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A PROBABILISTIC SOLUTION
OF THE NEUMANN PROBLEM

G. A. BROSAMLER

1. Introduction.

In [1], J. R. Baxter and I have investigated the asymptotic behaviour
of the sample paths of positive recurrent diffusions. Instead of dealing
with the resolvent, we made extensive use of the more intuitive potential
operator and the related notion of energy. These fundamental themes,
the recurrence pattern of diffusion processes and potential operator-
energy, stand however, in close connection with certain boundary value
problems. This, I shall illustrate in the present paper, with the example
of the Neumann problem, for a bounded smooth region in R, In parti-
cular, I shall use the well-established Brownian motion process, {X,,s= 0},
in the region, with reflection at the boundary, and give a solution of the
Neumann problem in terms of the fine structure of the Brownian sample
paths: If L denotes the local time on the boundary of the process, then
the harmonic function u in the region with ‘“normal derivative” fe L,
at the boundary is given by

(Ll) u(x) = %limt—-»coEx Sf)f(Xs)dLs
(Theorem (3.10)).

In addition I shall investigate in more detail the asymptotic behaviour
of additive functionals 4,, in a wider class than considered in [1], including

(1'2) At = % Sf)f(xs)dLs

and prove a central limit theorem and a law of the iterated logarithm,
thus generalizing results in [1]. In particular a probabilistic interpretation
is obtained for the energy associated with the Neumann kernel. A
probabilistic solution to the Neumann problem existed (for conti-
nuous f), to our knowledge, only in the isolated example of a ball in R*
and as presented in [3] or [4], depended strongly on the symmetry of the
ball.

2. Potentials and additive functionals.

I shall put the Neumann problem into the framework developed in [1].
So I will briefly recall some notations and assumptions:
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Let M be a compact connected metric space. Let A be a probability
measure on the Borel sets of M and let p: (0,00) x M x M — (0,00) be a
continuous function such that

(1) SMp(t:x!y)d}'(y) = SMp(t:x’y)dl(x) =1, >0 T,y € M
@ p@E+1,2,2) = $40(8,%,9)p(,y,2)dAY); 8,6>0;x,26 M
(3) For open sets U M,

lim, o §pp(t,2,9)di(y) =1, fzeU
Hmi»USUp(Lw,y)dl(x) =1, if AS U

Tt is clear that p is a transition density with respect to A, and that A is
p-invariant.

We denote by {Q2,.%; X,s20; Pr,,xe M} a Markov process with
state space M and transition function p, which has continuous sample
paths.

By a continuous additive functional (CAF), {4,,t= 0} of the process
we understand a continuous random function of bounded variation,
such that 4, is measurable with respect to Z,, (Z, is the o-field generated
by {X,,8st}, #, the completion of &, with respect to all Pr,) and for
which
(2.1) AH‘& = A8+AI(08) for S,t; 0.

Here 0, denotes the shift operator on the paths. If f is a bounded Borel

function on M, then
(2°2) At = Sf) f(Xs)d‘g, t2 0

is an example of a CAF. The asymptotic properties of functionals of
this special form were studied in [1]. For the purposes of the Neumann
problem, however, we need slightly more general functionals. Since the
theory of CAF’s is closely related to potential theory, we recall the follo-
wing theorem in [1], which is the key to such a theory.

(2.3) THEOREM: There exist constants C and B> 0, such that
[1-p(tz,y) < Ce?®, tzl,zyeM.

It follows that for all x € M, the function

(2'4) g(x’y) = SSO {p(s,x,y) - l}ds

exists for A—a.a.y € M. We call g the Green function; it is bounded be-
low, g(x,-) is A-integrable and §,9(x,y)dA(y)=0; g is in general not sym-
metric.
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For any signed Borel measure u on M, of finite variation, we call the
function

(2.5) (Gu)@) = §ug(=y)duly)
which is finite 1 —a.e., the G-potential of x, and denote by

sy = §(Gu)(x)du(x)

its energy. If du=fdA, we shall also write Gf for Gu. It is easy to check
that Gu =0 implies that u is a multiple of 1.

