,u})$ is a free pro-2-group of countable rank.

PROOF. The first result is corollary 3.4, page 257 of [5]. If k is finite, k|f(k) contains two elements, so the rank is one, so $PG(k) = Z_2$. By theorem 6.1, page 277 of [5],

$$\mathrm{Cd}_{\mathbf{2}}(G_{K_{p,u}}) = 1 + \mathrm{Cd}_{\mathbf{2}}(G_{k_{p}}) = 1$$
,

for, since $2 \nmid [\bar{k}:k_p]$, $\operatorname{Cd}_2(G_{K_p}) = 0$, corollary 2.3, page 208 [5]. Consequently $\operatorname{PG}(K_{p,u})$ is a free pro-2-group by corollary 3.2, page 255 of [5]. By the remark on page 262 of [5] the rank of this free group is $\dim(K_{p,u}^*|(K_{p,u}^*)^2)$. For a local field, $[K^*:(K^*)^2] = 4(\sharp k)^t$ where $(\pi)^t = (2)$. Consequently $[K_{p,u}^*:(K_{p,u}^*)^2]$ is countable in this case. It is also true in this case that $2 \nmid [\bar{k}:k_p]$. The result follows.

PROPOSITION 15. Let K be complete with respect to a rank one valuation v with k not of characteristic two. Then $\operatorname{PG}(K_{p,u})$ is a torsion free abelian pro-2-group. If v is discrete and k is not formally real, then $\operatorname{PG}(K_{p,u}) = \mathbb{Z}_2$, and if in addition k contains the 2^n -th roots of unity for all n then $\operatorname{PG}(K) \cong \mathbb{Z}_2 \oplus \operatorname{PG}(k)$.

PROOF. First observe that if k is formally real, then $K_p = K_{p,u}$ so that $PG(K_{p,u}) = 0$. For suppose that

$$\alpha = \sum_{i=1}^{m} \alpha_i^2$$
 with $\alpha_i \in K$.

Let $v(\alpha_j) = \min_{1 \le i \le m} \{v(\alpha_i)\}$. Then $v(\alpha) = 2v(\alpha_j)$, for otherwise the map φ to the residue class field would give $0 = \sum_{i=1}^m \varphi(\alpha_i/\alpha_j)$, contradicting the assumption that k is formally real.

If k is not formally real, k_p and hence $K_{p,u}$ contains the 2^n th roots of unity for all n. Thus, by theorem 3, page 64 of [6], $PG(K_{p,u})$ is abelian.

If k is not formally real then neither is K and π is a sum of squares; so $\operatorname{PG}(K_{p,u})$ contains Z_2 , but every tamely ramified galois extension is cyclic for a discrete valuation so $\operatorname{PG}(K_{p,u}) \cong \mathsf{Z}_2$. If k contains the 2^n th roots of unity so does K; consequently adjoining the 2^n th roots of π to K is a cyclic extension for all n. Thus K has a totally and tamely ramified extension with galois group Z_2 and consequently $\operatorname{PG}(K) = \mathsf{Z}_2 \oplus \operatorname{PG}(k)$.

PROPOSITION 16. Let K be complete with respect to a discrete valuation having as residue class field k an algebraic extension of F_p where p is odd. If $H \subseteq k$ then $\mathrm{PG}(K) = \mathsf{Z}_2$; otherwise $k \cap H = \mathsf{F}_q$, with $q = p^{2^m}$ and $\mathrm{PG}(K) = \varprojlim G_n$ where G_n is given by generators and relations:

$$\{\sigma, \tau \mid \sigma^{2^n} = \tau^{2^n} = \sigma^{-1}\tau^t \sigma \tau^{-1} = \mathrm{id}\}$$

and $t = 2^s \pm 1$ is the residue of $q \mod 2^{s+1}$ where s is the largest integer such that $q = \pm 1 \pmod{2^s}$.

