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ENERGY AND
THE LAW OF THE ITERATED LOGARITHM

J.R. BAXTER and G.A.BROSAMLER

1. Introduction.

Let {X,,s= 0} be, say, a diffusion process on a smooth compact mani-
fold M. It is well-known that such a process is recurrent, i.e. the typical
path visits any set of positive measure for arbitrarily large times. To
be more precise, if

(1.1) Ay = §ox4(X,)ds

is the total time up to time ¢ which the path spends in a Borel set A <M,
we know from the ergodic theorem that for all x € M,

(1.2) Pr{lim,, t-14, = A(A)} =1,

where 1 is the invariant probability measure on M, associated with the
diffusion. More generally, if

(L1) 4, = 5 f(X,)ds ,
for f e L (dA), one has for all z € M :
(1.2) Pr{lim, ¢4, = §y f(z)dA(@)} = 1,

which may be considered as a law of large numbers for the family of
random variables {f(X,),s=0}. It is, by the way, well-known that
(1.2) is valid in a much more general context, requiring no smoothness
assumptions.

As was pointed out in Ito and McKean’s celebrated monograph [6],
it is an interesting problem to describe more accurately the asymptotic
behaviour of the 4, Two results in this direction are given in [5] and
[10]. In [5], we find a central limit theorem for additive functionals of
Markov processes on compact metric spaces (cf. also [3] for the discrete
time version), and in [10] a log,—law for the very special case of Brow-
nian motion on a circle.
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In this paper we shall complete the central limit theorem of [5] by
first clarifying the role of the normalization constant and then showing
how to compute it. We also give a general log,—law for additive func-
tionals which includes the case of diffusions on compact Riemannian
manifolds. Our methods are quite different from those used to obtain
the earlier results.

In the present paper we use a combination of potential theoretic and
probabilistic techniques which appear very intuitive and are neverthe-
less applicable to a wide class of processes. The key is the observation
that the well-known convergence of the transition densities for large ¢,
is of exponential rate. On the probabilistic side, we derive from this,
strong mixing of the process, on the potential theoretic side, the exis-
tence of a Green operator. The latter leads to the notion of energy, which
is strictly positive-definite, but in general not symmetric. Intuitively,
the mutual energy {f,,f,) of two densities f,,f, € Ly(d1) represents the
work to be done to move the mass f, to o (i.e. to an invariant distribu-
tion), against the potential of the density f,. The self-energy (f,f) of the
density f, turns out to be, probabilistically, the asymptotic variance of
A, (apart from a factor %), and our log,—law states that for all x € M,f
bounded

At fda

T L e

(1.3) Pr, {hm SUP;, o

We shall show how to compute the energy, and hence the asymptotic
variance of 4,, by solving differential equations on M, and derive the
energy formula (8.10). As an illustration, we compute the constant, gi-
ven in the log,—law in [10] for Brownian motion on the circle.

Finally let us mention, that our results, in particular the log,—law,
should be seen in the light of the general problem of getting global infor-
mation on M by observing a path over a long period of time. For other
results in this direction see e.g. [2].

2. Green operator.

Let M be a compact, connected, metric space, and let m be a finite
measure, = 0,30, on the Borel sets of M. Let p be a transition density
function on M, satisfying certain regularity assumptions; to be precise,
let

p:(0,00)x MxM >R
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be such that
(2.1) pis continuous and strictly positive ,
(2.2) $p p(t,2,y)dm(y) = 1 for t>0,ze M,
(2.3) p(s+t,z,2) = SM p(s,z,9)p(t,y,2)dm(y) for 8,¢>0; z,ze M,
(2.4) for all x € M, all open sets U, containing z:

Hmt—-)ﬂ SU P(t,%y)dm(?/) =1.
From (2.1) and 2.2) we have immediately, that

(2.5) x = inf:t,ueM p(1,z,y) € (0,m(M)1],
and
(2.6) K = sup, e p(1,2,) < oo.

This observation permits the discussion of the asymptotic behaviour of
p as t — co. We begin with the following

(2.7) DeFinITION. For any bounded signed Borel measure on M, and
any >0, let uP, denote the measure on M, which is absolutely conti-
nuous with respect to m and has the continuous density

(2.8) F@) = $a p(t,7,y)dp(@) .
From (2.3) we conclude
(2.9) uPP, = uP,,, forst>0.

We shall prove now

(2.10) LEMMA. Let p be a bounded signed Borel measure on M with
w(M)=0. Then we have for all n=1:

(2.11) Pyl < (1= cm(M))™u] -
(Here [|+|| denotes the total variation of the measure).
Proor. It is clearly sufficient to prove (2.11) for n=1. Let y=p+—pu-

be the Jordan decomposition of u. Let f;,f, be the continuous m-densities
of u+P,,u~P,. Clearly, f,,f, 2 «|lu*|. And since

el = N+ Nl = Np*Poll+llg=Pyll = $ar (fu+fo)dm
and [|uPy|| = (a|fy —foldm, we get
el =Pyl 2 2o]jutlm(M) = ofjulm(M),
which completes the proof.
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By a standard argument, Lemma (2.10) implies the existence of a
unique probability measure 4, such that
AP, =] fort>0.

