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ON POINT CLASSIFICATION IN CONVEX SETS

Z. WAKSMAN and M. EPELMAN

Abstract.

A classification of points of convex sets in a Euclidean space E,, is given.
The classification discriminates four point types and is based on a func-
tion specially defined on a convex set as well as on the concept of the
point’s cone with respect to the set. The fourth-type points in this classi-
fication are simply the locally polyhedral points. The properties of the
first-type points are closely connected to the well-known results on sec-
tions, projections and asymptotes of convex sets [2]. These properties
also lead to a theorem on the closedness of the sum of convex closed cones.

0.

Let [z,y) denote the ray {z=x+A(y—x): 1= 0} emanating from the
point « towards the point y. For a point p and a set 4, let [p, A) denote
the set U, [p,x) and cone(p,A4) the cone [0,4 —p) (so that [p,4)=
cone(p, 4) +p).

1.
For a convex A< K, and x € 4, define

pa(x) = infysA\{a:}“A nlz,yl,

where ||-|| is the Euclidean length.

If AN\ {x}=0, that is, A={x}, then, by definition, ug,,(x)=+oco. A
sequence {y;}; <A\ {z}, for which [|[An[x,y;)|| > u4(%) can be chosen
in such a way that it converges and the sequence {I,};° of the rays I, =
[x,y,> converges too. We shall call such sequences,{y;};  of points and
{Le} of rays, realizing sequences for the point z. Any convex set A can be
partitioned into two disjoint subsets

Ay ={xed: pyr)=0}, A o= {xecd: pylr)* 0}.

Obviously the relative interior rid < 4_,, so that 4,4+ @. Thus 4, is
a subset of the relative boundary of 4:

Ay = ThA = A\rid .
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2

The following example will be used extensively in the sequel. Consider
a plane E, in Ej, a circumference arc in £, and a point sequence {c;};” on
the arc converging monotonously to a point b. Let a € E;\ E,, ;=
[a,¢,), and suppose a point ¢;’ is chosen in such a way that ¢,’ €l,, |la—
¢;'|| - 0 and it lies on the same side of the plane defined by the points
b,¢;_3,C;_1, a8 the point a (see fig.1). The set 4 =conv{a,b,c,’,¢c, ...} is
a convex compact set and the points a,b,¢,’,¢, . . . comprise the complete
list of its extreme points. It is easy to verify that 4,=[a,b).

Fig. 1.
3.
Obviously if x € 4, IT is a hyperplane and z € II, then

Hann(®) Z pu(®) -
In particular, it may happen that x € 4,, while xz € (AnIT)_,.

ProrosrTioN. For a convex A< E,, let x € Ay, and suppose that x i3 not
an extreme point of A, that is, x € (p,q),[p,q]1 < A. Let IT be a hyperplane
such that (p,q)NII={x}. Then x € B,, where B=AnII.

PrOOF. Assume pup(z)>0. Let 0<e<min{ug(x),||p—=z|,|lg—=|} and
let & be the angle between the interval [p,g] and the hyperplane IT,
0<a < 4n. A contradiction will be obtained by showing that

na(z) = &', where e = }-e-cosf(n—u).



ON POINT CLASSIFICATION IN CONVEX SETS 86

P

Fig. 2. q

Assume y € 4 and y ¢ [p,q]UII (otherwise |[ANn[z,y)|| = ¢ > &’). Assume,
for instance, that y and ¢ lie on the opposite sides of I7. Then

IInfqyl =ueB, w4z,

and therefore a point %’ € B exists such that «' € [z,u),||xr —u'||=}e (see
fig.2). Consider the point

y, = [p,u'] n [x’y>’ y' €d.
Obviously
4n=zplz -yl .
On the other hand, the fact that the sides xzp and zu’ in the triangle
xzpu’ are not less than }e and /pau’ <% —«, implies that ||x—y'|| = ¢'. Thus

lAn[zy)) =& forallyed\{z}.

4.

