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MARTIN’S AXIOM AND MEDIAL FUNCTIONS

DAG NORMANN

1. Introduction.

In [5] Mokobodzki used the continuum hypothesis to prove a theorem
on medial functions. (Besides [5] see also [6] and [7].) In this note we
weaken his hypothesis to Martin’s Axiom. We will explain both Moko-
bodzki’s result and the contents of Martin’s Axiom to the reader, since
he may not be familiar with both functional analysis and logic.

I will thank Erik Alfsen who introduced me to this problem and my
wife Svanhild Normann who explained some of the lemmas from funec-
tional analysis to me.

2. Martin’s Axiom.

The original intention with Martin’s Axiom was not to add a “new
natural axiom” to set theory, but to formulate a strong property which
contained much of the information of the continuum hypothesis, but
which is consistent with its negation. Thus if a statement ¢ follows by
Martins Axiom, we may conclude:

For any n, 2% = X, and ¢ may both hold .

Here 2% denotes the cardinality of the continuum, X, the n’th uncoun-
table cardinal. The continuum hypothesis says

2% = R, .

To formulate the axiom we’ll need the following

DEFINITION: a. Let P be a partially ordered set. Let p,q denote ele-
ments of P. 4 < P is called dense, or cofinal, if

VpeP 3dged (g =z p).
b. Let {4;};.; be a family of dense subsets of P. A subset G of P is cal-
led generic with respect to the family if
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i) Vp,gqe@ 3IreG(rzp,r=q),
il) Vpe@ Vg < plge @),
iii) Yiel (Gnd,) + D.

Lemma 1. Let {4;};.n be a family of dense subsets of P. Then there
exists a set G < P generic with respect to the family.

Proor. Let p, € 4,. There is p,> p,,p; € 4, and s0 on. Let p € @ <>(3)
(ps<py). Then @ is generic.

If we assume the continuum hypothesis, we can reformulate our lemma
in the following way:

STATEMENT A. Let P be a partially ordered set, let {A;};.; be a family
of dense subsets of P having cardinality less than the continuum (i.e. coun-
table). Then there exists a set generic with respect to the family.

If we try to use this statement as a general axiom of set theory, we’ll
soon find out that the continuum hypothesis (CH) has to hold as well.
In fact, let us prove that

A=CH.

Proor. Let X be an infinite set of cardinality <2%. Let pe P if p
is a finite 1 —1-function defined on a finite subset of X and with values
in N. We give P a partial ordering by the following: p<gq if ¢ is an ex-
tension of p.

Forze X let

4, = {pe P ; pis defined on z} .

It is not hard to see that 4, is dense. A set generic with respect to
{4.}zcx will then define a 1— 1-function defined on X and with values
in N. Thus X is countable.

In Martin’s Axiom we have the same formulation as in A above, but
we don’t assume it to hold for all partial orderings. To state it we need
the following

DzrinrTioN. Let P be a partially ordered set and let {p,};.; be an
indexed set from P. We say that {p,};.; is an antichain if for any 144,
© t,j €I, there is no g € P such that ¢>p; and ¢=p; (ie. no common
sucessor). We say that a partially ordered set P satisfies the countable
antichain condition if all antichains in P are at most countable.
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Martin’s Axiom, MA, then says:

Let P be a partially ordered set satisfying the countable antichain condi-
tion. Let {A;};.; be an indexed set of dense subsets of P such that the cardi-
nality of I is less than that of the continuum. Then there exists a subset
G g P generic with respect to {4};.;.

In [3] this is for all n € N proved to be consistent with X, = 2%,

Note that the proof of A=-CH does not work with A replaced by
MA, since if X is uncountable, then the P in that proof will not satisfy
the countable antichain condition. (Look at the set of functions p,: x — 0.
This forms an uncountable antichain).

We give an application, proved in the paper of Martin and Solovay
[4], to illustrate how the axiom may be used. Besides, we’ll need both
the lemma and the theorem later anyhow.