Since 2 is invariant, it has a (unique) continuous density ¢ with respect
to m, and ¢ is strictly positive. The transition function {, p(t,x,y)dm(y)
has density

p'(t’x’y) = 'P(y)_lp(t,x,y)

with respect to 4. This density now satisfies (2.1) to (2.4) with m replaced
by A. The operators P,, defined by (2.7), remain unchanged. We shall
from now on use the densities p’ with respect to 1, but suppress the prime
in the notation. Since AP,=1 for ¢{ > 0, we have now also

(2.12) Cu (8,2, y)dA(x) = 1 fort>0,ye M.
We add one additional hypothesis:
(2.13) for all y € M, all open sets U containing y:
lim, ,, SU p(t,z,y)dA(x) = 1.
We state now
(2.14) LemMMA. Let u be a bounded signed Borel measure with u(M)=0.
Then we have for nz1,t>n+1:
| $ar P(t,2,9)dpe(x)] < K(L—o)™ ]| -
The proof follows easily from:
§ar P2, y)du(x) = (o p(t—n—1,2,9)d[(1P,)Pl(z) ,
which is a consequence of (2.9), and

dl(uP,)Pyl|(z) = dA(@)-| §ar P(1,2,2)d(uP,)(2)|
£ K(1—o) |jull-dA(z) ,

which is implied by Lemma (2.10).
If we apply Lemma (2.14) to u=4,— 1, we get

(2.15) THEOREM. There exist constants C and f> 0, such that
(2.18) lp(t,x,y)—1| £ Ce? fortzl,z,yecM.

We introduce now the operators P; on L,(d4),1 < p =< co. If we let for
h e L,(d3),
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(hP)(y) = (p(¢t,,y)h(x) A(dx) ,

then hP, is continuous (and is the A-density of (kd1)P;). We may consider
P, as an operator on L,,1 <p<oco. We find from (2.12), that

(2.17) IhPy|, < |Ihll, for ke L,(dA),1=p=Zoo,t>0.

We may thus regard the operators P, as positive L,-contractions. It is
easy to see that the map ¢ — P, is continuous with respect to the uniform
operator norm for 1<p=<co. We define Py=1, the identity operator.
By (2.4), we have that ¢t — P, is continuous at 0 with respect to the
strong operator topology for 1<p<o. If we denote now, for any
f€Ly(da), fS=, fdA, then we have by (2.15),

(2.18) IP,—8|| £ Ceft fortzl,

where P; and S are considered as operators on any L,(d1). We shall
introduce now the Green operator G:

(2.19) DerFINITION. Define the bounded linear operator G' on L,(d4),
1< p< oo, by the Bochner integral:

(2.20) G =\ (P—98)dt .

It follows immediately that ¢@=0 for a constant function ¢, and that
(8 =0. Moreover, we conclude from (2.20) that

(2.21) lim, o t-1¢(P,—1I) = 8—1,

where the limit is with respect to the strong operator topology.
Corresponding to (2.20), we define

(2.22) g(z,y) = 580 {P(t:“’:?/)—l}dt-

It is easy to see that for all y € M, g(x,y) is defined for A—a.e. x € M.
Furthermore:

(2.23) (fO)Ny) = \u f(@)g(w,y)dA(x), for A-ae.yeM.

We will obtain the kernel g(x,y) explicitly for certain examples in sec-
tion 8.

The Green operator @ allows us to introduce a notion of energy: For
any f,h € Ly(d1), we define the mutual energy of f and 4 by:

(2.24) by = §(fOIRdA = (fO.).

In general {f,%) is not symmetric; we will show in section 4 that the
self-energy (f,f) 20, and =0 iff f=const. A—a.e.
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For use in section 8, we define

(2.25) p*(t,2,y) = p(t,y,x),

and denote by P* and G* the operators corresponding to P, and . As
operators on Ly(d1), P, and P;* are adjoints. From the probabilistic point
of view, {P;} and {P/*} are the semigroups induced by adjoint Markov
processes [8].

3. Strong mixing.

Let 2 be the set of functions w: [0,00) - M, which are right continuous
and have left limits at every point. Let X,(w)=w(t), and denote by &Z,
the o-field on 2 generated by {X,,t> 0}, and by &, the o-field generated
by {X,,0=8=t}. We define the shift §,: 2 - 2,t>0 by

(Ow)(8) = w(s+t), s=0.