Every open interval in 4 belongs either to 4, or to 4 ,,. This is proved
in the following

ProrosrTioN. For convex A<E,, let x € (a,b)<A,x € Ay. Then (a,b)<
A,.

Proor. Let I be a hyperplane such that IIn(a,b)={zx} and let B=
AnII. By proposition 3, ug(x)=0. Let 2’ € (a,b) and let IT' be a hyper-
plane such that II’ is parallel to IT and 2’ € II'. Denote B'=AnII'. We
shall prove that 2’ € B,'. Let us choose [p,q] < (a,b), such that z,2' € (p,q).
Assume, for instance, that ' lies between z and p. Let

vy © B\{z}, L =[xy, [Bnll—o0.



86 Z. WAKSMAN AND M. EPELMAN

Denote y,'=II'n[p,y,] and '=[2',y,). Obviously, {y,'}; <B’'\ {z'}
and [,/ is parallel to ;. Assume ug(x’) > ¢ > 0. Then for every k there
exists 2’ € B'nl’ such that |&' —z,’|| = &. For z,=1In[g,2,'] we have

meBNhL, |-zl =2l"-2,
where 1=|jg—z||/|lg—2'||. Thus
lim, , [|B Nkl 2 lim,, flw—z) = >0,

a contradiction.

5

As applied to the partition # of a convex set A into the family of the
relative interiors of the faces of 4 (see [1], theorem 18.2), proposition 4
gives the following

CoroLLARY. Fach element of the family F either is included in A, or is
disjoint from A, (that is, included in A _,).

6

The partition of 4 into 4, and 4, ,=A4\ 4, can be also described in
terms of continuity of the u function. Namely, it turns out that

4y = {gerbA: u, is continuous at x} .
TrEOREM. For a convex A < E,, the function p, 18 continuous at x € A
iff ceridud,.
Proor. Assume, for convenience, that dimA=n. Let x eint 4, ¢> 0,
U=1{z: |z—2||se} = 4.
Obviously, u(x)=x=&>0. Let
et <4, 2>, palz) > B.
Suppose that > «. Fix a positive integer k and any p’,a <p’ < 8. Let
{ynl = ANfa} and ANl ->«,
where I,,=[z,y,,). Choose a point 2,’ such that
25 €[2p)s Iz —2dll = B -
For big s, 2,’ € A. Consider the interval
[5,] = conv(U U {z}) .
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From |ly,"—x|| — B’ we obtain ||[Anl||=f’, that is,
lunk—)oo”A n lk” = ﬁ,’
which is a contradiction.
Suppose now that < «. Obviously > 0. Fix a number «',f <o’ <a.
For every s choose 2,/ € A such that |2,/ —z,|| = 8. Then, for I,=[z,,2,"),

40l —~8.

Choose a point v, on the ray [x,z,’) such that |v,—2||=«'. Obviously,
v, € A and, for big s,
2, € (x,v,) .
Consider the interval
[24,2,'] = conv(U U {v;}) nl,.

Obviously,

2g €(2257), lweg—2,"| >0, |l =z >«
Hence

lim, 4 0l 2 mg, iz, ~2l 2 &' > B,

a contradiction.
If xebdA and p (x)=+0, then z is a point of discontinuity, since for
every sequence
{yo)y < intd, y,-»>=,
the inequality

0 é Hms—)ooﬂ'A(ys) = lims-aoo”ys—x“ =0
holds.

Suppose now that x € 4, and let {y,};° <A\ {x},
Y > 2, HA(?/]‘;) >e>0 forallk.

Consider the face F' of the set 4 for which z eriF. For big k, y, € F
since z € ri(4n[y,,x)) and, moreover, y, € riF since |jy, — || - 0. By co-
rollary 5, y, € 4,, which is a contradiction.

7.

Let exA denote the extreme point set of a convex set 4. If z¢e
cl(ex A\ {z}) then clearly x € 4,. It turns out that the converse becomes
true in a proper section of 4.