The following theorem, and definition (2.7) associate CAF’s with cer-
tain measures.

(2.6) THEOREM. For any finite Borel measure u2>0 on M, such that Gu
18 continuous, there exists a unique nonnegative CAF, {4,,t 2 0}, such that
Jorallze M,t20,

*) E 4, = §ods §5p(s,2,y)du(y) .

Proor. We use the argument, given in [9] for a special case. Fix x> 0.
Since Qu is continuous, G, u, defined by

(Gu)(x) = (Fdte= § y du(y)p(t, 2, y)

is continuous. Now H_e~*(Q u)(X,) 1 (G, n)(x), as ¢ | 0, uniformly on M,
and by a well-known theorem, originally due to Volkonskii, there exists
a unique random function {4%,¢2 0} such that 4% > 0,4 is continuous,
A% is F -measurable,

A% (o) = A% (w)+e 2 4%(0,0w), forst=0
and
B A%, = (G, p)z) forallzeM .

If we let 4,={{ex*dA*, then {4,, t20} is a nonnegative CAF, which
satisfies (*). Uniqueness follows from uniqueness of 47

(2.7) DEFINTTION. If W=, —p,, with u,20,Gu, continuous, and if
AD, A® gre the CAF’s associated with u,,u, by the preceding theorem, we
associate with u the CAF, 4,=A4,®— 4,®. (From the uniqueness in Theo-
rem (2.6) and linearity of u,w>A® for u, = 0, we see that 4 does not de-
pend on the particular representation of u as difference of nonnegative
measures with continuous potentials.)

Clearly, one again has for x € M, 20
(2.8) E 4, = {4ds §yduy)p(s,,y) .
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(2.9) ReMark. If du=fd}, with f bounded Borel, then 4,=\{ f(X,)ds;
in particular for u=21, one has 4,=¢.

An immediate consequence of (2.3) and (2.8) is

(2.10) TEEOREM. If 1 i3 a signed measure on M, of finite variation, such
that G|u| is continuous and if A is the associated CAF, then

(Gu)(@) = Timy , o B {A,—tu(M)} .

3. The Neumann problem.

Let D < R* be bounded with smooth, say C3-boundary, 0D. We denote
by v the n-dimensional Lebesgue measure, by o the surface measure on
the boundary. We assume v(D)=1. The following is the

(3.1) Classical Newmann Problem (see e.g. [6]): Given a function
f € C(@D), such that {,,fdo=0, find u € C(D), such that «|D is harmonic
and du/on=f on aD.

(9/on denotes differentiation along the outward pointing normal.)

For existence and uniqueness (up to an additive constant) of u see
e.g. [6]. There is an integral representation of % involving the so-called
Green function of the second kind. This is a function g¥: D x D -~ Ru{oo},
which is determined (up to an additive constant) by the properties:

(1) g~ is symmetric on D x D
(2) ¢¥(=,.)—h(x,.) is harmonic on D, where

—nlloglea—y| forn=2
oy —y| ™2 fornz3

h(z,.) = {

(0= 3(n—2)-surface of the n-dimensional unit ball).
(3) For 2 € D, g¥(z,) has a constant normal derivative on 8D.

In terms of g¥, the solution to the classical Neumann problem is given
by
w(@) = 1 $opg"(=.9)f (¥)do(y) -

We shall show now how to obtain, for general (smooth) D, a probabili-
stic solution, by means of the kernel g of section 2 (Theorem (3.10)).