It is well-known [4, p. 92], that for any transition function p as in sec-
tion 2, there is a family {Pr,,« € M} of probability measures on (2, %) such
that

(3.1) Pr(B) is Borel-measurable for all Be & .

(3.2) Pr {X,YWx)} =1, forzelM.

(3.3) For Be &#, Pr, {0, \B|#} = Prx/(B), Pr,—a.e.

(3.4) Pr {X,Y4)}= {4p(t=y)A(dy), forxzeM, AaBorelset, A cM.

Such a family is called a Markov process with transition density p, and
(3.3) is called the Markov property. If 4 is any probability measure on
M, we let

(3.5) Pr,(B) = §ar Pro(B)du(a);

in particular Pr, (X,"(4))=u(4).

Since 1 is invariant, {X,} is stationary with respect to Pr;, or equiva-
lently the shifts 6, are meesure-preserving transformations of (Q2,%,
Pr,).

We shall now establish a mixing property of our Markov process:
Functions of the process, determined by the process in disjoint time in-
tervals are approximately independent. The degree of independence can
be estimated in terms of the gaps between the time intervals. We start
with
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(3.6) DrrFinITION. For any ¢ 0, let

'/’(t) = 2 Supz,veMlp(t’x’y)— ll .
(It is possible that 3(0) = o).

By Theorem (2.15), we know that y converges to 0 exponentially as
¢t - co. We shall prove:

(3.7) LeMMA. Let Y,Z be bounded (real or complex) functions on R,
with Y % s~measurable, some s=0, and Z F-measurable. Then for t =20,
and any probability measure u on M :

(3.8) \E{Y(Z054)}— B, Y -E,(20,.)| = (t)-E,|Y|-E)|Z] .

Proor. The left side equals:
\B[Y{Ex(Z6)—-E,BEx(Z0)}] ,
which is majorized by
EA|Y||Ex(26)—E(Z6,)}+E,| Y| B,|Ex(Z0)—E,(Z0))] .
Now for any x € M,
|B ,(Z0) — Ex(26,)| = |E {Ex2}—E;{Ex2}|
= IEJIP,Z - EAZ ]
= |$a B, Z(p(t,,y) — 1)dA(y)]
< Su B)\Z)] p(t,z,y) - 1|dA(y)

= {p()E)Z|,
which proves the lemma.

(3.9) REMARK. For later use we note that for a bounded measurable
function Z on 2,
|E(Z6,) - E,Z| £ yy()E,|Z],

which follows by the same kind of argument.

4. Variance and energy.

In this section we shall investigate the asymptotic behaviour of the
variance of certain additive functionals of the Markov process with
transition density p, of section 3. If f is a bounded Borel function on M,
we let (as in (1.1")):

(4.1) Aw) = § f(X(w))ds, t20.
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Clearly, A4, is # -measurable for every ¢ > 0, and for all 0 <s=<t, we have:
(4.2) Az = A8+Al—808 .

Any family 4,, which is & measurable, and satisfies (4.2) is called an
additive functional of the process.
We shall prove:

(4.3) THEOREM. Let f be a bounded Borel function on M, and let the
additive functional 4, be defined by (4.1). Then for any probability measure
uon M, we have:

(4.4) lim, , ¢~ Var, 4, = 2(fG.f) .

(Here Var, means variance with respect to Pr,.)

Equation (4.4) establishes the connection between the self-energy of
the function f and the variance of the corresponding functional. We see
immediately that (fG,f)=0, and by Theorem (4.16) below, we will
have (f@,f) >0 unless f=const. 1—a.e.

Proor or THEOREM (4.3). We will prove the theorem for the case
u=A. The general result then follows from Lemma (4.14) below. Without
loss of generality, we may assume that {fdi=0, and hence E,4,=0.
From (4.1), we conclude that

(4.5) Ey(A4p) = 2§ ds §, duB,[f(X)f(X,)],
which implies

(4.6) EyAp) = 2§, (t—w)E,Lf (Xo)f(X,)]duw .
But since B[f(Xo)f(X,)]= (fPu.f), We get

(4.7) B, A2 = §(1-u/t)(fPy.f)du .

Now (& |(fP,.f)ldu< o, and we obtain (4.4) for u=2 from Lebesgue’s
dominated convergence theorem.

We shall now compare moments of 4, with respect to Pr, for different
u. To this end we make the following

(4.8) DeFINTTION. For any probability measure x on M and any %,
1<k< oo, and any random variable Z on £, let
”Z”p.k = (Enlzlk)“k .
We will prove
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(4.9) LEMMA. There exist constants C and B>0 such that for any pro-
bability measure w on M, and for tzs=1:

(4.10) I”Al”y,k — (14415, Icl S Ce |4y, 1+ (1 + CeBo)|[ Al o+ 1A gll, 1 -

Proor. From (4.2), we conclude that
(4.11) 14l = 1 4e-Belly, ] S Al -
From (2.16) and (3.6) and (3.9), we conclude that
114e-oBalle, &= 14, ll5 o] < Ce 3|4, JI15 5, »
which is equivalent to
(1=CeP) A, & < 1 Ae-oBllh x S (1+0e9)| 4,151 ,

and implies

(4.12) (114 e-s0ll, 5= 14y—ollz, | S CebeAy_flly x

<C
S Ce{|| Al x+ 1 44l;, 2} -
Finally, we have

(4.13) 14—l = 14l i S 144l »
and (4.10) is proved by combining (4.11), (4.12), (4.13).