PROOF. If $H \subseteq k$ the proof is clear from our previous results. Thus to complete the proof we must calculate $G_n = \operatorname{Gal}(K_n \mid K)$. $K_n = K_{n,u}(\mu)$ where μ is a 2^n th root of π . $K_{n,u}$ corresponds to $k_n = \mathsf{F}_{q2^n}.k$. Let $d = 2^{s+n}$. Let x be a primitive dth root of unity over F_q and y be a square root of x. We show that $y \notin k_n$, $k_n = k(x)$ and $\varphi: x \to x^t$ generates the galois group of k_n over k. k_n is a field with $q^{2^{nb}}$ elements where b is odd. Now

$$q^{2^{nb}} - 1 = (a2^{s} \pm 1)^{2^{nb}} - 1$$

$$\equiv 1 \pm 2^{n+s}ab - 1 \mod 2^{n+s+1}$$

$$\equiv 2^{n+s} \mod 2^{n+s+1} \equiv d \mod 2d.$$

Consequently y raised to $q^{2^nb}-1$ is the same as y^d which is -1. Thus $y \notin k_n$ but $y^2 = x \in k$. It follows that $k_n = k(x)$.

$$\begin{split} t^{2^{n-1}} &= (2^s \pm 1)^{2^{n-1}} = 1 \pm 2^{s+n-1} + c2^{2s+n-2} \\ &\equiv 1 + \frac{1}{2}d \bmod d \ . \end{split}$$

Thus $\varphi^{2^{n-1}}(x) = x^{1+d/2} = -x$ so φ has order 2^n , and thus generates the galois group.

Let ξ be a primitive dth root of unity in K which maps into x in the residue field. Then $K_{n,u} = K(\xi)$ and $\xi \to \xi^t$ generates the galois group. $\sigma \colon \xi \to \xi^t$ also generates the galois group of $K(\mu, \xi)$ over $K(\mu)$. Let $e = 2^s$ and $f = 2^n$. Then $\tau \colon \mu \to \xi^e \mu$ generates the galois group of K_n over $K_{n,\mu}$,

since ξ^e is a primitive fth root of unity. $K_n = K(\xi, \mu) = K(\xi + \mu)$, for since $K(\xi + \mu)$ has the same residue class field as $K(\xi)$, $K(\xi) \subseteq K(\xi + \mu)$. σ and τ define K-automorphism of K_n by

$$\tau \colon \xi + \mu \to \xi + \xi^e \mu$$
 and $\sigma \colon \xi + \mu \to \xi^t + \mu$,

and

$$\sigma^f = \tau^f = \mathrm{id}$$
.

Since the fixed fields of σ and τ are respectively unramified and totally ramified, $\langle \sigma \rangle \cap \langle \tau \rangle = id$, and the order of the group generated by σ and τ is $f^2 = [K_n : K]$; they generate $Gal(K_n | K)$. Finally,

$$\sigma\tau(\xi+\mu) \,=\, \sigma(\xi+\xi^e\mu) \,=\, \xi^t\!+\!\xi^{et}\mu \,=\, \tau^t\!(\xi^t\!+\!\mu) \,=\, \tau^t\!\sigma(\xi+\mu) \ ,$$

so $\sigma \tau = \tau^t \sigma$.

COROLLARY 17. If $t=2^s+1$ then the largest abelian quotient group of PG(K) is $Z_2 \times Z/2^s$; otherwise it is $Z_2 \times Z/2$. The latter case occurs if and only if $q \equiv 3 \pmod{4}$ and in this case PG(K) has the dihederal group as a quotient group.

A more explicit computation of the K_p is possible for discrete valuations in the equal characteristic case; here K = k(x) is a power series field. We define

$$K^{(\frac{1}{2})} = \bigcup_{n} k((X^{2^{-n}})).$$

PROPOSITION 18. $K_p = k_p K'$ where K' = K if k is formally real and otherwise $K' = K^{(\frac{1}{2})}$.