Lemma 2. Let P be a topological measure space with a countable base of
open sets. Let u denote the measure, and let € > 0. Let {0,};.; be a family of
open sets satisfying

i) w(0) <& Viel,
i) £+ = u(0,U0) 2 ¢.

Then I is at most countable.

Proor. To get a contradiction we assume that I is uncountable. Then
there is a 4,0<d<e¢, such that {i e I; u(0,)<d} is uncountable. (I,=
{iel; w(O,)se—1/n}. Then as I=UI,, at least one I, is uncountable).
Let

J={iel; uO,) < é}.
For each 0,,j € J, let F, be the characteristic function of 0,. In L,(u)
we will have ||F,|| <é and

i4j= |[F—F) >e-9.

But L,(u) is separable (u is supposed to be generated by the values on
the open base), so J is at most countable, contradiction.

REmark. This proof was suggested by Dellacherie, and may be used
whenever the O,'s are measurable sets in a separable measure space.

TeEOREM 3 (Martin and Solovay[4]). Assume MA, and let P and u
be as above. Let {A.};.; be a family of subsets of P of u-measure 0. Assume
that the cardinality of I < 2*. Then u(Us1A4,)=0.
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Proor. Let £¢> 0 be given. Define P by O € P if O is an open set and
p(0)<e. We order P by inclusion. Then, by lemma 2, P satisfies the
countable antichain condition. Let

Ai= {OEP; ‘A‘i gO}.
We’ll prove that 4, is dense in P.
Let O € P. Then u(0)<e—1/n for some n. Let O’ be open such that

A, c0,u(0')<1/n. Let O,=0u0’. Then O, € 4; and 0<O0,.
By MA there exists a generic set G with respect to {4;},.;. Let

0=U{0; 0eaG}.
Cramv 1, y(0)=e.
Proor. Let I' be the set of open base elements that are included in
some O’ € G. Then O=UT". If u(0)> e then

(O, u0,U....U0,)> ¢

for a finite set O, ..... ,0, from I'. These will on the other hand be
included in some O’ € @ since G is an ideal.

Cram 2. U, ;4,<0.

Proor. Let i € I. Let O’ € Gn4,, that is, 4,c0'cO0.
This proves the theorem.

3. On Mokobodzki’s result.

Let K=[—1,1]N — the Hilbert cube.

Then K is a compact convex subset of the vector space RN=the set
of all sequences from R. Addition and multiplication by a scalar are
defined to be the pointwise operations.

Let f; be the ¢’th projection, i.e.

fz’({xn}neN) = o;.

The f,’s are linear, continuous functions.

ProBLEM 1. Does there exist a function F: K — R satisfying

i) liminf {f(x) ; 1€ N} = F(2) < limsup{fy(x); e N},
ii) F is universally measurable,
iii) F is linear?
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ProBLEM 2. Can ii) in problem 1 be sharpened to ii’) F' is Borel?

Mokobodzki proves in [5] that if the continuum hypothesis holds then
problem 1 has a positive solution.

We prove that his proof can be adjusted to Martins Axiom, that is,
MA = positive solution of problem 1.

In [2] Reus Christensen gave a negative answer to problem 2. This is
also independently done by M. Capon.

We start by repeating some analysis.

DEerintrIoNs: A function f: K — R is said to be concave (convex) if:
Ve,ye K, Ae[0,1]: flix+(1-2)y) 2 (2) if(x)+(1-1)f(y)

A function f is called lower semi-continuous if Va e R {x € K ; f(%) >}
is open.

The set of lower semi-continuous functions is closed under arbitrary
infimums,

Denote by S the set of all lower semi-continuous concave functions
on K.

LemMmaA 4 (Mokobodzki[5]). If f is concave, g,h € S and g<f,h<f, then
there is a function fo € S such that

gsfosfi hsfos/f.

The proof uses Hahn-Banach, and can be found in [5] or [1].

DEFINITION. A net is an indexed set where the index-set I is a partial
ordering satisfying

Ya,bel, dcel, a<ec, b<ec.

A net of functions {f;},.; is increasing if i <j=> f; <f;.