We let M =D, 1=v, and p the transition function of Brownian motion
on D, reflected at @D, that is, p is the solution of
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0
%Ayp(t’x»?l) = gip(t,w,y), t>0,x,y€D

(3°2) p(O:x:y = 6«:(?!), xeD

0
— p(t,z,y) = 0, t>0,xeD,yedD.
ony

For existence, uniqueness and properties see e.g. [5]. It is easy to see
that A is p-invariant. The function p satisfies the assumptions of the
preceding section, it is moreover symmetric, and pdv is a Feller transi-
tion function. We have for fe C(D),

limi-a-O”Ptf"'f”co =0.

(For any measure y, (P, u)(x) = \ p(¢,%,y)u(dy), and P, p=P,f,if du=f-dv.)
As in gection 2, we let

9(z,y) = {7 {p(s,x,9)—1}ds, =zyeD.

In the present case, g is symmetric, and since p(-,%,-) is continuous on
[0,00) x (D — {x}), g(=,*) is continuous on D — {x},z € D. — We note that

(3.3) 14,9(z,y) = —8,(y)+1, zeD,yeD
(proved as in [1]). Since

§2 {p(s,2,9) — 1}ds = §pg(,2)p(1,2,9)dv(2) ,
(3.2) and Lemma (4.4) in [5] give

(3.3b) ——a— g(x,y) =0, xeD,yedD.
on,,

Clearly

(3.3¢) $pg(x,y)dv(y) = 0, =zeD.

Equations (3.3) determine g. We note but shall not use the fact that
g(z,*)~h(z,*) near z € D, and g(z,*) ~ 2h(x,*) near x € oD.

The operator G:C(D) - C(D) is defined by (Gf)(x)={f(y)g(x,y)dv(y).
(Use theorem (2.3)). The infinitesimal generator L is defined (see e.g. [2])
by

Lf = lim,_,o(P,f-f))t forfeC(D),

whenever this limit exists in C(D), endowed with the sup-norm, and we
denote by 2(L) its domain. Since now

P(Gf)-6f = GPf~f) = §o{—Puf+\nflds,
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we conclude that for f e C(D),
L(Gf) = —f+§of .
Lf) = —f+{of ,
so that P(L) =U, z{x +range@}. If we now let
(3.4) 9, = {fe C*D),df|on = 0 on 8D},

and for f e (L),

then 2, 9D(L), and Lf=}Af, for fe D,. This is seen as follows: Let
4>0 and fe Z,. Clearly P,fe 2(L), and

0
LP,f)®) = §o 7 G50 @)iv()

Using (3.2) and Green’s formula, we get L(P,f)=4P,(4f). This implies:

P,f = —G(LP,f)+ §p P, fdv
= —1G(PAf) + [pPafdv = — 4Py (GAf) + {pPafdv.

Letting 6 — 0, left and right, we have f= —3G(4f)+ {pfdv, and hence
J€ 2(L) and Lf = }Af.

By an elementary argument, the set 9, is dense in C(D).

In section 2 we had defined Gu for measures u on D(=M). If du =fdo,
with fe L (8D), we still have Gu € C(D). This follows from theorem
(2.3) and from

{epdo()p(t,z,y) < Ct-t, zeD,te(0,1].

For the latter result in a more general setting, see [5, p. 65]. Now for
xzeD,

lim,_,ot“(P (Gu) —G.“)(-’”) = lim, ! S:) {— (Pau)()+ Swfdo'} = SandU ’

uniformly on compact sets in D. By an argument as in [1], we get
$4(Gp) = \,pfdo on D, in distribution sense, and hence Gu|D € C¥(D), and
$4(Gu) = {;pfdo on D, so that Gy is harmonic on D iff §,,fdo=0.

In order to discuss normal derivatives of such potentials, we make the
following

(3.5) DerintrioN. Let u € C(D),u|D € C¥D),Au bounded. We call
u* € L (2D) the weak normal derivative of u, if for all p € 2,),

SD {pdu—udp}dv = Sw?’“*df’
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Since 2, is dense in O(D), there is at most one weak normal derivative
(up to equivalence), and by Green’s theorem an ordinary normal deriva-
tive is & weak normal derivative. We shall prove

(3.6) TEEOREM. If du=fdo, with fe L (0D), then }Gu has weak normal
derivative f.