PROOF. If k is not formally real then Y is a sum of squares in k((Y)), and Y is not a square since the square of an element in k((Y)) must start with a term of even degree. Thus $Y^{\frac{1}{2}}$ belongs to $k((Y))_p$, and for each $n, X^{2^{-n}} \in K_p$. Consequently $K^{(\frac{1}{2})} \subseteq k((X))_p$, provided that k is not formally real. Also $k_p \subseteq k((X))_p$ and consequently, $k_p \cdot K' \subseteq K_p$.

We need to show that if $a, b \in k_p$. K' then $(a^2 + b^2)^{\frac{1}{2}} \in k_p K'$. If k is not formally real then $a, b \in k_p$. $K^{(\frac{1}{2})}$ and there is some integer n such that $a, b \in k_p k((X^{2^{-n}}))$. Let $Y = X^{2^{-n}}$. If k is formally real, $a, b \in k_p$. K, set Y = X. By multiplying by a suitable power of Y we may assume that a is of the form $a_0 + a_1 Y + a_2 Y^2 + \ldots$ with $a_0 \neq 0$ and that b is of the form $b_0 + b_1 Y + b_2 Y^2 + \ldots$ Since a, b are in the compositum $k_p k((Y))$, all the a_i, b_i are in some finite extension k_1 of k with $k \subseteq k_1 \subseteq k_p$. Now

$$a^{2} + b^{2} = a_{0}^{2} + b_{0}^{2} + 2(a_{0}a_{1} + b_{0}b_{1})Y + (a_{1}^{2} + b_{1}^{2} + 2(a_{0}a_{2} + b_{0}b_{2}))Y^{2} + 2(a_{0}a_{3} + a_{1}a_{2} + b_{0}b_{3} + b_{1}b_{2})Y^{3} + \dots$$

If $a_0^2 + b_0^2 \neq 0$ (this will always be the case if k is formally real) then we can solve for the coefficients of a power series c with $c^2 = a^2 + b^2$;

$$\begin{split} c_0 &= (a_0{}^2 + b_0{}^2)^{\frac{1}{4}}, \quad c_1 = c_0{}^{-1}(a_0a_1 + b_0b_1) \\ c_2 &= (2c_0)^{-1}(a_1{}^2 + b_1{}^2 - c_1{}^2 + 2(a_0a_2 + b_0b_2)) \text{ etc.} \end{split}$$

and we have $c \in k_1((a_0^2 + b_0^2)^{\frac{1}{2}})((Y)) \subseteq k_p$. K'. If $a_0^2 + b_0^2 = 0$ let $d_n Y^n + d_{n+1}Y^{n+1} + \ldots$ be the power series for $a^2 + b^2$. Since k is not formally real, d_n is a sum of squares. Let $k_2 = k_1(\forall d_n)$. Let $Z = Y^{\frac{1}{2}}$ and let

$$c = c_n Z^n + c_{n+1} Z^{n+1} + \dots$$

be such that $c^2 = a^2 + b^2$. Then

$$c_n = \sqrt{d_n}, \quad 2c_n c_{n+1} = 0, \text{ etc.}$$

and we can solve for c_n, c_{n+1}, c_{n+2} , etc. Consequently

$$c \in k_2 \big((Z) \big) \, = \, k_2 \big((X^{2^{-n-1}}) \big) \, \subseteq \, k_2 \, . \, k \big((X) \big)^{\frac{1}{2}} \, \subseteq \, k_p \, . \, K' \, \, .$$

COROLLARY 19. k(X) is pythagorean if and only if k is pythagorean and formally real. If K is formally real then $PG(K) \cong PG(k)$.

NOTE. In general it is not true that $k_p((X)) = k_p \cdot k((X))$. For example take k = Q.

Power series provide a good example showing that the compositum of two pythagorean fields need not be pythagorean. Let R_1 and R_2 be two different real closures of Q in \overline{Q} . Then $R_1((X))$ and $R_2((X))$ are both formally real pythagorean subfields of $\overline{Q}((X))$; however their compositum is not formally real, and thus not pythagorean (for it does not contain /X).

