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A NOTE ON SYMMETRIC MAPS FOR SPHERES

VICTOR P. SNAITH

0. Introduction.

This note contains a simple proof of a result announced in [4]. If S*
is the n-sphere and SP™ 8~ is its m-fold symmetric product James asked
the following: determine the degrees of maps of the form

gnt, gpmgn S, gn

where ¢ is the inclusion of the first factor. In fact, (c.f. [3] and [4]) there
remains only the determination of the 2-divisibility of deg(fe?) in the
cases 7= 3,5 (mod 8). By calculating the KO-theory of the iterated sym-
metric square of S* we obtain (section 1, Proposition 3) a bound on the
2-divisibility of deg(fo?). For m <4 this bound is best possible.

1. KO* (CP?, S%+#), (s = 3 or 5).
CP2,X denotes the rth iterated symmetric square of X.
ProrosrrioN 1. If X i3 a finite CW complex such that

ﬁ”(X) = 0, ﬁJl(X) = Z (generated by x)
then

KUY(CP%X) = 0 and KUMCP%X) = Z.
If d: X — CP% X s induced by the diagonal and y*(x)=2m-x then
im (d*) = 2m-Z < KUY(X) .
Proor. Let X denote the diagonal in X x X. From [1, § 2.9], we have
isomorphisms, (* =1(Z,)-adic completion),
KU*(CP% X, X) > KU*, (X x X, X) >~ KU*, (X x X,X)" .

From [3, § 2.1], KU*,, (X x X)" is generated by tr(z), the transfer of
2®1 e KUY(X x X), and an element [#®z] of degree one as a module
over the completed representation ring, R(Z,)". The only relation is
tr(z)-(1-y) = 0, (RB(Zy) = Z[y)/(y*-1)).
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Under
d*: KU*, (X x X)" - KU*,, (X)" = R(Z,)"KU*(X)
d*(tr(z)) = (1+y)@x and d*([zQx]) = p*(z).
Hence d* is monic on KU, (X x X)* and KUy, (X)" [im (d*) > Z/(2™- Z).
In the exact sequence
0 > KU (CP%, X) &5 KUN(X) = Z - Z/(2™ Z) - KU (CP% X) —» 0

we have, [3, § 3.2], that im(d*)<2m.k-Z for some non-zero integer, £,
which completes the proof.

COROLLARY 2.
KU°(CP?, §2%+1) = 0, KU (CP?,8%) = Z

and if i: 8 - CP2,8 is induced by inclusion of the first factor in (S2+1)2
then i* is multiplication by 27*.

Prorosrrion 3. Let A=KO*(point). If s=3 or 5 and r21,
KO*(CP?2,8%+%) 48 a free A-module on a generator z,,, € KO®+4, (degrees

ppee—
taken modulo 8). Hence t* on KO?=1Z is multiplication by 21+réi+s-1/2),

Proor. Let CP2, 8 denote CP2, S8+s, From the Bott sequence, [2],

IEB*(CP“‘,S) must be a free A-module on one generator. Since there
exist maps, f: CP2,8 — 8 such that deg(fvs)+0 this generator must be
in degree s or s+ 4 (modulo 8). Hence it suffices to show that complexifi-
cation,

o*: KO*(CP®, 8) -~ KU*(CP,8)=Z ,

i8 not onto. Suppose the result is true for CP%, S with n <7, (r2 1). Since
KO*(CP?,_,8) is a free A-module the external product gives an iso-
morphism

(1)  KO*(CP?,_,8) ®, KO*(CP?,_,8) = KO*((CP?,_,8)Y).

The argument of [4, § 1] shows that if c*: I’{—OJ’(CP%S) - ﬁl‘(CP’,.S)
is onto and

KO*((CP#,_, 8)%) - KU*((CP?,_, 8)3)
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is monic then
KOs-1(CP?,_, 8 A CP?,_, 8) - KU*-1(CP2,_, 8 A CP2,_, 8)

is onto. However, (3.1) shows that the second condition holds but not
the third.
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