A consequence of Lemma (4.9) is

(4.14) LEMMA. For any probability measure u on M,
(4.15) lim, , ¢~ (Var,4,—Var,4,) = 0.

Proor. Without loss of generality, we may assume that §,/fdAi=0, in
which case F,4,=0. Since f is bounded, we conclude from (2.16) that

|E,f(Xy)| £ Cie#, for some Cy, >0.
But this implies that sup,|E,4,| < o, and thus (4.15) is equivalent to
lim, , t-YE,A2—-E;47%) = 0.

This equation, however, follows immediately from Lemma (4.9), and
the fact that sup,,,t~1E;42 < co.

We shall turn now to the non-singularity of the energy.

(4.16) TeErOREM. If f i3 a bounded Borel function on M, and if {f,f)=
(fG,f) =0, then f=const. 1—a.e.
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For the proof, we need a lemma, for the formulation of which we use
the following notation: For each ¢ 2 0, let &, be a Borel function on M x M,
such that

(4.17) E . {4,| X} = hfx,X,), Pr,—a.e.

The existence of A, follows by a standard argument. We note that
(4.18) E;'{A‘I XO’Xf} = h‘(Xo,.X‘), Prz—a.e.

For t>0, let

(4.19) 8(x) = B [A,— bz, X)]*,

and

(4.20) 0P(x) = 6(x), O™(x) = B [o»X,)] foran>1,
(4.21) 6, = El(st(Xo) .

Clearly,

(4.22) 6, = E,00"(X,) fornzl.

We have:

(4.23) LEMMA. Let t > 0. Then we have for any n2 1, and s = nt, any real
o, anyxe M,
(4.24) E (A,—)? 2 60(x)+ ... +6M(x).

Proor. The proof will be done by induction with respect to n. Clearly,
(4.24) is also true for n=0, if the right side is defined to be 0 in this case.
So assume that for some n =0, (4.24) is true for any s=nt, any real «,
any x € M. Then (4.24) holds for sz (n+1)t,x € R, x € M, which can be
seen as follows:

E (A~ o) = BB {[(4,—hfx, X)) + (Ao 0+ Iy, X;) — )P | X}
= ErEw{(At"ht(x’Xl))z | Xl}
+EE (A, 8+ hy(x, X)) — o) | X}
= B (A;—h(x, X))+ E B x (A4, + bz, X,) — x)?
2 @)+ E (00X + . . . +6(X))}
= §Mx)+ ...+ 6™V (x) .
The second equality holds because for a Markov process future and past

are independent, conditional on the present, and the ineéfuality follows
from the induction hypothesis. This completes the proof.

Proor or THEOREM (4.16). Without loss of generality, we may assume
that §,fdl=0, and we shall show that f=0 1—a.e. It is sufficient to
show that
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(4.25) Pr,{d,=0}=1, alltz0,
since this implies Pr,{4,=0, all £ 2 0}=1, hence

hence
Pr{f(X;) =0} =1 for a.e.t20.

Next, we observe that for all ¢ > 0,d,=0; for (4.4) implies
lim, , n-1E, A2, = 2t(fQ,f) = 0 (since E,d,, = §fdA = 0),

and (4.24) implies E,42, 276, From (4.19) and (4.21), we conclude that,
foralliz0
(4.26) At = hf(‘Xﬂ’X’) Pra—a/.e.

For the proof of (4.25), it is sufficient — since £,4,=0 - to show that for
t>0,a<b,
(4.27) Pri{d,<a} =0 or Pr{d,>0b}=0.
So fix ¢ > 0, and choose s € (0,t), such that
{4;<a} n{4,0,>b} = D,
which is possible, since f is bounded. By (4.26), we conclude that
Pry{h(Xo, X)) <0, h(X X, )>b} =0,
and by (2.1), that
(A% A x A% A){wy, %0, 23,%4) ; hy(y,%5) <@, Byg,,)>b} = 0,
which implies, that
(Ax D){(@1, %) 5 Mymp,5) <a} = 0 or (AxA){(w5,%y) ; byl 24>b} = 0.
We conclude that
Prl{h‘(Xo,X‘) <a'} = O or Pr‘{h'(Xo,Xt)>b} = O ’

and by (4.26) we get (4.27).