THEOREM. For a convex A<E, and x € A, the following holds:

a) There exists a plane section D of A such that
zeD,, xzeexD, 2=dimD =<n.
b) If x € exA and A is closed, then x € cl(ex A \ {x}).
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Proor. a) If z¢exd, then, by proposition 3, a section B=AnIT
exists such that x € B, dimB=dim 4 — 1. If still ¢ ex B, we shall make
further section, etc. Finally a section D will be obtained such that x € D,
z € exD. At the same time dim D > 2 since dim D=0 or 1 implies D;=@.

b) It is sufficient to consider the case of a compact 4; otherwise A
can be replaced by

An{y: lly—=|sr}, r>0.

The conditions z € 4, and cl4 =4 imply the existence of such a sequ-
ence {y,}; <A\ {z} that

1) % —> =,
2) 4n [x’yk> = [x,yk] .

By the Caratheodory theorem, there exists for every %k a representation
Yo = 20T ity >0, 2 =1,

where 2, € exA for all 4. Here for a fixed k£ some z,,,i=1,2,...,n+1
may coincide. Still always 2+ since otherwise a contradiction to 2)
follows immediately.

Choose a subsequence {y,};.x such that for all i=1,2,...,n+1,

limy z2 = ¢; and  limg goy, = B; .
It follows immediately that
%EA, ﬂi g 0’ z?:llﬂi =1 )
x = 3746

Since z € ex 4, one of the points g, say ¢,, coincides with z, and therefore
{zlk}kex < exd AN {x} and limkelek =x.
8

Thus we obtain, with the additional assumption of closedness, the fol-
lowing characteristic property of the 4, points.

CoRrOLLARY. For a convex closed set A<E, and x € A, z € A, iff a plane
section B of the set A exists such that 2 <dim B < n,

zeexB, xzecliexB\{z}).

In particular, a convex compact set A is a polytope iff 4,=@.
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9.

We are now in a position to develop a more detailed classification of
points of convex sets. To this end we shall use the function u and the
gtructure of the point’s cone with respect to the set. But first several
gimple facts are given in the following

Lemma. For a convex set A< E, and (p,q)< A, the following holds:

a) cone(x,A)=cone(y,A) for every z,y € (p,q).
b) If IT is a hyperplane, IIN(p,q) ={x} and B=ANII, then

cone(z,A) = cone(x,B)+[0,p—x)+[0,9—x) .

In particular, the cones cone(x,A) and cone(z, B) are simultaneously
closed or not, polyhedral or not.

We shall say that the point z € 4 is of the first type, and write x € 4,,
if cone(x,4) is not closed. It follows immediately from the lemma that
the propositions 3 and 4, corollary 5 and part a) of theorem 7 hold when
index 1 is substituted for index 0. Part b) of theorem 7 also remains true,
since a convex set 4 being closed implies 4, < 4, (that is 4,04 ,=0).

The set

Ay = Ag\A4, = {g€ A py(x)=0, cone(x,4) is closed}

is not, generally speaking, empty. In example 2, 4,=(a,b) and 4,={a}.
Points of 4, will be called the second-type points.

As above, propositions 3 and 4, corollary 5 and theorem 7 hold when
index 2 is substituted for index O (the only change is 3 < dim D £ » in 7b)).

10.

We shall study now the special role played in the representation
Ay=(A4,nA,;)UA, by its first component.

LemMA. For a convex A<E, and x e A, let (I} be a realizing ray
sequence for x with a limit ray 1. Then ri(Anl)< A,.

Proor. The case Anl={x} is trivial. Now let p € (,y) =Anl. For a
given k consider in the plane of the rays l,, the right-angled triangle
zpry, / p=34n. For a big k, r, ¢ A (see fig.3). On the other hand, there
exists y; € (z,7;),y € A. Hence there is a point g, € (p,r;) such that
q € A, that is, [/ =[p,n.)<[p,4). Then

1A NE| S lne—pll = [w—pltge, Wwhere o = (ik) .
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l,
k/zk
Yx Tk

dr

&k \
z » !

Fig. 3. p ¥

Since «;, — 0 we have ||[An,'|| — 0, hence u 4(p)=0.
THEOREM. For a convex A<E,, Ay+@ implies AjnA,=+D.