Proor. We may assume that f= 0. Now let
fa@) = n " (Pu)(x)ds = n {f"ds (pu(dy)p(s,z.y) .

Then f, € C(D) and {,f,dv="\,pfdo=]|ul. Also, f,dv-du weakly, be-
cause for ¢ € (D),

\p@fadv = n ("dsE (X ,) > E,p(X,) = $appdp .

Moreover, Gf, — Gu -> 0 uniformly, since

Gfp—Gp = —n §§/"ds §db{Pyu— |}
and

§6 dt(Pu)(@) = |Ifllo $5d¢ Sop2(t,2,9)do(y) > 0 uniformly, as 80 .
Now we know from the symmetry of p, that for ¢ € 2,
(3'7) SDL(an)(Pdv = SD(an)L‘Pdv ’

(Note that Gf,,,p € D(L)).
The left side of (3.7) equals §,{—f,+ {pf.dv}pdv, which converges to

—\onfedo+ §p(Yopfdo)pdv = —opfedo+} {pA4(Gu)pdo,

whereas the right side equals } {,Gf,dpdv, which converges to % {,
(Qu)A@dy. This completes the proof.

This theorem now leads to a solution of the

(3.8) Modified Neumann Problem: Given fe L, (oD), such that {,,
fdo=0, find u € C(D), such that w is harmonic on D and u*=f.

We conclude from theorem (3.6),
(3.9) TurorEM. For fe L (0D), satisfying \,pfdo=0, the unique (up

to an additive constant) solution of the modified Neumann problem is given
by w=3Gu, with du=fdo.
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(Uniqueness has so far played no part in our work. Uniqueness (up to
an additive constant) follows e.g. from the fact that 4(2,) is dense in
Co(D)N{f; §fdv=0}, where Cy(D) is the set of continuous functions on D
with compact support. This in turn is seen as follows: We have for
f € C&(D) satisfying {fdv=0 that }4(Gf)= —f in the distribution sense.
Since Gf is continuous, we conclude from Weyl’s Lemma that Gf e C%(D),
and f=A(— {Gf). Since by (3.3b), d(Gf)/on=0on 2D, we have — 1Gf € D,.)

Theorem (3.9) allows an interpretation of the solution » of the Neu-
mann problem in terms of the fine structure of the reflecting boundary
Brownian motion process, associated with p of (3.2). If we denote by L,
the local time on 0D of this process [9], then the CAF 4,, associated with
Gu by definition (2.7) is 4=} f(X,)dL, (L is the CAF associated with
Go), and so we have by theorem (2.10),

(3.10) TeEOREM. The solution of the modified Neumann problem with
(weak) normal derivative f € L (0D) such that §,,fdo =0, is given by

u(x) = %limi-)ooEa: Sf)f(Xs)dLs .

We shall conclude this section with the connection between our probabi-
listic Green function g, and the Green function of the second kind, g¥,
mentioned in the beginning. One can show that

(8.11) g¥(z,y) = g(,y) —o(dD) ,p9(2,2)do(2) — a(dD)* §pg(2,y)do(z)
and
(3.12) 9(x,y) = gV(x,y) — pg"(z,2)dv(2) — { pg"(z,y)dv(2) .

4. The Central Limit Theorem and the Law of the Iterated Logarithm.

In this section we shall generalize, in the symmetric case, the central
limit theorem and the law of the iterated logarithm, proved in [1], to
a wider class of CAF’s, which includes the ones of theorem (3.10). We
shall provide details for the proofs only, where there are substantial dif-
ferences from [1].