(4.28) REMARK. Although (4.16) is sufficient for our purposes, it is
possible to derive a stronger result: If an additive functional (i.e. a family
of & measurable random variables 4,,¢=0, for which (4.2) holds, but

which need not be of the form (4.1)) satisfies £;42< o and E,4*< oo,
for t2 0,2 € M, then lemma (4.23) is still valid. If now

lim , ot~ EA# =0,
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we have again (4.26). A repeated use of (4.2) and (4.26) shows that in
this case,
4; = q(X;)—q(Xy)+ct, Pry—a.e.,

for some Borel function ¢ on M and some ¢ € R. This result is proven in

[56] under slightly stronger assumptions, by functional-analytic methods.

(4.29) REMARK. It would be interesting to know whether in theorem
(4.16), “f bounded’’ may be replaced by “f € Ly(d1)”, say. This is indeed
the case if the process is self-adjoint, i.e. if P,=P;*, as the following
simple argument shows: We may assume {,,fd1=0, and define

h(t) = (fPG.fP), t20.

Using (2.21) and P;=P;*, we have &'(t)= — 2(fP,, fP,) £0. By (2.18), we
know that fP, converges in L,(di)-norm to a constant as ¢ > oo, which
implies that lim, , A(t)=0. Hence A(0)=(fG,f) >0, unless h'(t)=0, that
is, unless (fP,,fP;) =0 for all ¢ = 0, that is, unless f=0 1—a.e.

5. An estimate for the fourth moments.

We shall need the following lemma, which is proved in [5] under
slightly different assumptions, with functional-analytic methods.

(5.1) LEMmMA. Let f be a bounded Borel function on M such that Sfdi=0,
and let the additive functional A, be defined by (4.1). Then there exists a
constant C such that

(5.2) E A = C8, alltz0,allcelM.

Proor. We shall denote the supremum of f by ||f||. Clearly
E Ap < |IfIftt, xeM,t20.

Thus in proving (5.2), we need only deal with {2 1. By Lemma (4.9),
it suffices to find a constant O, such that

(5.3) EAp 2 C2, t21.
Since for any integer n2 1, and ¢ € [n,n+1),
14dls,s = alls, e+ 14— Aulls,a S 1 alla, o IS
it is sufficient to show that there exists a constant C, such that
(5.4) E, 4,4 = On?, nzl.



ENERGY AND THE LAW OF THE ITERATED LOGARITHM 127

For this purpose, we define the random variables
(8.5) Z, = u_1f(X,)ds
Then 4,=37_,Z;, and
(5.6) E;A,* =37 B Zf+4 ’2tj=1El[Zi3Z7'] +3 'Z?,j=1EA[Zi2Z12] +
+6 'z?,j, k=1 B ZP2,2,]+ 37 soe=18il2:2,2,2)]
where the primes on the sums indicate that no two summation indices
are to be equal.

The first sum in (5.6) is obviously proportional to n. The third sum is
of order »?, since clearly

Z"J=IE}-Z1: E;.ij = n(n 1)(E Z 2)
and by Lemma (3.7),
I’E';’, j=1 Ez[Zizzjz] - '2?, j=1 E‘Zﬁ . E).Zj2|
’z?»f“l |BAZ3PZ7 — B Z3- B Z 7
K{(n—1)+(n—2)eP+(n—3)e2+ .. +e~n-25}
= 0(n) .

The same kind of argument shows that the second, fourth and fifth
sums in (5.6) are O(n?), since E;Z;=0. This completes the proof.

IA A

6. Central Limit Theorem.

We shall now discuss the central limit theorem for additive functio-
nals 4, of the form (4.1), with f a bounded Borel function on M, f=
const. 1—a.e. Then we have for

(6.1) o = [XLHE,

that 0 < oy < co. Without loss of generality, we may assume that {,,fd1=0
The central limit theorem asserts that, asymptotically, the law of the
normalized additive functional 4,/s,)/¢ is standard normal.

(6.2) TaEOREM (Central Limit Theorem — R! version). For any x € M,
any o € R, we have:

(6.3) lim Pr, = ~—S e-tthdg

e

We can reformulate this theorem, using the notion of weak conver-
gence of measures: If u,,u are probability measures on the Borel sets of
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some separable metric space S, then 4, is said to converge weakly to u,
p=lim,  _u,, if for all real-valued, bounded, continuous functions on 3,

(6.4) Hmﬁ—»ooss.fd:u'n = S:S'fd.“‘ .
Theorem (6.2) then says that the measures u, on R defined by

pn(B) = Pr{4,]o;Vne B} for Ba Borelset < R,

converge weakly to the standard normal distribution. (We only discuss
discrete times, since the transition to continuous times is trivial.) It is
well-known, that this version of Theorem (6.2) is an immediate conse-
quence of its function space version, whicn we shall now formulate.