Proor. It may be assumed that dimA > 2, for otherwise 4,=9. In
the case dim4 =2 it is easy to verify that 4,=@, that is, A;<A4,. The
rest of the proof is carried out by the induction on dim4. For z € 4,,
let {I,};" be its realizing ray sequence, [, - I. If Anl={z}, then

l & [x,4), lc<eclfzAd),

hence z € A,. Therefore let Anl+ {z} and p e ri(4 nl). By Lemma, p € 4,.
Let B=AnII, where II is a hyperplane such that IInl={p}. Clearly,
dim B=dim 4 — 1. By proposition 3, p € B, and therefore B+ @. By the
inductive hypothesis, there exists a point ¢ € Byn.B,. The obvious inclu-
sions Byc A4, and By <4, imply ¢ € 4,nA4,.

11.

Better insight into the special role of the 4,n.4, points (in the case of a
closed set 4, A,nA4,=4,) will be achieved through the further classifi-
cation of the points of 4 _,. The set 4_,, as distinct from 4, is the set of
points at which 4 is locally a cone. The points of 4 _, will be discrimina-
ted through their cones’ structure. The fourth-type points are defined as
follows:

A, = {xe A: cone(z,A4) is polyhedral} .

It is easy to see that 4,= A4, Indeed, if [x,4) is the convex hull of %
rays

= [%y), y,cA\{z}, i=12,. ...k,
then for the polytope P which is the convex hull of the points z,y,,. . ., ¥k

we have [r,4)=[x,P),P<A, and hence u,(x)=pup(x)>0. Thus 4,<
A g \A4,.
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The set of the third-type points is defined as follows: Az=A4_,\
(4,UA4,), that is,
A3 = {red: pylx)>0, cone(r,4) is closed and not polyhedral} .
(In the case of a closed set 4, 4, y=A43U4,). In example 2, 4;={b}.

12.
LeMmA  For convex sets A and B the following holds:

a) Ifxe (4 nB), and x & By, then x€ A,.
b) Ifre (AnB), and x & By, then ze 4, .
c) Ifré(ANDB), and xz e B,, then x & A4, .

Proor. a) follows from the easily verifiable inequality

Panp(®) 2 min{p4(x), pp(x)} .
The relation

cone(x,4 n B) = cone(x,4) n cone(x,B)
implies b) and c).
A polytope P(x,¢) satisfying
{v: ly—al<ie} < Pl,e) < {y: ly—=al<e}

will be called a polyhedral e-neighbourhood of x. The lemma shows the
convenience of polyhedral neighbourhoods on the study of point type
distribution in the vicinity of a given point. Indeed, for any polytope
P,P=P,. Hence, in view of the lemma,

PndysPnd, (PnA)y,cPnAd,,
zé(Pnd),impliesz¢& Pnd,.

13.
THEOREM. For a convex set A<E,,

(For a closed 4, simply cld,=4,U4,Uud;=4A\ 4,).
Proor. Let {¢, >0};" converge to 0 and let B®=A4nP(z,¢,). Suppose

x € A,. Then x € BP, that is B{ + @.
Suppose z € 4;. Since u 4(x) > 0, for big k (such that &, < u () we have

B® = [z,4) n P(z,g, ).
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Moreover, B® is a compact set which is not polyhedral, for otherwise
cone (z, A) = cone (z, B®) would imply = € 4,. Therefore the set ex B® has
a limit point, that is, B + @. Thus, z € 4,U 4, implies B + @ for big k.
By theorem 10,

BYnBY + 0.

In view of a) and b) of lemma 12,

(Agn4)) nP(x,e) + D,
that is, x € cl(4,n4,).
Let now z € 4, and hence u ,(x)>0. Take a positive ¢ < u (x). Then
for B=AnP(z,c), we have

B = [z,4) n P(z,¢) ,
and so B is polyhedral. If y € int P(x,¢), then
cone(y,A) = cone(y,B),
that is y € 4,, and so x ¢ cl(4,n4,).

14.