To end this section we discuss the relationship between pythagorean closure and completion with respect to a rank one valuation. \hat{K} denotes the completion of K.

LEMMA 20. Let \hat{K} be the completion of K with respect to the rank one valuation v. Let $a \in \sum \hat{K}^2$; then there exists $b \in \sum K^2$ such that $\hat{K}(\sqrt{a}) = \hat{K}(\sqrt{b})$.

PROOF. Let $a = \sum_{i=1}^{n} a_i^2$. Multiplying by an even power of an element with value one we may assume $0 \le v(a_i)$, $1 \le i \le n$. Let v(a) = t. Let $b_i \in K$ be chosen such that

$$v(b_i - a_i) > 2v(2) + t, \quad 1 \le i \le n ,$$

and set $b = \sum_{i=1}^{n} b_i^2$. Now apply Hensels lemma [1, page 34] to the field $K(\sqrt{a})$.

$$X^{2}-b = (X - \sqrt{a})(X + \sqrt{a}) + a - b ,$$

$$(X - \sqrt{a}) + (-1)(X + \sqrt{a}) = 2\sqrt{a} ,$$

and

$$\begin{array}{ll} v(a-b) \, = \, v\!\!\left(\sum \left(a_i{}^2 - b_i{}^2\right)\right) \, \geqq \, \min \left\{v\!\!\left(a_i - b_i\right) + v\!\!\left(a_i + b_i\right)\right\} \\ & > \, 2v\!\!\left(2\right) + t \, \geqq \, v\!\!\left(2^2\right) + v\!\!\left(a\right) \, \geqq \, v\!\!\left(\left(2\!\!\! \left/\!\! \right/\!\! a\right)^2\right) \, , \end{array}$$

so X^2-b factorizes in $\widehat{K}(\sqrt{a})$. Since v(b)=v(a) the same argument shows that X^2-a factorizes in $\widehat{K}(\sqrt{b})$ and it follows that $\widehat{K}(\sqrt{a})=\widehat{K}(\sqrt{b})$.

PROPOSITION 21. Let v be a rank one valuation of K. Identify the algebraic closure of K in that of \hat{K} ; then $(\hat{K})_p = K_p \cdot \hat{K}$.

PROOF. Since $K \subseteq (\widehat{K})_p$, $K_p \subseteq (\widehat{K})_p$ and so K_p . $\widehat{K} \subseteq (\widehat{K})_p$. Let $x \in (\widehat{K})_p$; then $\widehat{K}(x)$ may be obtained from \widehat{K} by a sequence of quadratic extensions in $(\widehat{K})_p$,

$$\widehat{K} = K_0 \subseteq K_1 \subseteq K_2 \ldots \subseteq K_n = \widehat{K}(x) .$$

We show there exists a sequence of fields in K_n ,

$$K = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_n$$

such that $L_i \hat{K} = K_i$; this will show $\hat{K}(x) \subseteq \hat{K} \cdot K_p$. By induction we need only prove that if $L_i K = K_i$ and $K_{i+1} = K_i (\forall a)$, then there exists b such that

$$b \in K_p$$
, $L_i(\gamma b)\hat{K} = K_{i+1}$.

Choose b according to the previous lemma using the fact that $\hat{L}_i = L_i \hat{K} = K_i$.

COROLLARY 22. If K is pythagorean so is its completion with respect to any rank one valuation.

It should be noted that $(K_p)^{\hat{}} \neq (\widehat{K})_p$. $K \subseteq (K_p)^{\hat{}}$, so $\widehat{K} \subseteq (K_p)^{\hat{}}$ and since $(K_p)^{\hat{}}$ is pythagorean, $(\widehat{K})_p \subseteq (K_p)^{\hat{}}$; however the case K = Q(X) with the valuation given by X provides a counter example to the op-

posite inclusion. For if h_n is the sum of a primitive 2^n th root of unity and its inverse, then $h_n \in Q(X)_p$ so that

$$h = \sum h_n X^n \in (Q(X)_p)^{\hat{}}.$$

However $(Q(X)^{\hat{}})_p = (Q((X)))_p = Q_p \cdot Q((X))$ does not contain h.