Remark. If {f;};.; is an increasing net of concave functions, then
J(x) =sup,.;f,(x) is concave.

Let us denote by 3 the limits of increasing bounded nets of concave
functions from S where the set of indices has cardinality less than the
continuum. By the remark all functions in 3, are concave. If we use MA
and theorem 3, we see that all functions in 3, are universally measurable.
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LrmMMA 5. Let x < 2% be an ordinal. Let {f},_, be an increasing sequence
from 3, where for each f, the actual net from S has cardinality <max(8,N).

Then f=sups,fs€ 3.

Proor. f is concave by the remark. Let {g, }“I be a net such that
9f /' f;. Let g;=g/,g,=g,. By lemma 4 there is a ! function g such that
gsg=f; i=12.

We do this for all pairs, and repeat the operation infinitely many times
(order type N=w). At the end we obtain & net of functions. We may
here use functions with natural ordering as indices. By a cardinality
argument we see that the new net has cardinality less than the con-
tinuum.

Now,let ¢,—yed, @=vp.

Let {fi}ier / @:{9i}1er v, Where f;, —g, € S. (We may assume that the
set of indices are the same, else we could index both by the product of
the nets).

Lemma 6. Let u be a measure. Assume MA. Then there are two functions
¢’ and y' with ¢', —y' € 3 such that
ps¢ sy sy
and ¢’ =y’ almost everywhere (u).
Proor. Let I be the set of indices, and let 4 denote the set of affine
continuous functions. Let
Hr = {acd; fi—1/n s a £ g;+1/n}.

By an argument from Mokobodzki [5] we know that {H,"};.; ,.n has the
finite intersection property. and by another argument from [5] there is
a measurable function f satisfying

Ve > 0VieIVneNIacH ({g|f—-aldpy) < ¢.
We order I x N by
Gn)y<s{gm) < 1<5;5 & ns<sm.

Then we are going to define a new net of functions a,* € H;* such that
for fixed n

p(|f—inf, ;a) < 277, u(|f-sup an) S 270,
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If I is countable, this gives no problem. In the uncountable case we
have to use stronger principles.

Let n be fixed and let P consist of all finite sets p of affine continuous
a, - . .,a;, such that

(x(max(f,ay,...,a;)—min(f,a,, ..., a))dp < 2-7
We order P by inclusion. Let
A,‘ = {pEP; an‘t” #: @}.

We claim that 4, is dense.

Proor. Let p € P. Then

(x(max(f,ay,...,a;)— min(f,a,,...,a;))dp < 2-*—1/m

for some m € N.
Let a € H* be such that

w(f—al) < Um.

Extend p by a, and we are still inside P.
Cramm 2. P satisfies the countable antichain condition.

Proor. For pe P, let

0, = {{z,r>; (min(f,p)(x) < r < max(f,p)(x))}

Then O, = 0,u0,and

pug
(ux m)op = SK max (f:P) - mm(f’p)d:u

where m is the Lebesgue-measure. We may then use the method of
lemma 1.

Now, by MA, let G be generic with respect to {4,};.;. As in theorem
3 we may conclude that

{x(sup(f,@)—inf(f,@))du < 27"

For each n € N, let @, be the generic set constructed above. a,* € H* n G,,.
Then we have a net as wanted. Let

fir = inf(am; (j,m) = (3,n))
g = sup(a,"'; Gmy 2 G,n))
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Then f;»,—~g,» €8 and

{f* ; (4,m) € I x N} is an increasing net ,
{g.» ; (3,m) € I x N} is a decreasing net .
Let
¢ =sup{fi*; iel,meN}, ¢ =inf{g™; iel,neN}.

We call
¢’ = liminfa,® ¢’ = limsupa,®

Obviously ¢’ <vy’. We'll prove that ¢ <¢'. Then ¢’ <y will follow by
symmetry.