In the following theorem it is proved that for a point z € 4,UA4, the
relation z € cl (4,n 4,) is realized by an interval (z,4) which lies in 4,n 4,.

THEEOREM. For a convex set A<E,, let ze A,z2¢ AynA4,, and ze
cl(4y,n4;) (in the case of a closed set A this is equivalent to ze A,Ud,).
There exists a point uw € A such that (z,u) < A,nA4,.

Proor. Let u,(z)=0>0 and {y,}7 <4ynA4; y; -2 Since for =
[z,4,) we have [|[Anl||=«, there exists, for a big s a point % e Anl,
such that y, € (2,4). By a) of lemma 9 and proposition 4, (z,u)<4,n4,.

Let p,(2z)=0, that is, ze 4,. Then if {§,}7°, { — !, is a realizing ray
sequence for z, then In4 > (z,u), w=+2z. By lemma 10, (z,4) < 4,. Suppose
2’ € (z,u) and IT is a hyperplane such that ITn(z,u)=2" and let B=AnII.
Clearly, dimB=dimA4 —1, 2’ € B,. The rest of the proof will be carried
out by the induction on m=dim 4. If m < 3, then 4;=@. Suppose m = 3.
Then dimB=2,B,=0,2' € BynB,,2' € Ayn 4, and (z,u)<A4,nA,. In the
general case either 2’ € BynB, and then (z,u)<4yn4,, or 2z’ € B, and
then, by the inductive hypothesis, an interval [2’,4'] € B exists such that
(2',u’)= Byn B,. But then an interval [z,4”']< A4 exists such that

(z,%")n (z',u') = {a}.

Now a € BynB, implies a € 4,n4,, wherefrom (z,u"')<A,n4,.
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15.

Note that lemma 9 strengthens the assertions of corollary 5 and propo-
sition 3 in the sense that they hold for the more detailed point classifi-
cation.

CorOLLARY. For a convex set A< E,, the following holds:

a) if F is a face of A, then riF lies in one of the sets A; (¢=1,2,3,4).
b) if x € (p,q) <A, and II is a hyperplane such that (p,q)NII={x}, then
for B=AnII there holds x € B,.

We shall say that F is a face of the i-th type if riF < A4,. Concerning
the first type faces a more precise statement can in fact be made: if
riF < A,, then either riF < 4;n4,, orriF < A4;nA ., Observe that for the
more interesting case of a closed convex set we have 4,n4 ,,=@. Theo-
rem 14 implies a definite relation between first-type faces on one hand,
and second- and third-type faces, on the other. We will establish it for
the case of a closed set.

THEOREM. If F* i8 a second- or third type face of a convex closed set A,
then F* is a face of a certain first-type face FP, that is,

riFf <« 4,, F* < rbF?

Proor. Let F* be a face of 4, riF*<A4,ud,, and zeriF*. By theo-
rem 14, there exists an interval [z,u]<A such that (2,u)<A,;. Let
2' € (z,u) and

H = conv(F*u {u}) .
Clearly, F*cH<A, dimH=dimF*+1 and 2’ e riH < 4,. There exists a
face F® of the set A such that 2’ eriF? and therefore ri ¥ < 4,. Since

Z eriH and 2’ € F? imply H < F?, we have F*< F*, hence F* is a face
of FP,

16.

CoroLLARY. In the partition A=UxiF? of a convex closed set A<E,
an element of the maximal dimension outside A, is in A;. In other words, if
d;(1=1,2,3,4) are the maximal face dimensions of all the four types, then

d, = dimd, dy s dimA—2, dyds < dy.

The question of what dimension distributions of the faces over the
four types are possible, remains open.
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17.
Everything we said so far is applicable to convex cones. Observe only

that every ray
(0,2) = {Ax: 1>0}

of a convex cone C, lies entirely, by corollary 15, in one of the sets C;
(1=1,2,3,4). Accordingly we shall call such a ray an i-th type ray. Note
also that if a cone C is convex and closed but not polyhedral, then it
contains a ray of the first type. Indeed, if C is pointed (that is, Cn(—C) =
{0}), then there exists a hyperplane II,0 ¢ IT, such that A=CnIl is a
compact non-polyhedral set. By 8 and theorem 10, 4,+@. Then (0,z)<
C,, if z€ A,. If C is not pointed, then C=C"+.%Z, where .Z is a linear
subspace,
¢'=C0Cn¥, £+¥' =E,,

and (' is pointed and non-polyhedral. The observation that C;,=C,'+.%
completes the proof.

