A NOTE ON SYMMETRIC MAPS FOR SPHERES

VICTOR P. SNAITH

0. Introduction.

This note contains a simple proof of a result announced in [4]. If S^n is the *n*-sphere and SP^mS^n is its *m*-fold symmetric product James asked the following: determine the degrees of maps of the form

$$S^n \xrightarrow{i} SP^m S^n \xrightarrow{f} S^n$$
.

where i is the inclusion of the first factor. In fact, (c.f. [3] and [4]) there remains only the determination of the 2-divisibility of $\deg(f \circ i)$ in the cases $n \equiv 3.5 \pmod{8}$. By calculating the KO-theory of the iterated symmetric square of S^n we obtain (section 1, Proposition 3) a bound on the 2-divisibility of $\deg(f \circ i)$. For $m \leq 4$ this bound is best possible.

1. KO* $(CP_r^2 S^{8t+s})$, (s = 3 or 5).

 $\mathbb{CP}_{r}^{2}X$ denotes the rth iterated symmetric square of X.

PROPOSITION 1. If X is a finite CW complex such that

$$\widetilde{\mathrm{KU}}^{0}(X) = 0$$
, $\widetilde{\mathrm{KU}}^{1}(X) = \mathsf{Z}$ (generated by x)

then

$$\widetilde{\mathrm{KU}}^{0}(\mathrm{CP}_{1}^{2}X) = 0$$
 and $\widetilde{\mathrm{KU}}^{1}(\mathrm{CP}_{1}^{2}X) = Z$.

If $d: X \to \mathbb{CP}^2_1 X$ is induced by the diagonal and $\psi^2(x) = 2^m \cdot x$ then

$$\operatorname{im}(d^*) = 2^m \cdot \mathsf{Z} \subset \widetilde{\mathrm{KU}}^1(X)$$
.

PROOF. Let X denote the diagonal in $X \times X$. From [1, § 2.9], we have isomorphisms, ($\hat{z} = I(Z_2)$ -adic completion),

$$\mathrm{KU}^*(\mathrm{CP}^2_1X,X) \cong \mathrm{KU}^*_{\mathsf{Z}_2}(X\times X,X) \cong \mathrm{KU}^*_{\mathsf{Z}_2}(X\times X,X)^{\wedge}.$$

From [3, § 2.1], $KU^*_{Z_2}(X \times X)^{\hat{}}$ is generated by tr(x), the transfer of $x \otimes 1 \in KU^1(X \times X)$, and an element $[x \otimes x]$ of degree one as a module over the completed representation ring, $R(Z_2)^{\hat{}}$. The only relation is

$$\operatorname{tr}(x) \cdot (1-y) = 0$$
, $(R(Z_2) = Z[y]/(y^2-1))$.

Under

$$d^*\colon \mathrm{KU*}_{\mathsf{Z_2}}(X\times X)^{\smallfrown}\to \mathrm{KU*}_{\mathsf{Z_2}}(X)^{\smallfrown}\cong R(\mathsf{Z_2})^{\smallfrown}\otimes \mathrm{KU*}(X)$$
$$d^*(\mathrm{tr}(x))=(1+y)\otimes x\quad \text{and}\quad d^*([x\otimes x])=\psi^2(x)\;.$$

Hence d^* is monic on $\mathrm{KU^1}_{\mathsf{Z_2}}(X\times X)^*$ and $\mathrm{KU^1}_{\mathsf{Z_2}}(X)^*/\mathrm{im}(d^*)\cong \mathsf{Z}/(2^m\cdot \mathsf{Z})$. In the exact sequence

$$0 \to \widetilde{\mathrm{KU}^{1}}(\mathrm{CP^{2}_{1}}X) \overset{d^{\bullet}}{\longrightarrow} \widetilde{\mathrm{KU}^{1}}(X) = \mathsf{Z} \to \mathsf{Z}/(2^{m} \cdot \mathsf{Z}) \to \mathrm{KU^{0}}(\mathrm{CP^{2}_{1}}X) \to 0$$

we have, [3, § 3.2], that $\operatorname{im}(d^*) \subset 2^m \cdot k \cdot \mathsf{Z}$ for some non-zero integer, k, which completes the proof.