3. Global fields.

Proposition 22. If K is a global field which is not formally real, then there is an exact sequence

$$0 \to F_c \to \mathrm{PG}(K) \to \mathsf{Z_2} \to 0$$

where F_c is the free pro-2-group on a countable number of generators.

PROOF. First case: K is a finite algebraic extension of $\mathsf{F}_p(X)$. Since F_pH has no quadratic extensions, $\mathrm{cd}_2(\mathsf{F}_pH)=0$ and by proposition 5.2, page 272 of [5], $\mathrm{cd}_2(\mathsf{F}_pH(X))=1$. By proposition 5.1, page 271 of [5], the same is true of any finite algebraic extension of H(X), in particular of KH. Consequently $\mathrm{PG}(KH)$ is a free pro-2-group by corollary 3.2, page 255 of [5]. The rank of this free group is countable since that is the order of $H(X)^*/H(X)^{*2}$ by remark, page 262 of [5]. Finally $\mathrm{Gal}(KH|K)=\mathsf{Z}_2$.

Second case: K is an algebraic number field which is not formally real. $2|[\overline{K}:KH]|$ and at every non archimedian valuation v of KH, $2^{\infty}|[(KH)_v:Q_v]|$, and so by theorem 8.8, page 302 of [5], $\operatorname{cd}_2(\operatorname{PG}(KH))=1$, implying that $\operatorname{PG}(KH)$ is a free pro-2-group. By square classes its rank is countable. Since $\operatorname{Gal}(KH|K)=\mathbb{Z}_2$ the result follows.

The methods used above do not apply to the formally real case since in this case the cohomological two-dimension is always infinite. I cannot see how to treat this case.

PROPOSITION 23. Let A be a direct product of a countable number of finite cyclic two groups, and let K be an algebraic number field; then $Z_2 \oplus A$ is a quotient group of PG(K).

PROOF. Let ξ_p be a primitive pth root of unity for some odd prime p. $\xi_p + \xi_p^{-1}$ generates a cyclic extension of Q of order $\frac{1}{2}(p-1)$, which is in all real closures of Q. Let n(p) denote the largest power of two dividing $\frac{1}{2}(p-1)$, and let $\mu_p \in Q(\xi_p + \xi_p^{-1})$ generate the cyclic extension of Q having order $2^{n(p)}$. $Q(\mu_p)$ is obtained by quadratic extensions, and is in all real closures of Q, so it is contained in Q_p .

It follows from Dirichlet's theorem that there are an infinite number of primes in the arithmetic progression $2^{a+2}m+2^{a+1}+1$, and thus that there are an infinite number of primes with n(p)=a.

Let T_p be the field generated by $\bigcup_{q+p} Q(\xi_q)$; then by statement (b) of chapter VIII of [4], $T_p \cap Q(\xi_p) = Q$. Thus if M_p is the field generated by $\bigcup_{n(q)\geq 1, q+p} Q(\mu_q)$, then $M_p \cap Q(\mu_p) = Q$ and it follows by statement (k) of chapter VII of [4] that if M is the field generated by $\bigcup_{p \text{ odd}} Q(\mu_p)$ then

$$\operatorname{Gal}(M | Q) = \prod_{p} \operatorname{Gal}(Q(\mu_{p}) | Q) = \prod_{p} Z/2^{n(p)}.$$

Let K be any algebraic number field; then $Gal(KM|K) = Gal(M|K \cap M)$ which is a subgroup of Gal(M|Q) of finite index. It follows that there is a subfield of KM which has any direct product of a countable number of two groups as quotient group. Thus A is a quotient group. The result follows since HK|K is abelian with quotient group Z_2 .