Let C[0,1] be the space of real-valued, continuous functions on [0,1],
with the metric induced by the sup-norm. We define the measurable
mappings Y,,: 2 - C[0,1],n21, by

(8.5) Y, () = Apyloj/n, 0=t=21,
and the probability measures @,™, n>1,2 € M, on C[0,1] by
(6.6) Q,"(B) = Pr {Y,-'B}, B a Borelset < C[0,1].
‘We shall prove:
(6.7) TaroreM (Central Limit Theorem - C[0,1] version). For all

x € M, the probability measures @, ™ on C[0,1] converge weakly to Wiener
measure W.

We recell that well-known results of Wiener, Lévy, and Doob give
existence and uniqueness of Wiener measure: There exists exactly one
probability measure W on the Borel sets of C[0,1], such that

(6.8) Scio, BO)AW (R) = 0, §op0,1) KA)AW () = ¢
and
(6.9) The increments in non-overlapping intervals, i.e.

h’(tl): h(tz) - h(tl): e ’h(tk) —k(tk-—l)

for 0<#;,<ty,< ... <t,, are independent with respect to W.
It is well-known that the finite-dimensional distributions of W are
normal, in particular, that

Wik ; h(t)e B} = (2nt)#{ge~""d&
for B a Borel set B < R.
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Proor or THEOREM (6.7). For fixed x € M, the family {Q,™} is tight,
i.e. for any ¢> 0, there exists a compact set K, < C[0,1], such that

Qe(K) 2 1—¢ foralln.
To verify this, it is sufficient to show that there exists C, such that
Yoto, 1 [B(ta) — R(t)[4 dQM(R) < O(ty—t,)2
for all ¢,,t, € [0,1] (see e.g. [1, p. 95]). But the left side equals

A — A1 1
Ea [ t;fV’l_% nﬁ] - ain? B B x [ Angy1]* 5
which by Lemma (5.1) is dominated by C(t,—¢;)% Now a tight family of
probability measures contains a sequence which converges weakly (to a
probability measure). The proof of the theorem is completed by showing
that limit of any subsequence of @™ that converges weakly, must be W.
So let @, — @. To prove that Q= W, it suffices to verify (6.8) and
(6.9), with W replaced by Q.
For (6.8), we have

Soto.uHOIQR) = lim, ., Joro,uh(t) dQ(h)
= liml_)mEa: [Anﬂ/afvﬁ;] =0,
and
SC“"“ 3 (t)dQ(h) = lim, o Smo,llhz(t) Q™ (h)
= liml»ooEx[Anzl/o'fV;":]Z =1,

The last equality in the first line follows because E 4, is bounded, as
was observed in the proof of Lemma (4.14). The last equality in the se-
cond line follows from Theorem (4.3) That the first equality in both
lines holds, is seen as follows: Since @, — @, it clearly holds, if A(f) is
replaced by hy(t)=Ah(t) if |A(t)|SN,=N if h(t)>N,=—-N if h(t)< —N.
Hence it holds as stated, because for any ¢ e [0,1],A%(#), and therefore
k(t), is uniformly integrable with respect to @,", as is implied by

supy, {00, 144(¢) dQ,™(h) = sup,, B [Ayfo/n]t< oo,

which follows from Lemma (5.1).
As for (6.9), we shall prove the equivalent statement for the Fourier
transforms: If

O=ty <t <tg<...<t,=1l; A&, ..., 5eR,
then

Math. Scand. 38 — 9
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(6.10)  §oro,uexp[i 3, A (h(t,) ~hit,1))] ()
= TI7-1 Yo, uexp [i2:(h(t,) ~ h(t,-))] dQ) .
To this end, let ¢, € (£;,¢,,,),¢=1,....k—1. We observe first that an
application of Lemma (3.7), with
8 =mnt, t=mn(t'—t),
Y(w) = exp(id, Y,(t), Z(w) = exp(id,Y,(t,—14)),

gives:
|Ezexp (A, Y, (81) +iAg[ Y n(ta) — Y (8,)])
— E,0xp(i2, Y o(41)) - B exp (1A Y y(ta) — ¥ (t,)])]
< p(n(ty' ~t),
that is,

[§oto, nexp [iash(t:) + iAa(h(ta) —h(t,))] 4@, ()
- Sc'lo, 1©Xp (i4,h(t,)) dQ ™ (R) Sc'to, 1exp [i45(A(ts) ~ A(ty))] de(”)(h)i
s y(n(ty' —ty)) .
More generally, an application of Lemma (3.7) and the triangle inequa-
lity gives:
[Soto, exp[i3%_ 1 A,(h(¢,) — R(t;_,))] 4Q,™(R)
~ TT7-1 §oro, nexp[iA, (h(t,) —h(t; 1)) 1dQ,(B)| < Zrp(nt, ~1).
Since @™ — @, we get
$ow,uexp[i 271 A(A(t,) - h(t;_,))] dQ()
= TT7-1 Yoo, nexp A, (h(t,) — h(t; 1)) ] dQ(R) ,
which implies (6.10), by letting ¢, _, { £,_,.

7. The Law of the Iterated Logarithm.

Closely connected with the Central Limit Theorem is the Law of the
Iterated Logarithm. Under the same assumptions on f as in section 6,
we have, for 4,= {} f(X,)ds,

(7.1) TaEOoREM. For all x € M,

A

1
—_—_— = =1.
(2t log logt)t % }

(7°2) Pr:c {hm BUP; ;o

We shall deduce this theorem from a log,—law given by Philipp
[9, p. 1990]:
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Let Z,,Z,,. . . be a weak sense stationary sequence of random variables
on some probability space (£2, %, Pr), such that

(7.3) There exists a sequence {g,{}, such that 3, _,¢,1/5 < co, and such
that for all n,,m,21 and for all 4eF(Z,,..., Z,), and
B € y(zmﬂ,’ Zﬂ1+ng+l’ A )’

[Pr(4B)~Pr(4)Pr(B) S pn,Pr(4),

(7.4) EZ, =0, sup,EZ\* < .
Then
o = limy ,  NESYN  Z.)

exists, and if ¢4 0 then

N .Z
7.5 i __&m=1Tm } =1,
(7.5) Prilim supy._, (2N log log V)t o

Proor or THEOREM (7.1): Since the event in (7.2) is a tail event, it is
sufficient to prove (7.2) if Pr is replaced by Pr;. We shall again use the
random variables Z,={r_, f(X,)ds,n21, of (5.5), on (2, % Pr,), and
prove that these Z,, satisfy the assumptions of Philipp’s theorem. Condi-
tion (7.3) follows from Lemma (3.7), with ¢,=9(n—1),n22,p,=1,
since 4 € F(Zy,. . .,2Z,,) implies 4 € #,, and Be F(Z, nyZn ingirs- - +)
implies B=0,",,,,_,B, for some B, € #. Condition (7.4) is trivially sa-
tisfied, and we have o=0,%0, since we assume f is not constant 1—a.e.

We conclude that (7.5) holds, i.e.

A
L — =gy =1,
P, { Tt BUPN oo (2n log logn)* % }
In order to complete the proof of the theorem, it is sufficient to observe
that

ma'xnsl<n+1|At"An| = ”f" .

8. Diffusions on compact Riemannian manifolds.

In this section we shall show how our results apply to a wide class of ex-
amples, namely diffusions on compact Riemannian manifolds, whose law
is determined by the Beltrami operator and a (not necessarily conserva-
tive) vector field. To be precise, let M be a compact C° Riemannian
manifold. We denote by 4 the Beltrami operator and by dm the associa-
ted volume element. Let ¥V be a O vector field on ,,, and let

(8.1) L=34+7V
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Let L' be the dual of L relative to the volume element, that is, L’ is
defined by
(8.2) {u(Lo)dm = (L'uyodm ,
for u,v € C°(M).

As is well-known (see e.g. [7]), there is a diffusion {X,,8= 0, Pr,,x € M}
on M (i.e. a strong Markov process with continuous sample paths),
whose transition density function is given by p(t,x,y), the solution of

)
(8.3) L, p(t,2,y) = % p(t,z,y)

(8.4) lim,,  \yp(t2,y)dm(y) =1 forze UcM,U open.

((L," means L’ is applied with respect to y.)

It is well-known that p € C*[(0,00) x M x M]. Moreover p satisfies the
assumptions of section 2, so that the results of the previous sections,
including the log,—law, are valid. We shall discuss here some special
aspects of the manifold situation. As before, we denote by A the unique
invariant probability measure on M. (If V=0 then A=m(M)1m.) We
recall that di=g@dm,p> 0, S updm=1; and we have in the present con-
text, p € C°(M) and
(8.5) L'ep=0.

As in section 2, we relabel ¢(y)1p(t,z,y) by p(f,x,y). We shall denote
by L* the adjoint of L with respect to di. According to a theorem of
Nelson [8], we have

(8.6) L* = }4—V +grad logg .

We shall now turn to the operator @, defined in section 2. We recall that

(fNY) = §uf(@)g(z,y)dA(z)

where g(z,y) = {3 {p(t,%,y) — 1}d¢t is defined for all ye M, for 1—a.a.
x e M. We shall show that the differential operator L* is the inverse of
@ in the sense of the following

(8.7) THEOREM. For any fe C*(M), there exists u € C°(M), such that
= fGQ, A—ae., and L*u = —f+ {,fdd.

