SOME REMARKS CONCERNING PATHOLOGICAL SUBMEASURES

FLEMMING TOPSØE

Summary.

This paper consists of partly fragmentary results on pathological and almost pathological submeasures as discussed by Christensen and Herer in [1]. Of greatest interest is perhaps the explicit construction of a pathological submeasure, not relying on category arguments or similar methods. This is achieved utilizing a simple construction due to Preiss and Vili'movsky' of almost pathological submeasures.

Let X be a set and \mathscr{A} an algebra of subsets of X. A set function $\varphi \colon \mathscr{A} \to [0,\infty[$ is called a *submeasure* if φ is monotone and subadditive and $\varphi(\emptyset) = 0$. If further, $\varphi(X) = 1$, φ is said to be *normalized*. For a submeasure φ , we denote by $\alpha(\varphi)$ the supremum of $\mu(X)$ taken over all finitely additive measures $\mu \colon \mathscr{A} \to [0,\infty[$ for which $\mu \leq \varphi$. We follow Christensen and Herer [1] and say that φ is a *pathological submeasure* if $\varphi(X) > 0$ and $\alpha(\varphi) = 0$. The submeasure φ is called ε -pathological if $\varphi(X) > 0$ and if $\alpha(\varphi) \leq \varepsilon \varphi(X)$. The interest in these submeasures is due to a well-known conjecture of Dorothy Maharam, cf. [2]; we also refer the reader to the paper by Christensen and Herer for a discussion of this.

Throughout the paper, the algebra \mathscr{A} will simply be 2^X , the set of all subsets of X. Thus all measures and submeasures are assumed without further saying to be defined on 2^X .

For a submeasure $\varphi: 2^X \to [0, \infty[$ it can be proved that

(1)
$$\alpha(\varphi) = \inf \left\{ \sum c_i \varphi(A_i) : \sum c_i 1_{A_i} \ge 1_X \right\}.$$

Here, we only consider finite sums, the c_i 's are positive numbers, the A_i 's run over 2^X and 1_A denotes the indicator-function of A. The inequality " \leq " in (1), which is in fact the essential one for what follows, is quite trivial, and the reverse inequality can be proved via a Hahn-Banach argument (the reader may wish to consult Lemma 8.5 of [3] or he can, at least for finite X, prove (1) by considering the dual problem to

Received August 7, 1975.

that of calculating $\alpha(\varphi)$); it turns out that the "inf" in (1) can be replaced by "min".

Let \mathscr{S} be a class of non-empty subsets of X such that X can be covered by finitely many sets in \mathscr{S} . By $\varphi_{\mathscr{S}}$, the *submeasure generated* by \mathscr{S} , we understand the submeasure for which $\varphi_{\mathscr{S}}(A)$ is the minimal number of sets in \mathscr{S} needed to cover A; $A \in 2^X$. By (1), it is not difficult to show that

(2)
$$\alpha(\varphi_{\mathscr{S}}) = \inf \{ \sum c_i : \sum c_i 1_{S_i} \geq 1_X \},$$

it being understood that the S_i 's run over \mathcal{S} .

LEMMA 1. Consider $\varphi_{\mathcal{S}}$, the submeasure generated by \mathcal{S} . Let v be a finite finitely additive measure on 2^X with v(X) > 0 and assume that v(S) is independent of S for $S \in \mathcal{S}$. If further, for some natural numbers n, m there exist sets S_1, S_2, \ldots, S_n in \mathcal{S} with $\sum_{i=1}^n 1_{S_i} = m1_X$, then

$$\alpha(\varphi_{\mathscr{S}}) = \nu(X)/\nu(S) = n/m.$$

PROOF. If $\sum c_i 1_{S_i} \ge 1_X$, then

$$\int (\sum c_i 1_{S_i}) d\nu \geq \nu(X) ,$$

and it follows that

$$\sum c_i \geq \nu(X)/\nu(S) .$$

By (2) this argument shows that $\alpha(\varphi_{\mathscr{S}}) \geq \nu(X)/\nu(S)$.

As $\sum_{1}^{n} m^{-1} 1_{S_i} = 1_X$, we get by (2) that $\alpha(\varphi_{\mathscr{S}}) \leq n/m$ and also, it follows that $n/m = \nu(X)/\nu(S)$.

In particular, the lemma applies with $\nu =$ counting measure on a finite set, in which case the essential requirements are that the sets in $\mathscr S$ contain the same number of elements and that $\sum_{1}^{n} 1_{S_{\ell}} = m 1_{X}$.