Let xe K,ne N. We’ll prove ¢'(x)2 ¢(x)—1/n. There will be an f;
in the original net such that

fil@) > p(x)—1/2n
Also for any ke N, j=¢

afh(@) 2 fil@)—1/(@n+k) 2 fiz)—1[2n .
Thus
fi#M@) = inf{a™(x) ; (Jym) 2 (G,2m)} 2 fi(x)—1/2n .
But then f2*(z) 2 ¢(z)—1/n. But
¢'(x) 2 sup{f?(z); {i,2n) eI x N},
80
¢'(2) 2 px)—1/n.

To show §x(y'—¢)du=0, let n be given. It is sufficient to show that

§x lmax; ;g,” — min, f*dp 2 22",
or as well

{x|f—ming,fr|du = 21-n
But we have

§xlf—ming frldp £ 3z §xlf—mingamdp < 327" = 2077,
This ends the proof of lemma 6.

We can now give our main result:
THEOREM 7. Assume MA. Then problem 1 has a positive solution.
Proor. Well-order all measures 4 on K by a minimal well-ordering,

{#,}s<2®. Then each proper initial segment has cardinality <2%. By
induction on the ordinal « define two sequences {¢,} and {y,} such that
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)a>pf=>05 ¢, =9, = 9.

ii) At limit stages ¢, = sup,c, s Y. = infy_ 95
iii) At sucessor stages S Bl Pas1—Varaldp, = 0.
iv) Forallx: ¢,, -y, €2 .

Then, by theorem 3, each ¢, and y, are universally measurable by MA.
Use lemma 5 to obtain ii), lemma 6 to obtain iii). Let

F = Suplx<2x°(pa = i‘n‘fa<2801pa .

To see that F is determined at a point z, let u, be the point measure
of . Then

Pp+1(®) = Ysia(®)

by ii). To show that F' is universally measurable, let u; be any measure.
Then F=q;,;=1,; almost everywhere (u;), and both ¢, and y,,,
are uz,-measurable,

F is affine since F is both concave (supg,) and convex (infy,). Since
lim {0},,.n =0, we have F({0},.n)=0. Thus F is linear.

In Mokobodzki’s original proof he defines 3 (here denoted 3,,) to be
limits of increasing sequences from S. Then he can replace all nets by
sequences, and in lemma 6 he can replace our H/® by just H,*, ie. a
decreasing sequence. Then the point where we used MA will be trivial,
just find one function a € H,(=H,"*). This is the only point where we
have added anything new to the proof.

Will 3,,=3>1? The answer is ‘“no” if CH fails. Note that all elements
of 3, are Borel. Let K,=[0,1]V. Let @ be an X,-set on the extreme
boundary of [0,1]N that is linearly independent. Define

1 if z is generated from @ ,
0 otherwise .

F(x) = {

Then Fe3 on K,. If F is Borel, then ¥(F)= the graph of F will be
Borel and %(F) n the extreme boundary of K, will be Borel. But this
set has cardinality X,, which gives a contradiction. (All Borel sets are
either countable or has the cardinality of the continuum.)

As a result of a preprint on this topic, the author has had some in-
teresting discussions with Jens Peter Reus Christensen, who in [2] solved
problem 2, and who in [3] gave a positive solution to problem 1 under
the assumption that CH holds.

The main result of these discussions is: Problem 1 cannot be given
Ppositive solution without the use of strong choice principles. R. Solovay
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constructed in [8] a model for set theory in which all subsets of reals
are Lebesgue-measurable, and have the property of Baire. This also
holds for all Polish measure spaces.

In this model the full axiom of choice fails, while the principle of De-
pendent Choice, DC, holds. This principle says:

Let A be a definable class of pairs, and assume VxIy{z,y) € A. Then
there exists a sequence {%;);.n, such that Vi € N(x;,2;,,) € A.

As a consequence of DC we have the Hahn-Banach theorem for se-
parable Banach-spaces.

Reus Christensen proved in [2] that no medial function can be Baire-
measurable. Thus, in Solovay’s model, there exist no medial functions.

Using the methods of Reus Christensen we may also prove that in
Solovay’s model all linear functions on RN will be continuous. In general
all linear functions which are Baire-measurable will be continuous.
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