18.

Consider the sum C+ L, where C is a convex closed cone and L is a
one-dimensional subspace. It is easy to verify that if LnC=L or LnC=
{0}, then the sum C+ L is closed. Therefore, C' + L is not closed only if
CnL=l, that is,

leC, -14¢0C Ilu(-l)=0L.

Note that z e l< C,z+ 0, implies
C+L = C+(-1) = cone(z,0),

that is C' + L is not closed iff the intersection CnL is a first-type ray in C.

If E,=L+E,_, and = is the linear projection onto E,_, parallel to L,
then C+ L=nC+ L, and hence nC is closed iff C + L is closed. In other
words, nC is not closed iff L is a first-type direction in C. In particular,
the existence of a non-closed (n— 1)-projection of a convex closed cone
C is equivalent to the condition C;+@, that is to C not being polyhe-
dral. The latter is central to the theorem of Mirkil [3] and its stronger
version given in [2].

19.

As above let C be a convex closed cone. Let, in addition, K be a poly-
hedral cone. The question of whether the sum C + K is not closed appears
to be more complicated (when K is a supspace it is equivalent to the
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problem of characterizing the non-closed projections of the cone C). The
question arises, for instance, in connection with Tucker’s key theorem
[4]. The theorem can be formulated as follows. If K is a non-negative
urthant with respect to some orthogonal basis and C is a polyhedral cone,
then

intKN[CnK+C*nK] + @,

where C* is the dual of C.
It can be shown that the key theorem holds whether the cone polyhe-
dral or not if C'+ K* is closed.

20.

The following theorem gives only a necessary condition for the sum
not beeing closed; it holds, however, for any two closed convex cones.

THEOREM. Let C' and C"' be convex closed cones in E,(n = 3) and suppose
the sum C' +C"' is not closed. Then there exists a straight line

L=1+(-1), 1=(0x)
such that l<C',—1<C" and either I<C,' or —1<=C," or both.

Proor. Since C’'+C"’ is not closed, C'n(—C"") {0} (see [1, Theorem
9.1.2]). Let
=0z <0, -l L=1i+(-]).

If IcC’, or —1<=C,"”, then the proof is completed. Otherwise, by 18,
nC’ and nC"’" are convex closed cones, where 7 is the linear projection onto
E,_, parallel to L,

E, =L+E,,.

Since €'+ ("' =L+aC" +#C" the sum nC’+#C"" is not closed. The rest
of the proof will be carried out by the induction on n. For n=3 the clos-
edness of #C’ and nC"’ implies the closedness of their sum. Hence, either
l=C or —1=(C," or both. As for the general case, the inductive hypo-
thesis as applied to #C’,#nC"' < K,, _, implies the existence of a straight line
L’'=V 4 (~1') such that
' <«aC', -l c<aC”
and, for instance, I’ < (nC"), .
Let IT be a hyperplane parallel to B, _,,# € IT and B=C"'nII. From

C'+L =aC'+L = [2,B)+L
follows
(C'+L); = (#C")+L = [x,B)+ L.
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This and [z,B)=xnC"+2 imply [z, B),=(nC"),+x. Therefore, if y el’
then
y=y+zelzB).

Hence there exists z € B such that y € (z,z) < [«, B),. Choose an arbitrary
u € (x,2) < B. It easy to verify that

cone(u,B) = cone(u, [z, B))

and hence u e B;. Thus w € (’;. Then for the ray m=(0,4) we have
m<Cy'. Since am=1" and —1l'<aC", we obtian —m<C"’ for an appro-
priate choice of the point u € (x,2).
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