We will work in the setting of section 2, except that we shall assume
now p(t,z,y)=p(t,y,x). (This assumption is only used for the proof that
{u,py="0 implies p=0.) Solet u be a signed measure of finite variation
and total mass 0, for which G|g]| is continuous (or equivalently,

limy_, o 8up,car §5 s § 2|ul(y)p(s,2,9) = 0).
Let A4 denote the associated CAF.
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We identify first the asymptotic variance as energy. From the expres-
sions

E, A2 = 2§ ds, N5 ds, (S du(y)du(2)p(sy, ,4)p(85,9,2) ,
E, A2 = 2§, ds(t—s) (§ du(y)du(z)p(s,y,72) ,
2tu, uy = 2t {Fds §{du(y)du(z)p(s,y,2) ,

we obtain by using Theorem (2.3)

(4.1) LeMmMmA. There exists C, such that for all x € M, all ¢>0,
|B, 42— 2tu,m)| = C

This lemma is new and replaces weaker estimates in [1]. It leads imme-
diately to the first part of the following

(4.2) THEOREM. For all xe M,

limy , B AP = 2(u,p) ,
and {p,puy=0 iff p=0.

We still need to check, that (u,u)=0 implies yx=0. Since we assume
p(8,%,9)=p(s,y,x), {+, -) is symmetric, so that for all »,

K, )2 = (o)) = 0,

hence for all f bounded Borel, { Gfdu=0; and since {Gf,f € C(M)} is dense
in C(M)n{f; {fdA=0}, we get u=cA, hence u=0.
We now turn to

(4.3) TrEOREM (Central Limit Theorem). If o ,=[2{u,u)]t >0, then

e ¥ dy, foralze M,aeR.

1
hmt—»ooPr { } = 7= St°°
ot ~ V2n
(4.4) TueorEM (Law of the Iterated Logarithm). If o,>0, then for
alxe M,

Pr, 1 li 4 =1 } =
Ta { TSR (20 2tloglogt)t |

It is not difficult to see that (4.3) and (4.4) follow from

(4.3) lim — (%, e 1 du

ol

Math. Scand. 38 — 10
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and

A
4.4’ Pr, { lim L =1 =1.
( ) T, { SupP, 00 (20',42”' ].Og logn)* }

E.g. that (4.4") implies (4.4), follows from the fact, that the event in ques-

tion is & tail event, and from

Al - An >
(20 42n log logn)? ¢

Pr, {maxnstsn +1 1.0.} =0.

The latter follows from the Borel-Cantelli Lemma and from
Pry{max, gy 1[4~ 4, +(Gu)(X) — (Gu)(X,)] 2 o}
S o722E, 4,2+ 4||Gull*}

which in turn follows from the fact, that {Gu)(X,)+ 4,20} is a mar-
tingale for any starting measure, and from the maximal inequality for
martingales. This whole argument is not needed in [1], where

maxn§t§n+ll*4t'“‘4n| = ”f“oo .

But (4.3') and (4.4') follow from two theorems of Philipp (theorem 9 in
[7] and theorem 4 in [8]) and strong mixing of our process. This has been
shown in detail in [1] in the case of (4.4) for functionals of the form (2.2).
If we impose the seemingly stronger condition on y, that
lim sup, o 8uPeprt~ § ds dlul(y)p(s,z,y) < o,

one can obtain the C[0,1] — version of the central limit theorem.
(4.5) THEOREM. For all x € M, the Pr, — distributions of the C[0,1]
— valued random variables,
Y. () = Ambt)jo/n, nz1,te[0,1],

converge weakly to Wiener measure on C[0,1].

This is proved as in [1], using the fact that B 4,4 < (12, all ¢ 2 0, which
follows from

EarAt4 = i‘“ S:) dsl Sf)"ld.gs SSdﬂ(y)dﬂ(z)ﬁa(sv‘”:1‘/)29(32,3/:z)EsAtz-a,-s,
and
SUP B, A2 S Ct, 120.

For the latter, we use the strengthened hypothesis on u.
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