COROLLARY 2.

$$\widetilde{KU}^{0}(CP_{r}^{2}S^{2t+1}) = 0, \quad \widetilde{KU}^{1}(CP_{r}^{2}S^{2t+1}) = Z$$

and if $i: S \to \mathbb{CP}^2_r S$ is induced by inclusion of the first factor in $(S^{2t+1})^{2^r}$ then i^* is multiplication by 2^{r+t} .

PROPOSITION 3. Let $\Lambda = \mathrm{KO}^*(\mathrm{point})$. If s = 3 or 5 and $r \ge 1$, $\mathrm{KO}^*(\mathrm{CP}^2_r S^{8l+s})$ is a free Λ -module on a generator $x_{s+4} \in \mathrm{KO}^{s+4}$, (degrees taken modulo 8). Hence i^* on $\mathrm{KO}^s = \mathsf{Z}$ is multiplication by $2^{1+r(4l+(s-1)/2)}$.

PROOF. Let $\operatorname{CP}_r^2 S$ denote $\operatorname{CP}_r^2 S^{8t+s}$. From the Bott sequence, [2], $\operatorname{KO}^*(\operatorname{CP}_r^2 S)$ must be a free Λ -module on one generator. Since there exist maps, $f: \operatorname{CP}_r^2 S \to S$ such that $\operatorname{deg}(f \circ i) \neq 0$ this generator must be in degree s or s+4 (modulo 8). Hence it suffices to show that complexification,

$$c^* : \widetilde{\mathrm{KO}}^s(\mathrm{CP}^2, S) \to \widetilde{\mathrm{KU}}^s(\mathrm{CP}^2, S) = \mathsf{Z}$$

is not onto. Suppose the result is true for $\operatorname{CP^2}_n S$ with n < r, $(r \ge 1)$. Since $\operatorname{KO}^*(\operatorname{CP^2}_{r-1} S)$ is a free Λ -module the external product gives an isomorphism

(3.1)
$$KO^*(CP_{r-1}^2S) \otimes_A KO^*(CP_{r-1}^2S) \cong KO^*((CP_{r-1}^2S)^2)$$
.

The argument of [4, § 1] shows that if c^* : $\widetilde{KO}^s(\mathbb{CP}^2, S) \to \widetilde{KU}^s(\mathbb{CP}^2, S)$ is onto and

$$\widetilde{\mathrm{KO}}^{\mathfrak s}\big((\mathrm{CP^2}_{r-1}S)^2\big)\to \widetilde{\mathrm{KU}}^{\mathfrak s}\big((\mathrm{CP^2}_{r-1}S)^2\big)$$

is monic then

$$\widetilde{\mathrm{KO}}^{s-1}(\mathrm{CP^2}_{r-1}S \wedge \mathrm{CP^2}_{r-1}S) \to \widetilde{\mathrm{KU}}^{s-1}(\mathrm{CP^2}_{r-1}S \wedge \mathrm{CP^2}_{r-1}S)$$

is onto. However, (3.1) shows that the second condition holds but not the third.

REFERENCES

- M. F. Ativah and G. Segal, Equivariant K-theory (notes by D. B. A. Epstein and R. L. E. Schwarzenberger), University of Warwick, 1966.
- 2. R. Bott, Lectures on K(X), W. A. Benjamin Inc., New York, 1969.
- 3. V. P. Snaith, On cyclic maps, Proc. Cambridge Philos. Soc. 71 (1972), 449-456.
- 4. V. P. Snaith, On KO* $(X \times Y)$ and symmetric maps for S^3 , Quart. J. Math. Oxford (2), 24 (1973), 31-35.

EMMANUEL COLLEGE, CAMBRIDGE, ENGLAND