It would be interesting to know how pathological a submeasure a given space X supports. To be more precise, we would like to have information concerning the numbers α_n ; $n \ge 1$ defined by

(3)
$$\alpha_n = \inf \{ \alpha(\varphi) : \varphi \text{ normalized submeasure on } 2^X \text{ with } |X| = n \}.$$

Here, and below, $|\cdot|$ indicates cardinality of finite sets. Clearly, $\alpha_n \ge 1/n$. We now derive some upper bounds on α_n .

EXAMPLE 1 (Herer). Let X be a set of cardinality $n \ge 2$ and consider the class

$$\mathscr{S} = \{S \subseteq X : |S| = n-1\}.$$

For $\varphi = \varphi_{\varphi}$, one has

$$\varphi(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{if } A \neq \emptyset \text{ and } A \neq X \\ 2 & \text{if } A = X \end{cases}.$$

As

$$\sum_{S \in \mathcal{S}} 1_S = (n-1)1_X ,$$

we get by Lemma 1,

$$\alpha(\varphi) = n/(n-1).$$

Considering the normalized submeasure $\frac{1}{2}\varphi$, this implies that

(4)
$$\alpha_n \leq \frac{1}{2} + \frac{1}{2(n-1)}; \quad n \geq 2.$$

I was presented with these details in june 1973 by W. Herer. At the time (4) seemed to be the best bound known, and a main question of Herer was, if the α_n were bounded away from 0.

Clearly, a similar analysis with \mathcal{S} the class of all subsets of X of fixed cardinality ν $(1 \le \nu \le n)$, can be carried out, but this will not decrease the bound in (4) – for reasons which we shall make clear below.

We shall show that the bound in (4) is best possible provided you restrict attention to symmetric submeasures; by a *symmetric submeasure* we understand a submeasure for which $\varphi(A)$ only depends on |A|.

Proposition 1. For any normalized symmetric submeasure φ on X with $|X| = n \ge 2$, we have

$$\alpha(\varphi) \geq \frac{1}{2} + \frac{1}{2(n-1)}.$$

PROOF. Let φ be a normalized symmetric submeasure and denote by p_* the value of φ on sets of cardinality ν ; $0 \le \nu \le n$. Then

(5)
$$0 = p_0 \leq p_1 \leq \ldots \leq p_{n-1} \leq p_n = 1,$$

and

(6)
$$p_{\min(s+t,n)} \leq p_s + p_t \quad \text{for all } s,t \in \{0,1,\ldots,n\}.$$

We first prove that

(7)
$$\alpha(\varphi) = n \cdot \min_{1 \le \nu \le n} p_{\nu} / \nu.$$

Denote the points in X by x_i ; $i=1,2,\ldots,n$ and denote by ε_x a unit mass at x. The measure

$$\mu_0 \sum_{1}^n \varepsilon_{x_i}$$
 with $\mu_0 = \min_{1 \le r \le n} p_r / r$

is dominated by φ , and from this observation the inequality " \geq " in (7) follows.

To prove the reverse inequality, assume that $\mu \leq \varphi$ with

$$\mu = \sum_{1}^{n} \mu_{i} \varepsilon_{x_{i}}.$$

Assume, as we may, that

$$\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$$
.

Then

$$\sum_{1}^{\nu} \mu_{i} \leq p_{\nu}; \quad \nu = 1, 2, \ldots, n.$$

For $1 \le v \le n$ we have

$$\begin{split} \mu(X) &= \sum_{1}^{\nu} \mu_{i} + \sum_{\nu+1}^{n} \mu_{i} \\ &\leq p_{\nu} + \sum_{\nu+1}^{n} \nu^{-1} \sum_{1}^{\nu} \mu_{j} \\ &= p_{\nu} + (n-\nu)\nu^{-1} \sum_{1}^{\nu} \mu_{j} \\ &\leq n\nu^{-1} p_{u} \; . \end{split}$$

Hence

$$\mu(X) \leq n \cdot \min_{1 \leq v \leq n} p_v / \nu.$$

This shows that "≤" holds in (7). (7) is thus fully proved.

To finish the proof, we shall show that for $1 \le v \le n$,

(8)
$$n \cdot p_{\nu}/\nu \ge \frac{1}{2} + 1/2(n-1)$$
.