Proor. By Weyl’s Lemma (see e.g. [7]), it is sufficient to show, that
for any b € C*(M),

S FONL¥RYdm = §p {—f+8(f)}hdm ,
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where 8(f)=fS= {3;fd2 as in section 2. But since L*'(ph) = g L(h), this is
equivalent to
$a(fOYLRYAL = §ae{—f+8()}hdA,
for h € C*(M). Now it is well-known that for & € C°(M),
Lh = hmtéoh(Pt*—I)/t
go that

§2(fANLA)AA = Timy o § 3 (fG)- (W(P*—I)]t)dA
= limy o §5 (fG(P;—I)[t)- hdd

= $u {~F+8(f)}hdd
where the last equality follows from (2.21). This completes the proof.

From Theorem (8.7) we derive the differential equation (in distribu-
tion sense) for g,

1
—0 1.

Proor. We have for all f e C°(M),

S Ly*g(-.9)f ()dm(y) = [L(fle)IG* = L((f]9)G*)
~flo+ Su(flo)dr = —flo+ \y fdm .

The second equality holds because L and G* commute, and the third
equality follows from Theorem (8.7). This completes the proof.

(8.8) THEOREM. L, *g(z,y)= —

The differential equation (8.8), together with {,r g(x,y)dA(y)=0, de-
termines g. We shall illustrate this in two examples.

ExampLE 1. Brownian motion on a circle with circumference 1. We use
as coordinate on the circle the distance z from a fixed point 0,ze[—§,+3).
We have L=L'=L*=}d?/dz? m=A=Lebesgue measure, p=1. In order
to compute g(x,y) it is sufficient to compute g,(y)=g(0,y), because of ro-
tational invariance. Since

%91" = 1-4,, St;%dﬂ =0,
we find
ny) =y -lyl+t yel-4+4).
If we now let f=y,, 5, (x,B)S[—1},3), it is easy to check that we get for

the self-energy of f,
> = Hp-aP[1—-(B—a)],
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and so we have for the additive functional 4,= §} %, »(X,)ds, that
Vard,~o0%, ast—> oo,
o= [2<f,f >]*
= 3-Hp—a)(1 - (B—c) -
This is exactly the constant in the log,—1law of [10].

with

ExampLE 2. Brownian motion on a circle with circumference 1, and o
constant force field. If we use the same coordinate as in example 1, we
have

d2
L = id——xz+c&— (sayc>0),
m = Lebesgue measure, p=1,
L'=L* =} @ c d
- T fdar T dx

Letting again g,(y) =¢(0,y), we solve
3 —cg) = 1-4,, si} g1d4 = 0

by
Y e~% 20 1 1
— — - if 0,
c+c(1-e—2°)e +2c 2¢? ye(0d)
71y =
Yyl e 1 e(—3,0)
¢ c(l—e-%) 2 22 Y e

which reflects & considerable asymmetry in the Green function, caused
by the force field.
We shall now give an instructive formula for the mutual energy

<f 1:f 2) = SM (f G1)f 2d}~

of two densities f,,f, € C®(M).
If we apply Gauss’s theorem

to the functions &, = ¢(f,@),hy=J,G, and observe that {,, (f,¢)d1i=0, and
A(f,@) = 2AL*+V —grad loge)(f,) »

2 fufe) = Su(grad (16), grad (£,G))dy
+ ur (f16)(2V —grad log)(f,G)dA

we obtain
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or

(8.9) 2 fofe = SM (grad (f,3), grad (f,3))dA
+ Sa (LG)L~ L*)(f,&)dA ,
and for the self-energy of f e C*(M),

(8.10) THEOREM. 2(f,f)= {5/ |grad (f&)|*dA.

It follows immediately that energy form {(f,,f,) is positive-definite.
It is symmetric iff L= L*, which, according to [8], is true iff V is conser-
vative. In this case the second term on the right side of (8.9) vanishes.

We shall conclude with a problem, to which we do not know the ans-
wer: We know that for all x € M, all f bounded Borel on M,

§6 f(X)ds—t (s fad _

Pr, flim sup, .. e (26 /M = 1.

QuesTION. Is a universal log,—law true, e.g. is it true, that
(8.11)

§o f (X )ds —t {5 fdA
(2t log logt)}

Pr, {lim SUpP; o = [2(fG,f)]}, all fe C“(M)} = 1?
If the answer, say for L=}4, is yes, this would have an amusing conse-
quence: We would be able to obtain the spectrum of 4, and hence all
the information about the geometry of M provided by the spectrum, by
observing the functions f € C*(M) on a typical diffusion path over a long
period of time: From

(8.12) Pr, {lim, -1 fA(X,)ds = (5 f2d4, all fe C°(M)} = 1,

which is an easy consequence of the ergodic theorem, we obtain (fy,fs),
and from (8.11) we would obtain (f,@,f,) for all f,f, € C°(M). This
would determine the spectrum of @, and hence of its inverse 4.
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