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SOME REMARKS CONCERNING PATHOLOGICAL
SUBMEASURES

FLEMMING TOPSYE

Summary.

This paper consists of partly fragmentary results on pathological and
almost pathological submeasures as discussed by Christensen and Herer
in [1]. Of greatest interest is perhaps the explicit construction of a patho-
logical submeasure, not relying on category arguments or similar me-
thods. This is achieved utilizing a simple construction due to Preiss and
Vili'movsky’ of almost pathological submeasures.

Let X be a set and o7 an algebra of subsets of X. A set function ¢: & —
[0, o[ is called a submeasure if ¢ is monotone and subadditive and ¢(@) =
0. If further, ¢(X)=1, ¢ is said to be normalized. For a submeasure ¢,
we denote by x(p) the supremum of 4(X) taken over all finitely additive
measures u: & — [0, 00[ for which u < ¢. We follow Christensen and He-
rer [1] and say that ¢ is a pathological submeasure if p(X)> 0 and x(p)=0.
The submeasure g is called e-pathological if ¢(X)> 0 and if «(p) < ep(X).
The interest in these submeasures is due to a well-known conjecture of
Dorothy Maharam, cf. [2]; we also refer the reader to the paper by
Christensen and Herer for a discussion of this.

Throughout the paper, the algebra o/ will simply be 2%, the set of all
subsets of X. Thus all measures and submeasures are assumed without
further saying to be defined on 2%.

For a submeasure ¢: 2% — [0, o0[ it can be proved that

(1) x(p) = inf {De,p(d;) : degly, 2 1x}.

Here, we only consider finite sums, the ¢,’s are positive numbers, the
4/’s run over 2X and 1, denotes the indicator-function of A. The ine-
quality “<” in (1), which is in fact the essential one for what follows, is
quite trivial, and the reverse inequality can be proved via a Hahn-Ba-
nach argument (the reader may wish to consult Lemma 8.5 of [3] or he
can, at least for finite X, prove (1) by considering the dual problem to
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that of calculating «(g)); it turns out that the “inf” in (1) can be re-
placed by ‘“min”.

Let Sbe a class of non-empty subsets of X such that X can be covered
by finitely many sets in & By ¢, the submeasure generated by &, we
understand the submeasure for which ¢ (4) is the minimal number of
gets in & needed to cover 4; 4 € 2X, By (1), it is not difficult to show
that

(2) x(pg) = inf{3¢c,: delg, 2 1x},
it being understood that the §,’s run over &.

Lrmma 1. Consider ¢, the submeasure generated by . Let v be a finite
Jinitely additive measure on 2X with v(X) > 0 and assume that »(S) ts inde-
pendent of 8 for 8 € &. If further, for some natural numbers n,m there
exist sets 8,,8,,...,8, in & with J11g=mly, then

pg) = WX)(S) = njm.
Proor. If Je;lg, 21y, then
§(Sedde)dv 2 »(X) ,

Se; 2 W X)MS) .

By (2) this argument shows that x(gpg) 2 »(X)/»(S).
As 3tm11g,=1x, we get by (2) that a(py)=n/m and also, it follows
that n/m=»(X)/v(S).

and it follows that

In particular, the lemma applies with » =counting measure on a finite
set, in which case the essential requirements are that the sets in & con-
tain the same number of elements and that 3715 =mlx.

It would be interesting to know how pathological a submeasure a gi-
ven space X supports. To be more precise, we would like to have infor-
mation concerning the numbers «,; 21 defined by

(8) o, = inf{x(p): @ normalized submeasure on 2X with |X| = n}.

Here, and below, |-| indicates cardinality of finite sets. Clearly, «, = 1/n.
We now derive some upper bounds on «,,.

Examrir 1 (Herer). Let X be a set of cardinality n= 2 and consider
the class
F ={8cX: |8=n-1}.
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For p=¢, one has

0 fA=0
pd) =31 fA+@and 4+X
2 if4=X.

As

ZSE.VIS = (n"l)lx ’
we get by Lemma 1,

x(p) = n/(n—1).
Considering the normalized submeasure ¢, this implies that

(4) o, < i+2(n1—1); n=2.

I was presented with these details in june 1973 by W. Herer. At the
time (4) seemed to be the best bound known, and a main question of
Herer was, if the «, were bounded away from 0.

Clearly, a similar analysis with % the class of all subsets of X of fixed
cardinality » (1 v <n), can be carried out, but this will not decrease the
bound in (4) — for reasons which we shall make clear below.

We shall show that the bound in (4) is best possible provided you re-
strict attention to symmetric submeasures; by a symmetric submeasure
we understand a submeasure for which ¢(4) only depends on [4].

ProposITION 1. For any normalized symmetric submeasure ¢ on X with
[ X|=n2z=2, we have

1
() 2 %+m-

Proor. Let ¢ be a normalized symmetric submeasure and denote by
p, the value of ¢ on sets of cardinality »; 0<» <n. Then

(5) O=py P S ... SPpaSP=1,
and
(6) DPoinerem = Pot+p forallste {0,1,...m}.

We first prove that

(7) o@) = n-min; . p,fv .

Denote the points in X by x;;¢=1,2,...,n and denote by ¢, a unit
mass at . The measure

Pody €z With py = min . p,[v
Math. Scand. 38 — 11
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is dominated by ¢, and from this observation the inequality “="’ in (7)
follows.
To prove the reverse inequality, assume that u <¢ with

um = Xﬂiswi .
Assume, as we may, that

v
[\

M Z phe - Z iy -

Then
Siui £ v=12,...n.
For 1 £v<n we have

WX) = 33 pe+ 201 g
=p+ 2+1”_12 12
= p+(n—v 13y

mwlp, .

IIA

Hence
lu(X) § n.minlgvénpr v.

This shows that “ <" holds in (7). (7) is thus fully proved.
To finish the proof, we shall show that for 1 <v<n,

(8) npfvZ $+1/2(n-1).
This is clear if y=n. If v=n—1, (8) is equivalent to p,_, =3, and this
inequality holds since
2Pp-1 2 Ppatp 2 1.
Now assume that »<n—2. Let k be the integer determined by
nfv—-1 2k <nfy.

From (5) and (6) we deduce the validity of the following & + 1 inequalities:

Py Z Po—Pu-»s 1=L12,....k,

D, 2 1 — Pry -

The sum of the right hand sides is 1. Hence at least one of the right hand
sides is = (k+1)-t. We conclude that

1 1 v » v
y 2 = = 2 = ’
k+1 ~ afyv+1 n+v  n+(n—2) 2(n-1)
and it follows that

1_01'; n 1 1

y S 2m-1)  2T2m_1)

whieh proves (8).
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REeMARK. According to [1], A. H. Stone also observed that «(p)= 4
when g is a normalized symmetric submeasure.

The restriction to symmetric submeasures in Proposition 1 is essential;
without this restriction the result fails, indeed, it can be proved that
&, = 0. The example needed to show that the «, are ‘small”’, can either
be taken from [1] or we can use a construction by Preiss and Vili’movsky
which was found independently of the research in [1] and at about the
same time. The latter construction, which seems simpler than the one
in [1], was communicated to the author by Preiss in february 1975, and
we shall now give the details.

ExampLE 2 (Preiss and Vili’'movsky’). Let 4 denote a set consisting of
n elements, let 1 <k <n, and denote by X the set of all subsets of A4 of
cardinality k. Thus |X|=(}). For each i € 4 define S, X by

8;={EeX:ick}.

Let & denote the class of all S;;¢e 4 and consider the submeasure
P=Qg-
Clearly,
Y Ziezlls,- = le ’
hence, according to Lemma 1,
olp) = nfk.

To evaluate p(X), first observe, that for any subset I of 4 with [I|=
n—k+1, we have
U{S;: iel} =X,

hence ¢(X)<n—k+1. On the other hand, if |I|=n—Fk, we have
ANIe X\U{S;: tel},
and this shows that ¢(X)>n—k. Thus
(9) p(X) = n—k+1.
Normalizing ¢, it follows that
oy < njk(n—k+1) with N = (}),

and choosing k=mn/2, say, it follows that xy — 0 for N — co.
We mention a generalization of (9) which we need later on. For any
Ic A with |I| Sn—k+1 it can easily be shown that

(10) P(UeerSs) = 1.
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It seems very difficult to obtain more precise information on the «,’s.
Even for small values of n, for instance for n=5, the value of «, is
unknown.

Denote by @, the set of normalized submeasures on X ={1,2,...,n}.
One could also try and characterize ext®,, the set of extreme points of
@,. This is an ambitious program, and even though we are very far from
having such a characterization, we do want to give some comments.

It seems plausible, that if ¢ € ext®,, then there exists an integer m
with 1 <m<n—1 such that ¢ assumes all the values i/m;i=0,1,...,m
and no other values. For m=1,2 we are able to characterize the extre-
mal submeasures of this type. For m =1 this is trivial since any submeas-
ure assuming only the values 0 and 1 is extremal, and the (0, 1)-submea-
sures are uniquely determined by the maximal 0-set M, which could be
any set with @c My <X (“=” denotes strict inclusion),

For m=2 we look at (0,3,1)-submeasures. Let M, and M;; 1<i<r
(with 1 27 < o), be subsets of X such that

MycM;,cX; i=12,...,r,
M, & M, 45,421,521,

Then ¢ defined by

0 ifdecM,,
p(Ad) =13} if AcM, forsomei=1and AL M,,
1 otherwise,

is a (0,3,1)-submeasure. Every (0,$,1)-submeasure arises in this way.
Furthermore, ¢ defined above is extremal if and only if either »>3 or
r=2 and M,nM,+ M, For instance, with the choice My=@ and
M,,...,M, =all subsets of X with cardinality »—1, we obtain the nor-
malized submeasure from example 1, and this is extremal, except when
n=2,

For n=3, the extremal submeasures we have found so far, yield 12
elements in ext P, and probably, there are no more.

We also mention, that for lsmzsn-—1

¢ = min(m-137e;,1)
belongs to ext®,,.
As the above results are only fragments, we shall not mention the
proofs. Instead, we turn to an explicit construction of a pathological
submeasure based on the e-pathological submeasures of Preiss and

Vili'movsky’.
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ExamreLE 3. Let (4,),., be pairwise disjoint sets with |4,|=2";n21.
Denote by X,, the set of all subsets of 4, with cardinality 2»-1.
For a subset 1< 4, we put

A(n,I) = {xe€ X, : 1exzforsometel}.
We define the submeasure ¢, on X, by
on(B) = 2 imin{|I|: IcA, EcA(nl)}; EcX,.
According to Example 2,
(11) Pa(Xy) = 1+2-n+1,
The sets (X,,) are pairwise disjoint and we now consider the set X =UPX,,
provided with the submeasure ¢ defined by
¢(E) = limsup,_,pn(ENX,); EcX.
By (11), ¢ is a normalized submeasure on X.
We shall prove that ¢ is pathological. Assume therefore, that u is a
finitely additive measure on X bounded by ¢. Fix, for some time, n.
For mzn denote by (I,,),.1,s,.,m & decomposition of 4,, into 2»
sets each consisting of 2m-" elements. Then we have
(12) Zf:l Liom 1y 2 2% 10 1x, .
Define subsets 4, of X;v=1,2,...,2", by
4, = Up.n4(m,1,,) .
By (12) we have,
(13) 2iils, 2 2 ey,
We also need the fact, deduced from (10), that for m=n and v=

13 2,... ,2“’
(14) q’m(A(m’Imv)) = 2-nH,

As u(Up1X,) S (UP~1X,) =0, we now get from (13) and (14):

21 X) = 22 pu(Un X

< 3Tu4,)

= z%"z—»n-o-l

= 2.

It follows that u(X)<2-"+2. As this holds for each n,u=0. Thus ¢ is
Pathological.
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We mention that the pathological submeasure constructed above pos-
sesses none of the desirable continuity properties discussed in [1].
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