This is clear if $\nu = n$. If $\nu = n - 1$, (8) is equivalent to $p_{n-1} \ge \frac{1}{2}$, and this inequality holds since

$$2p_{n-1} \ge p_{n-1} + p_1 \ge 1.$$

Now assume that $v \leq n-2$. Let k be the integer determined by

$$n/v-1 \leq k < n/v.$$

From (5) and (6) we deduce the validity of the following k+1 inequalities:

$$p_{\nu} \ge p_{i\nu} - p_{(i-1)\nu}; \quad i = 1, 2, \dots, k ,$$

 $p_{\nu} \ge 1 - p_{k\nu} .$

The sum of the right hand sides is 1. Hence at least one of the right hand sides is $\geq (k+1)^{-1}$. We conclude that

$$p_{\nu} \ge \frac{1}{k+1} \ge \frac{1}{n/\nu+1} = \frac{\nu}{n+\nu} \ge \frac{\nu}{n+(n-2)} = \frac{\nu}{2(n-1)},$$

and it follows that

$$n\frac{p_{\nu}}{\nu} \geq \frac{n}{2(n-1)} = \frac{1}{2} + \frac{1}{2(n-1)},$$

which proves (8).

REMARK. According to [1], A. H. Stone also observed that $\alpha(\varphi) \ge \frac{1}{2}$ when φ is a normalized symmetric submeasure.

The restriction to symmetric submeasures in Proposition 1 is essential; without this restriction the result fails, indeed, it can be proved that $\alpha_n \to 0$. The example needed to show that the α_n are 'small'', can either be taken from [1] or we can use a construction by Preiss and Vili'movsky which was found independently of the research in [1] and at about the same time. The latter construction, which seems simpler than the one in [1], was communicated to the author by Preiss in february 1975, and we shall now give the details.

EXAMPLE 2 (Preiss and Vili'movsky'). Let Δ denote a set consisting of n elements, let $1 \le k \le n$, and denote by X the set of all subsets of Δ of cardinality k. Thus $|X| = \binom{n}{k}$. For each $i \in \Delta$ define $S_i \subseteq X$ by

$$S_i = \{E \in X : i \in E\}.$$

Let $\mathscr S$ denote the class of all S_i ; $i \in \Delta$ and consider the submeasure $\varphi = \varphi_{\mathscr S}$.

Clearly,

$$\sum_{i\in \Delta} 1_{S_i} = k1_X ,$$

hence, according to Lemma 1,

$$\alpha(\varphi) = n/k$$
.

To evaluate $\varphi(X)$, first observe, that for any subset I of Δ with |I| = n - k + 1, we have

$$\bigcup \{S_i: i \in I\} = X,$$

hence $\varphi(X) \leq n-k+1$. On the other hand, if |I| = n-k, we have

$$\Delta \setminus I \in X \setminus \bigcup \{S_i : i \in I\}$$
,

and this shows that $\varphi(X) > n - k$. Thus

$$\varphi(X) = n - k + 1.$$

Normalizing φ , it follows that

$$\alpha_N \leq n/k(n-k+1)$$
 with $N = \binom{n}{k}$,

and choosing k=n/2, say, it follows that $\alpha_N \to 0$ for $N \to \infty$.

We mention a generalization of (9) which we need later on. For any $I \subseteq \Delta$ with $|I| \le n - k + 1$ it can easily be shown that

(10)
$$\varphi(\bigcup_{i \in I} S_i) = |I|.$$

It seems very difficult to obtain more precise information on the α_n 's. Even for small values of n, for instance for n=5, the value of α_n is unknown.

Denote by Φ_n the set of normalized submeasures on $X = \{1, 2, ..., n\}$. One could also try and characterize $\text{ext}\Phi_n$, the set of extreme points of Φ_n . This is an ambitious program, and even though we are very far from having such a characterization, we do want to give some comments.

It seems plausible, that if $\varphi \in \operatorname{ext} \Phi_n$, then there exists an integer m with $1 \le m \le n-1$ such that φ assumes all the values i/m; $i=0,1,\ldots,m$ and no other values. For m=1,2 we are able to characterize the extremal submeasures of this type. For m=1 this is trivial since any submeasure assuming only the values 0 and 1 is extremal, and the (0,1)-submeasures are uniquely determined by the maximal 0-set M_0 which could be any set with $\emptyset \subseteq M_X \subset X$ (" \subset " denotes strict inclusion).

For m=2 we look at $(0,\frac{1}{2},1)$ -submeasures. Let M_0 and M_i ; $1 \le i \le r$ (with $1 \le r < \infty$), be subsets of X such that

$$M_0 \subset M_i \subset X; \quad i=1,2,\ldots,r,$$

 $M_i \nsubseteq M_j; \quad i \neq j, i \geq 1, j \geq 1.$

Then φ defined by

$$\varphi(A) = \begin{cases} 0 & \text{if } A \subseteq M_0, \\ \frac{1}{2} & \text{if } A \subseteq M_i \text{ for some } i \ge 1 \text{ and } A \nsubseteq M_0, \\ 1 & \text{otherwise}. \end{cases}$$

is a $(0,\frac{1}{2},1)$ -submeasure. Every $(0,\frac{1}{2},1)$ -submeasure arises in this way. Furthermore, φ defined above is extremal if and only if either $r \geq 3$ or r=2 and $M_1 \cap M_2 \neq M_0$. For instance, with the choice $M_0 = \emptyset$ and $M_1, \ldots, M_n =$ all subsets of X with cardinality n-1, we obtain the normalized submeasure from example 1, and this is extremal, except when n=2.

For n=3, the extremal submeasures we have found so far, yield 12 elements in $\exp \Phi_n$ and probably, there are no more.

We also mention, that for $1 \le m \le n-1$

$$\varphi = \min(m^{-1} \sum_{i=1}^{n} \varepsilon_i, 1)$$

belongs to $\operatorname{ext} \Phi_n$.

As the above results are only fragments, we shall not mention the proofs. Instead, we turn to an explicit construction of a pathological submeasure based on the ε -pathological submeasures of Preiss and Vili'movsky'.

EXAMPLE 3. Let $(\Delta_n)_{n\geq 1}$ be pairwise disjoint sets with $|\Delta_n|=2^n$; $n\geq 1$. Denote by X_n the set of all subsets of Δ_n with cardinality 2^{n-1} .

For a subset $I \subseteq \Delta_n$ we put

$$A(n,I) = \{x \in X_n : i \in x \text{ for some } i \in I\}$$
.

We define the submeasure φ_n on X_n by

$$\varphi_n(E) = 2^{-n+1} \min\{|I|: I \subseteq A_n, E \subseteq A(n,I)\}; \quad E \subseteq X_n.$$

According to Example 2,

(11)
$$\varphi_n(X_n) = 1 + 2^{-n+1}.$$

The sets (X_n) are pairwise disjoint and we now consider the set $X = \bigcup_{1}^{\infty} X_n$ provided with the submeasure φ defined by

$$\varphi(E) = \limsup_{n \to \infty} \varphi_n(E \cap X_n); \quad E \subseteq X.$$

By (11), φ is a normalized submeasure on X.

We shall prove that φ is pathological. Assume therefore, that μ is a finitely additive measure on X bounded by φ . Fix, for some time, n.

For $m \ge n$ denote by $(I_{m_r})_{r=1,2,\ldots,2^n}$ a decomposition of Δ_m into 2^n sets each consisting of 2^{m-n} elements. Then we have

(12)
$$\sum_{v=1}^{2^n} 1_{A(m, I_{mv})} \ge 2^{n-1} \cdot 1_{X_m}.$$

Define subsets A_{\bullet} of X; $\nu = 1, 2, ..., 2^n$, by

$$A_{v} = \bigcup_{m=n}^{\infty} A(m, I_{mv}).$$

By (12) we have,

(13)
$$\sum_{r=1}^{2^{n}} 1_{A_{r}} \geq 2^{n-1} \cdot 1_{\bigcup_{n=1}^{\infty} X_{m}}.$$

We also need the fact, deduced from (10), that for $m \ge n$ and $\nu = 1, 2, ..., 2^n$,

(14)
$$\varphi_m(A(m,I_{m_0})) = 2^{-n+1}.$$

As $\mu(\bigcup_{1}^{n-1}X_{k}) \le \varphi(\bigcup_{1}^{n-1}X_{k}) = 0$, we now get from (13) and (14):

$$\begin{array}{l} 2^{n-1}\mu(X) &= 2^{n-1}\mu(\bigcup_{n}^{\infty}X_{m}) \\ &\leq \sum_{1}^{2^{n}}\mu(A_{\bullet}) \\ &\leq \sum_{1}^{2^{n}}\limsup_{m\to\infty}\varphi_{m}(A_{\bullet}\cap X_{m}) \\ &= \sum_{1}^{2^{n}}\limsup_{m\to\infty}\varphi_{m}(A(m,I_{m\bullet})) \\ &= \sum_{1}^{2^{n}}2^{-n+1} \\ &= 2. \end{array}$$

It follows that $\mu(X) \le 2^{-n+2}$. As this holds for each $n, \mu = 0$. Thus φ is pathological.

We mention that the pathological submeasure constructed above possesses none of the desirable continuity properties discussed in [1].

REFERENCES

- J. P. R. Christensen and W. Herer, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), 203-210.
- D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154–167.
- F. Topsøe, On construction of measures, Copenhagen University preprint series 1974, no. 27, to appear in he proceedings of the conference "Topology and measure theory", Zinnowitz (DDR), October 1974.

UNIVERSITY OF COPENHAGEN, DENMARK