The above construction gives the maximal abelian quotient group of PG(Q), since any abelian extension of Q is contained in a cyclotomic extension. In particular there is a unique subfield of PG(Q) with galois group Z_2 ; it is precisely H.

PG(Q) has all possible groups of order eight as quotient groups. Since PG(Q) has all abelian groups of order 2^n as quotient groups we need only be concerned with the dihederal group and the quaternion group.

(i) Dihederal: Let g,f be positive integers with $g^2 > f$ and none of $g^2 - f, f, g^2/f - 1$ squares. If

$$x = e\sqrt{f} + (g + \sqrt{f})^{\frac{1}{2}}$$

then Gal(Q(x)|Q) is dihederal (see Siedelmann [7]). To show that $x \in Q_p$ we need only show that $g + \gamma f$ is a sum of squares in $Q(\gamma f)$.

$$\begin{split} g + \sqrt{f} &= 2g(\frac{1}{2} + \sqrt{f/2}g)^2 + g/2 - f/2g \\ &= 2g(\frac{1}{2} + \sqrt{f/2}g)^2 + 2g(g^2 - f)(1/2g)^2; \end{split}$$

since 2g and $2g(g^2-f)$ are positive integers this is a sum of squares.

(ii) Quaternions: $Q((1+1/\sqrt{3})(1+1/\sqrt{2}))^{\frac{1}{2}}$ is contained in Q_p and has the quaternions as Galois group. The conjugate roots are

$$\begin{aligned} x_0 &= \left((1+1/\sqrt{3})(1+1/\sqrt{2}) \right)^{\frac{1}{3}}, & x_1 &= \left((1-1/\sqrt{3})(1+1/\sqrt{2}) \right)^{\frac{1}{3}}, \\ x_2 &= \left((1+1/\sqrt{3})(1-1/\sqrt{2}) \right)^{\frac{1}{3}}, & x_3 &= \left((1-1/\sqrt{3})(1-1/\sqrt{2}) \right)^{\frac{1}{3}}, \\ &- x_0, & -x_1, & -x_2 \text{ and } -x_3. \end{aligned}$$

If $\sigma(x_0) = x_1$ and $\tau(x_0) = x_3$ then it is easy to show that $\sigma^2 = \tau^2$, $\sigma^4 = id$ and $\sigma\tau = \tau\sigma^3$. Since $1 + 1/\sqrt{3}$ is positive in all orderings of $Q(1/\sqrt{3})$ it is a

sum of squares in this field; thus $Q((1+1/\sqrt{3})^{\frac{1}{2}})$ is in Q_p ; similarly so is $Q((1+1/\sqrt{2})^{\frac{1}{2}})$.

If K is any C_1 field i.e. every homogeneous polynomial in n variables of degree less than n has a non trivial zero, then $\operatorname{cd}_2(K) \leq 1$ by corollary 4.3, page 269 of [5]. Consequently if A is any algebraicly closed field, $\operatorname{PG}(A(X))$ is a free pro-2-group. The rank of the group is the number of square classes i.e. $A(X)^*/(A(X)^*)^2$.

REFERENCES

- E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.
- J. Diller and A. Dress, Zur Galoistheorie Pythagoreischer Korper, Arch. Math. 16 (1965), 148–152.
- 3. S. Lang, Algebra, Addison-Wesley, Reading, 1965.
- 4. P. Ribenboim, L'Arithmetique des Corps, Hermann, Paris 1972.
- L. Ribes, Introduction to profinite groups and Galois cohomology, Queen's University, Kingston, 1970.
- O. Schilling, The theory of valuations (Mathematical Surveys 4), American Mathematical Society, New York, 1950.
- F. Seidelmann, Die Gesamtheit der kubischen und biquadratischen Gleichungen mit Affekt bei beliebigem Rationalitatsbereich, Math. Ann. 78 (1918), 230–233.
- J. P. Serre, Cohomologie Galoisienne (Lecture Notes in Mathematics 5), Springer-Verlag, Berlin-Heidelberg-New York, 1964.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA