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ON THE CYCLE STRUCTURE OF LINEAR
RECURRING SEQUENCES

H. NIEDERREITER*)

1. Introduction and summary.

We shall discuss two aspects of the theory of linear recurring sequences,
both of them concerning the structure of the period (or cycle) of such se-
quences. On the one hand, we establish results on the length of the period
in a general setting, and secondly, we study the distribution of elements
occurring in the period.

Questions about the length of the period of a linear recurring sequence
are usually dealt with in the framework of the residue class rings Z/mZ,
m z 2, or of finite fields. Especially in the latter case, a number of power-
ful methods have been developed. See Selmer [9] for an excellent survey.
Unfortunately, most of these methods break down in a more general
setting. In Section 2, we outline an approach that can be carried out for
linear recurring sequences in modules over finite rings. The results are
not only of interest in themselves, but will also serve to throw more light
on the meaning of the estimates occurring in the subsequent sections,
simply because these estimates depend on certain parameters that are
tied together by the theorems of Section 2.

The results in Section 3 are of an auxiliary nature. We discuss an esti-
mate for character sums over the full period of linear recurring sequen-
ces that was established by the author [7], and we improve upon the
author’s previous estimate for the corresponding sums over parts of the
period. It should be mentioned that estimates of this type also play a
fundamental role in the recent work of the author [6], [8] on pseudo-ran-
dom numbers generated by the linear congruential method.

Hall [4] showed an estimate concerning the number of occurrences of
elements in the period of a linear recurring sequence in a finite field, un-
der the assumption that the characteristic polynomial of the recurrence
be irreducible over the finite field. In Section 4, we prove an estimate
analogous to Hall’s for any linear recurring sequence in a finite field. In
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order to achieve this, we employ an analytic method based on the esti-
mates for character sums in Section 3. The same method yields results
about the number of occurrences of elements in segments of the period.
Roughly, these results may be summarized as follows: for a linear recurring
sequence with a sufficiently long period, the elements in the full period
(or in a sufficiently long segment of the period) are nearly equidistribu-
ted over the finite field. We also discuss the extent to which these esti-
mates are best possible.

In Section 5, we study distribution properties of linear recurring sequ-
ences in Z/mZ, m2 2. In principle, the results are quite analogous to
those for finite fields, the proofs, however, are technically more involved.

Expositions of the theory of linear recurring sequences in finite fields
are to be found in Birkhoff and Bartee [1, Chapter 13], Selmer [9], and
Zierler [12]. For important facts on linear recurring sequences in Z/mZ,
see Ward [10] and Hall [3].

2. Linear recurrences in modules over finite rings.

Let R be a finite ring (not necessarily commutative) with identity,
and let M be a unitary left R-module. All the subsequent results have
obvious analogues for unitary right R-modules. We consider a sequence
(), »=0, 1, ..., of elements of M satisfying the recurrence relation

(1) Yntk = Op-1Yntr-1F -sYnin—2+ ... oY, +a forn=0,1,...,

where k is a positive integer, a e M, a,e R for 1=0, 1, ..., k—1, and
Y- - -»Yx-1 € M are given initial values. If a=0, then (1) is called a
(kth order) homogeneous linear recurrence relation, otherwise it is a (kth
order) inhomogeneous linear recurrence relation. The sequence (y,) it-
self is called a (kth order) homogeneous, or inhomogeneous. linear re-
curring sequence in M, respectively. If no distinction has to be made
between these two cases, we simply speak of a linear recurring sequence
in M.

We shall call a £-tuple &= (,,. . .,2;,_,) of elements of M a row vector
(over M) and its transpose ®* a column vector (over M), although,
strictly speaking, these are in general not elements of a vector space. A
similar convention will apply to k-tuples of elements of R.

Let (y,), n=0, 1,..., be a linear recurring sequence in M satisfying
the recurrence relation (1). For each >0, we define a row vector Yo
over M by ¥, = (Yn, Ypi1s- - - s Yn+-1)> called the nth state vector. We note
that one sees immediately by induction that each y, lies in the submodule L
of M generated by y,,. . .,¥y_,, and a. But Lis finite as a finitely generated
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module over a finite ring, and so there are only finitely many possibili-
ties for state vectors over L. Therefore, the sequence (y,) must ultima-
tely be periodic. Let n, be the length of the preperiod and = the length
of the period of the sequence (y,), so that y, .=y, for all n=n, The
following is an important sufficient condition for (y,) to be purely perio-
dic, i.e., for n, to be zero.

Trarorem 2.1. If (y,), n=0, 1,..., 18 a linear recurring sequence in M
and if the coefficient ay in (1) is a unit in R, then the sequence (y,,) is purely
periodic.

Proor. Since (y,,) is ultimately periodic, there exist integers ¢ and j
with ¢>j >0 such that y;=y;. From (1) with n=1—1 and the fact that
a, is a unit in R, one sees that y,_, is uniquely determined by y,,...,
Yi+x-1- Using (1) with n =45 — 1, one finds for y;_, the same expression as for
Y:-1, hence y;_, =y, ;. Continuing in this manner, one arrives at y, ;=
yo- Thus, the sequence (y,,) is purely periodic.

ReMARK 2.2. For homogeneous linear recurring sequences in finite
commutative rings, the above result was already shown by Ward [11].

With a linear recurring sequence (y,) in M, we associate a matrix 4
as follows. Suppose (y,) satisfies the linear recurrence relation (1); then
the k x k-matrix 4 over R is defined by

010 ...0
001 ...0
(2 A=\ :
000 ...1
Gy Qg By oo Ay

If k=1, then 4 is understood to be (a,). The matrix 4 depends, of course,
only on the linear recurrence relation.

TrEOREM 2.3. Let (y,), n=0, 1,..., be a kth order homogeneous linear
recurring sequence in M with the coefficient ay in (1) being a unit in R. Then
the period v of (y,) divides the order of the matriz A from (2) in the general
linear group GL(k, R).

Proor. We note first that det 4 = ( — 1)¥-1g, is a unit in R, so that 4 is
indeed an element of GL(k,R). The matrix 4 operates from the left in
an obvious way on column vectors over M. Let yy=(¥,,- - - ,¥5-1) be the
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initial state vector. Then one checks easily that y,*=Ay,T, and so it
follows by induction that

(3) YL = Ary,t forn=0,1,....

Let o be the order of A in GL(k, R). Then y,* = 4°y,* =y,T, hence y,=y,.
Consequently, o is a (not necessarily the least) period of (y,). It follows
that 7, the least period, divides o.

ReMaRrk 2.4. From the above theorem, it follows in particular that ¢
divides the order of GL(k,R). This order is known for the most intere-
sting classes of finite rings E. For instance, if R=F,, a finite field with ¢
elements, then the order of GL(%,F)) is given by

g**-Br2(g —1)(g2—1)...(¢*— 1)

(cf. [5, Theorem VII. 12]), and if R=Z/mZ with a positive integer m,
then the order of GL(k,Z/mZ) is equal to

mk’lem ].-_[_;';1(1 —paj) s

as can be seen by combining the results in Theorem VII. 6, Theorem VII.
16, and Chapter VII, Section 2, of [5]. Here, p runs through the distinct
prime divisors of m.

Let (y,) be an inhomogeneous linear recurring sequence in M satis-
fying (1). By using (1) with » replaced by n+ 1 and subtracting from it
the original form of (1), we obtain

4 Ynurn = BYnxtbyaYnipat .. +boy, forn=0,1,...,

where by= —ay, b;=a,_;—a; for j=1,2,...,k—1, and b, =a,_, + 1. Thus,
the sequence (y,,) can be interpreted as a (k+ 1)st order homogeneous
linear recurring sequence in M. It is then natural to associate with (y,)
the (k+ 1) x (k+ 1)-matrix B over R defined by

010 ...0
001 ...0
(6) B=::: :
000 ...1
by by by ... by

THEOREM 2.5. Let (y,), n=0,1,..., be a kth order inhomogeneous linear
recurring sequence in M with the coefficient ay in (1) being a unit in R.
Then the period T of (y,) divides the order of the matriz B from () in the gene-
ral linear group GL(k+ 1, R).
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Proor. As we have observed above, (y,) may be viewed as a (k+1)st
order homogeneous linear recurring sequence in M satisfying (4). Since
by= —ay is & unit in R, the result follows from Theorem 2.3.

Remark 2.6. If M =R, considered as a module over itself, one may
proceed in the following alternative way. Let (y,) be as in Theorem 2.5
and consider the (k+1) x (k+ 1)-matrix C over R defined by

1000 ...0
0010 0
oafro o
000 0 1
a Gy Gy Qg Qg1
If k=1, take
C=(10)
a a,

Introduce modified state vectors ¥, = (1, ¥, ¥n+1s- - +» Ynap—1)s #=0,1,....
Then it is easily seen that (y,")T=C(y,)*, and so (y,")*=0™y,)* for
n=0,1,... by induction. Since detC'=(—1)¥-1g, is a unit in R, the
matrix C is an element of GL(k+1,R). One shows then as in the proof
of Theorem 2.3 that the period v of (y,) divides the order of C in
GL(k+ 1, R). This result was proved by Brenner [2] in a very special case.

To a linear recurring sequence (y,) in M satisfying (1), we associate
now two positive integers x and » in the following way. Let (d,), n=0,1,
..., be the homogeneous linear recurring sequence in R satisfying the
recurrence relation

dn+k = ak_ldn+k_1+ak_2d”+k_2+ .o +a0d.n fOI' 'n=0, 1,. oy

with the initial values dy=d,=...=d,_,=0,d;_ ;=1 (dy=1 if k=1).
Thus, (d,) is an “impulse response sequence’ (cf. [9, p. 31]). The number
v associated with (y,) is defined to be the length of the period of (d,),
and y is defined to be the sum of the length of the period and the length
of the preperiod of (d,). The numbers x4 and » depend, of course, only on
the linear recurrence relation. If a, is a unit in R, then g = according to
Theorem 2.1.

TreEOREM 2.7. Let (y,), n=0,1,..., be a homogeneous linear recurring
sequence in M, and let © be the length of its period. Then v divides v and,
consequently, v = u.



58 H. NIEDERREITER

Proor. Let d,, be the nth state vector of the sequence (d,). Suppose ¢
and j are nonnegative integers such that d;,=d,;. Then d,,,=d,,, for
every r2 0. If (y,) satisfies (1) (with a =0, of course), let 4 be the matrix
from (2). According to (3), we have

dr,, = At and  d,,, = A,
for every r 20, so that

(At+r— Ai+r)dyT = 0 for every r20.
This implies (4% — A7) A7d,* =0, or, using (3) again,
(6) (Adi—-A49d,* = 0 foreveryrz0.

Taking =0 in (6), we see that the last column vector of 4% A7 is zero.
Using this information and (6) with r=1, we find that the next to last
column vector of 4*— A is zero. By continuing in this manner until we
arrive at r=k—1, always taking into account the special form of d, for
0=r=<k—1, we can show that all the column vectors of 4¢— Af are zero.
Hence, we have proved that d;=d; implies 4°=A47.

By definition, » is the length of the period of (d,), so that d;,,=d;
for some j = 0. From this we infer A9+ =44, and then (3) yields y;,,=y;.
This shows that » is a (not necessarily the least) period for (y,), so that
7, the least period, divides ». The inequality 7 <y is now trivial since
YU

THEOREM 2.8. Let (y,), n=0,1,..., be an inhomogeneous linear recur-
ring sequence in M satisfying (1), and let v be the length of its period. Then
v divides v' and Ty, where u’ and v' are the numbers associated with the
linear recurrence relation (4).

Proor. This follows from Theorem 2.7 and the fact that (y,) can be
viewed as a homogeneous linear recurring sequence in M satisfying (4).

TaroreM 2.9 If (y,), n=0,1,..., s a linear recurring sequence in M
satisfying (1) with a unit ay in R, then both u and v are equal to the order of
the matriz A from (2) in the general linear group GL(k, R).

Proor. We have already observed that u=» in the case under con-
sideration. Furthermore, it follows from Theorem 2.3, applied to the se-
quence (d,) in R, that » divides the order o of 4 in GL(k, R). Since (d,)
is purely periodic, we have d,=d,. We have seen in the first part of the
proof of Theorem 2.7 that this implies 4*=A4°. Thus o divides », and we
are done.
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3. Character sums.

Let R be again a finite ring with identity, and let M be a unitary left
R-module. By a character of M, we shall mean a character of the addi-
tive group of M. Given a linear recurring sequence (y,), n=0,1,..., in
M, we will estimate character sums over a full period of (y,) and also
over segments of the full period, with the character being nontrivial in a
certain sense. Let n, be the length of the preperiod and v the length of
the period of (y,), and let u be the positive integer associated with (y,)
as described in Section 2. We shall write e(t)=e?*¥ for real ¢. From [7,
Lemma 3 and Theorem 1] we obtain the following fundamental result.

TrEOREM 3.1. Let (y,), n=0,1,..., be a kth order linear recurring se-
quence in M, and let y be a character of M that is nontrivial on each cyclic
submodule Rb of M with be M, b+0. Then, for every integer h we have

(7) |Zutr=ly(y,)e(hn/7)| < (card R)¥/2(z[u)t  for allu = ny.
In particular, we have
(8) IZnie 2(yn)l < (card R)e2(zju)t  for all w z my .

CoBOLLARY 3.2. Let F, be a finite field with q elements, let (y,), n=0,1,...,
be a kth order linear recurring sequence in Fy, and let x be a nontrivial adds-
tive character of F,. Then, for every integer h we have

(9) [Suti=ly(y,)e(hn[t)| < ¢*2(z[u)t forallu 2 n
In particular,
(10) 1wt aYn)l S ¢*[p)t for allu z m

Proor. Take M =F,, considered as a module over itself. Since the only
nonzero ideal in F, is F, itself, the given character y will satisfy the con-
dition in Theorem 3.1. The inequalities (9) and (10) are thus special cases
of (7) and (8), respectively.

CoroLLARY 3.3. Let m = 2 and 8 be relatively prime integers, let (y,), n=0,1,

., be a kth order linear recurring sequence of integers, and let ©, u, and n,
be the numbers associated with the sequence (y,+mZ), n=0,1,..., in
Z|mZ. Then, for every integer h we have

(1) [Setie(sy,/m)e(hn/v)] S mHA(cfw)t  forallu = my.
In particular,
(12) 34t te(syn/m)| S mPR(cju)t  for all w Z m,.
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Proor. Take M =Z|mZ, considered as a module over itself. Then
x(t+mZ)=e(st/m) for t € Z defines a character of M for which y(¢+mZ)
# 1 as soon as £ 0 (mod m), so that the condition in Theorem 3.1 is sa-
tisfied. The inequalities (11) and (12) are thus special cases of (7) and (8),
respectively.

ReMmARK 3.4. It is interesting to note that the sums in (9) and (11) con-
tain certain Gaussian sums as special cases. Consider first a finite field
F, with ¢ elements. Let g be a primitive element of F,, i.e., a generator of
the multiplicative group F * of F,. Let (y,), n=0,1,..., be a linear recur-
ring sequence in F, with y,,,=gy, for n=0,1,... and y,+0. Then
t=p=¢q—1 and ny=0. Define a multiplicative character y of F, as fol-
lows: for x € F*, we have x=g" for some n that is uniquely determined
modulo 7; set y(x)=e(hn/7). Then we can write

no2(Un)ehm]t) = 24 x(g yo)e(hn]t) = Socp e 2(@Yo)p() 5

with the last sum being a Gaussian sum in F,. The inequality (9) reduces
now to a well-known inequality for Gaussian sums. In fact, if % is not
divisible by 7, then we even have equality in (9), which shows that the
inequalities (7) and (9) cannot be improved for k=1.

Now let m =p* with an odd prime p and « > 2, and let 4 be a primitive
root modulo m. Let (y,), n=0,1,..., be a linear recurring sequence of
integers with y,,,=2y, for n=0,1,... and (y4,m)=1. Then n,=0 and
v=u=g(m), where ¢ is Euler’s totient function. Define a Dirichlet cha-
racter p modulo m as follows: for (¢,m)=1, we have A=t (mod m) for
some 7 that is uniquely determined modulo 7; set y(f)=e(hn/7). Then
we can write

Znzoe(synm)elhn]t) = 37 % e(sy/m)e(hn]v) = 2'-’;31) le(syoj/m)‘w(j) ,
Jrm)y=

where the last sum is a Gaussian sum modulo m. The inequality (11)

reduces now to a well-known inequality for Gaussian sums. If 4 is not

divisible by p, then v is a primitive character modulo m, and in this case

we even have equality in (11). This shows that the inequalities (7) and

(11) cannot be improved for k=1.

We consider now the problem of estimating character sums over seg-
ments of the period of a linear recurring sequence. This will lead to an
improvement of [7, Theorem 2]. To this end, the following auxiliary re-
sult is needed.
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Lemwma 3.5. For any positive integers r and s, we have
(13) :olzl_oe(hy/r)l < (2[m)rlogr+ §r+s.

Proor. The lemmas is trivial for »=1. For r = 2, we have

je(hsfr) =1 _
je(bjr)=1] = sinzfp}r]

1252 0ehgfr)] = for1shsr—1,

where ||t|| denotes the absolute distance from the real number ¢ to the nea-
rest integer. It follows that

(14) Z0IZ5zge(hifr)l = ZpZi(sinalbfri)2+s < 23 (sin (whfr)) +s .
By the usual method of comparing sums with integrals, we obtain
SR (sin (hfr) = (sin(afn)+ SFL(sin(h/r)
w2
e} () 0] S,,,, =

= (sin(s/r))~1+ (r/n) log cot(x/2r) < (sin(w/r))1+ (r[n) log(2r/n).

[r/12]
< (sin/n)1+ |
1

For r26 we have (n/r)~! sin(n/r) = (7/6)-! sin(x/6), hence sin(n/r)= 3/r.
This implies

Si8(sin (zh/r)) ! < (r[n) logr + (3 —n1loghn)r forrz6,
and so
(15) Stril(sin (nh[r))t < (r/n) logr+3r forrz6.

The inequality (15) is easily checked for r=3, 4, and 5, so that (13)
holds for > 3 in view of (14). For r=2, the inequality (13) is shown by
inspection.

THEOREM 3.6. Let (y,) and x be as in Theorem 3.1. Then,
(16) |3t~ x(yn)| < (card R)¥2(z[u)¥((2[n) logw+§+N/v) foru = m,
and 1SNZ7.

Proor. We start from the identity

n:galx(yn) = +1— Z(?/n) _7=0 r-1 h-oe(h(n" _.7)/1) forlsN<w,

which holds since the sum over j is 1 for usn<u+N-—1 and 0 for
u+ N £n<u+1—1. Rearranging terms, we get

() = v (= (w4 9)[7)) (St Ay )ehn 7)),
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and so, by Theorem 3.1,

ISe T Yy(ya)l S T2 o —h(u+i)o)| IZnti a(yn)e(hn] )]
v-3(card R)¥2(z]u) 3525 S35 e (ki 7)]
An application of Lemma 3.5 yields the inequality (16).

IA

IIA

CoROLLARY 3.7. Let F, be a finite field with q elements, let (y,),n=0,1,. ..,
be a kth order linear recurring sequence in F,, and let y be a nontrivial addi-
tive character of F,. Then,

il " 2ya)l < ¢%(z[p)}((2/n) logT+§+N[v) foruzmoand 1SN <v.

COROLLARY 3.8, Let m=2 and s be relatively prime integers, let (y,),
n=0,1,..., be a kth order linear recurring sequence of integers, and let =,
U, and ny be the numbers associated with the sequence (y,+mZ), n=0,1,...,
tn Z/mZ. Then,

|Zutd " te(syn/m)| < m*/2(t[u)}((2]n) logz+ 3§+ N/z) for uzm,
and 1=sN=z~.

4. Distribution properties of linear recurring sequences in finite fields.

The estimates in Section 3 are now applied to the problem of the distri-
bution of elements in the period (or in segments of the period) of a linear
recurring sequence in a finite field.

Let F, be a finite field with ¢ elements, let (y,), n=0,1,..., be a kth
order linear recurring sequence in F, satisfying (1) with a,a,,...,a;_; €
F,» and let the associated numbers 7, u, and n, be defined as in Section 2.
For a subset W of F , let A(W) be the number of elements in a full period
of (y,) that belong to W. If W is a singleton {w}, we write A(w) instead
of A({w}).

THEOREM 4.1. For any kth order linear recurring sequence (y,), n=0,1,
-« s 0 a finite field F, with q elements and for any subset W of F,, we have

|A(W) - (z/q) cardW| = g**Nz[u)3x g e wa ()] 5

where the sum is extended over all nontrivial additive characters y of F,.

Proor. For weF,, let ¢, be the characteristic function of the singleton
{w}. We have

() = ¢, x(x—w) forallzeF,,
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where the sum is extended over all additive characters y of F,. It follows
that

A(w) = 14t (y,) = SHtr-1g-13 v(y, —w) = ¢-13 4(w) 310 y(y,),
and so

AW) = ¢35, D pew 20) 0y (y,) -

If y, denotes the trivial character of F,, then

(A7) A(W)~(vlg) cardW = ¢1F, S e () Znt™ 2(0) -
Thus, by using (10), we obtain

[A(W) — (t/q) cardW| S ¢ Ty py Sewt ()] Xm0yl
§ qk/z_l('t/:"’)}zx*x,,IZweWX(w)I .

CorROLLARY 4.2. For any kth order lnear recurring sequence (y,),
n=0,1,..., in a finite field F, with q elements and for any w € Fy, we have

|[4(w)—7/q] = (1-1/9)g**(x[u)? .

REMARK 4.3. A result of the type of Corollary 4.2 was shown by a
completely different method by Hall [4], but only for the case where
(¥,) is a homogeneous linear recurring sequence in F, with the characte-
ristic polynomial f(z)=a*—a,_@*1—...—a, of the recurrence being
irreducible over F,. For ¢=2, Selmer [9, p. 125] extended Hall’s result
to the case where f is the product of two distinct irreducible polynomials
over F,, with (y,) still assumed to be homogeneous. It should be noted
that, according to Theorem 2.7, we have 7 < u for homogeneous (y,). In
the case considered by Hall, it is well known that we have in fact 7=px
as soon as the initial state vector (y,,...,y;_;) is not the zero vector

(cf. [9, p. 46]).

REMARK 4.4. The sum 3, ,|>,.wx(w)| occurring in Theorem 4.1
may be estimated as follows. By the Cauchy-Schwarz inequality, we have

Corrre 2we wX())? £ (4= 1) pry 2w (w) |2
= (-2, Dvewa(w)|?—(card W)?)
= (¢— 1)(2,,2«;,, wae WX (W1 —Wg) — (cardW)?)
= (7= 1Sy, wpe w2y A1 — W) — (card W)?)
= (¢—1)(g card W — (card W)?) .
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Therefore,
Drerg 2wewax(w)| = (g—1)¥(card W)k (g —card W)} .

We consider now the distribution of elements in segments of the period
of a linear recurring sequence (y,) in F,. This problem cannot be treated
at all by Hall’s method. For a subset W of F,, for Ny=n,and 1= N <r,
let A(W; Ny, N) be the number of n, Nysn < Ny+ N —1, such that y, €
W. If W is a singleton {w}, we write 4(w; N, N) instead of A({w}; Ny, N).

TrEOREM 4.5. For any kth order linear recurring sequence (y,,), n=0,1,
..., in a finite field F, with q elements and for any subset W of F,, we have
|A(W; No,N)—(N/[q) cardW| £ g**~Y(z/u)¥((2[r) logz+ #+ N/7)-

Dt atg| Zwew ()]

Jor Ny 2 ngand1 S N £ 7.

Proor. By the same arguments that led to (17), one shows
A(W; No,N) = (Nq) 0ardW = ¢ B2, pe wh (W) 0250~ 1Y)
Thus, by using Corollary 3.7, one obtains
[A(W; No,N) ~ (N/q) card W| S q72F s Swewr(w)] [ 2223 1)
< ¥ Y (t[u)H((2/m) log T+ &+ N[7) X, 4| Zuse wa(w)] -

CorOLLARY 4.86. For any kth order linear recurring sequence (¥,),
n=0,1,..., tn a finite field F, with q elements and for any w € F,, we have

|A(w; No,N)~Nfq| = (1-q71)g*(z[u)¥((2/n) log T+ %+ N/7)
Jor Ny 2 ngandl S N S 7.

REMARK 4.7. A negative result can be shown in connection with Co-
rollary 4.6. We first recall that a polynomial f(z)=a%—a;_jx%¥-1—...
—ay € F[x] is called primitive if it is the minimal polynomial over F, of
a generator of the multiplicative group F;k. Any kth order homogeneous
linear recurring sequence (y,), #=0,1,..., in F, having a nonzero initial
state vector and satisfying the linear recurrence relation y,.,=a;_;
Yntk-1+ -« - +agy, for n=0,1,... is called a maximal period sequence
(associated with the primitive polynomial f). Any such maximal period
sequence is purely periodic with v=u=g¢*—1. Now let y be a nontrivial
additive character of F,. Then it was shown in [7, Theorem 5] that there
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exist a maximal period sequence (y,), n=0,1,..., in F, (associated with
the given primitive polynomial f) and an N,1< N <7, such that

(18) SN da(yn) > 3g*2.

On the other hand, we can write

o X(Yn) = 2wee Aw; 0, N)y(w) = X ce(A(w; 0,N)— Ng)y(w
so that
ISN05 )]  Soer | Alw; 0,N)~N/g] .
It follows then from (18) that there exists a w € F, such that
(19) |A(w; O,N)—N/q| > 3g*>1.

REMARK 4.8. If arbitrary subsets W of F, are considered such as in
Theorem 4.5, then (19) can be improved, thereby yielding a result that
complements Theorem 4.5. Choose a nontrivial additive character y of
F,, and consider again a maximal period sequence (y,) and an integer
N,1=N =7, such that (18) holds. If p is the characteristic of F,, then
(x(w))? =x(pw)=1 for every w e F, and so the values of y are pth roots
of unity. For j=1,2,...,p, let

W; = {weF,: x(w) = e(j/p)} .
Then we can write

zﬁv;olx(yn) = zg'=12wer(A(w; O’N) —N/Q)X(w)
= Z’}’-=1(A(W1; 0,N)— (N/q) card Wy)e(j[p) -
Using summation by parts, we obtain

Sy, = YBZH(A(X;; 0,N) — (Ng) card X,)(e(j/p) —e((j +1)/p)) ,

where X;=W,u...UW, for j=1,2,...,p—1. It follows that for some
0,0<6<1, we have

IZacox@a)l = I2521(A(Xy; 0,N) — (N[q) card X,)(e(j/p) —e((j +1)/p))|
= ¢(0)372}(4(X;; 0,N) — (N [q) card X;)(e(j/p) —e((j + 1)/p))
= 32Y(AX;; 0,N) — (N]g) card X,)(e(j/p+0) — e((j + D)/p+9)) -
Since the last expression represents a real number, we get
I3V -dy(yn)l = SHZHA(X;; 0,N)— (N/g) card X;)(cos2x(j[p+0) —

—cos 22((j+1)/p+6))

?-114(X;; 0,N)— (N/q) card X| | cos 2(j/p+ 0) —
—cos2x((j+1)/p+90)| .

IA

Math. Scand. 38 — 5
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Suppose |A(X;; 0,N)—(N[q) card X;| attains its maximum for j=h.
Then
IZA20x@a)l S |A(Xy; 0,N) — (N]g) card X,| 3721 cos 2(j/p +6) -

— cos2{(j+ 1)/p+6)| -
If we set

Cp(6) = 3%_1| cos2n(j/p+0)—cos2a((j+1)/p+6)] for0=<6<1
and O, =sup,C,(0), then we have
12220 7(Ya)l < |A(Xy; 0,N) —(N]g) card X,|0,, .
By combining this with (18), we obtain
|A(X,; 0,N)—(N[q) card X;| > (2C,)"'¢*2,

which is the desired improvement of (19). We note that C,,(6) is bounded
from above by the variation of the function g(x)=-cos2n(x+ 0) on the
interval [0,1], so that C,, < 4 for all p. This can be ameliorated easily for
small values of p. For instance, it is trivial that C,=2, and it is not hard
to show that C3=3. On the other hand, it is clear that C,, -4 as p
tends to infinity through the prime numbers.

5. Distribution properties of linear recurring sequences modulo m.

Let (y,), n=0,1,..., be a kth order linear recurring sequence of inte-
gers and let m 2 2 be a fixed modulus. We shall be interested in distri-
bution properties of the sequence (y,,) considered modulo m.

Let 7,u, and n, be the numbers associated with the sequence (y, +
mZ), n=0,1,...,in Z/mZ, as described in Section 2. For a positive inte-
ger d, let t(d) and u(d) be the numbers associated with the sequence
(Yo +dZ), n=0,1,...,in Z/dZ. Thus v=17(m) and u=u(m). For a subset
V of {0,1,...,m—1}, let 4,(V) be the number of n, ny<n<n,+7v-1,
such that y,=v (modm) for some v € V. Thus A4,,(V) is the number of
elements in a full period of (y,) modulo m that fall into the residue
classes modulo m determined by the elements of V. If V is a singleton
{v}, we write 4,,(v) instead of A4,,({v}).

THEOREM 5.1. Let m2 2 be an integer, and let (y,), n=0,1,..., be a
kth order linear recurring sequence of integers. Then, for any subset V of
{0,1,...,m—1} we have

(20)  |4,(V)—(z/m) card V| < b(V)(f/m)Eglm<P(d)d"”(f(d)#(d))”*’
>1
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where ¢ 18 Euler’s totient function and where

(21) b(V) = maxr-l,...,m—llzueve('”/m)l .

Proor. For an integer », 0 <v<m— 1, the characteristic function c, of
the residue class v+mZ is given by

co(x) = m 13" le(r(x—v)/m) forzeZ.
Therefore,

A,(0) = Jphile,(y,) = mA3T e(— rofm) Insete(ry, m)
and so

An(V) = m IZ0GS eyl —rofm) I noto=te(ry,/m) .
It follows that

A, (V)= (t[m) card V = m=1 37515, ye( —rofm) 30050 e(ry,[m) ,

hence

(22)  |Ap(V)—(z/m) card V| £ m 135N 3 e pe(rojm)| |Znhete(ry,/m)|
(B(V)[m) 2 St~ ey m)| -

For fixed r with 1 <r<m—1, set d=(r,m). Then we can write

no+1—~1 no+7r—-1 ( d n
S elry,/m) = 3 (r/ )y)

n=ng n=ng /d

It is clear that the length of the preperiod of (y,) modulo m/d is at most
ny and that v is a period of (y,) modulo m/d, which implies that ¥(m/d)
divides 7. Therefore,

n=ng

IA

T
B T(mfd)

ng+x(mfd)—1 <(r/d)3/n)

n=no mfd
T k12 ¢(mfd)
= 1(m/d)( ) ( (m/d))
by (12). If we note that for each positive proper divisor d of m the num-

ber of », 1<r<m—1, with (r,m)=d is given by g(m/d), then we obtain
from (22) that

|4 (V)= (z/m) card V| = b(V)(TIM)Z&.;mw(MId)(m/d)"’g(f(m/d)ﬂ(mld))‘*
= b( V)(T/M)Zggmlw(d)d"’”(T(d).u(d))‘*

which completes the proof of the theorem.
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COROLLARY 5.2. Let m=2 be an tnteger, and let (y,), n=0,1,..., be
a kth order linear recurring sequence of integers. Then, for any v,0=5v=
m—1, we have

|4,(v) = (z/m)| = (T/m)Eg;m1 p(d)d*2(z(d)u(d))t .

The sum on the right-hand side of (20) can be estimated further, with
the upper bound depending on the prime factorization of m. The case
where m is a prime need not be considered here, since this has already
been dealt with in Section 4. Next, let m be a prime power. Then we
obtain the following result.

THEOREM 5.3. Let m=p* with a prime p and x =2, and let (y,), n=0,1,
..., be a kth order linear recurring sequence of integers. Then, for any sub-
set V of {0,1,...,m—1} we have

mE2_ oi2 g\ ¥
PR -l (ﬁ) ’
where b(V) is given by (21) and where w =max,; . ,17(p*)/pr(p®). In
particular, for any v,0Sv=m—1, we have

-2

(@) |4u(7)-Zeard 7| s 471 _%)pk/z

mk/z__.wa/z(-[)*

T
(24) | 4n(0)-= e

Proor. Suppose (y,,) satisfies the linear recurrence relation
Yntle = G Ynik-1t GsYnik—at+ ... +aY,+a forn=0,1,...,

with integers a,aq,...,a, ;. Let (d,), n=0,1,..., be the associated im-
pulse response sequence, i.e., the sequence of integers satisfying the re-
currence relation

Apic = “k—1dn+k—1+ Aolpik-2t - - - +agd, forn=0,1,...,

with initial values dy=d,=...=d;_,=0, d,_;=1 (dy=1 if k=1). For
a positive integer d, let n,(d) and »(d) be the length of the preperiod and
the length of the period of (d,) modulo d, respectively. Thus, u(d)=
ny(d) +v(d). Let A be the k x k-matrix over Z defined by (2). In the same
way as (3), one shows that

(25) df = Amd¥ formn=0,1,....
For given s 2 1, we have

4 9 1vpn = Gy po(modp?) ,
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hence, by using (25) and proceeding in the same way as in the first part
of the proof of Theorem 2.7, we arrive at

AM@E)+pY) = gmp?) (modp”) .

Setting D= AP — E, with E being the k x k identity matrix over Z, we
may also write this in the form

(26) A™P)D = 0 (mod p?) .

We note that all the matrices employed in this discussion will commute
since they are polynomials in 4. By raising the identity 4"*)=E+ D
to the pth power, we obtain

AP _F = (f)D+(22D)D2+... +(pfl)DP-1+DP,

and so
(27 AMPN AP _F) = A™P)Dp (mod p*+1)

by (26). Now we note that »(p?) is a period of (d,,) modulo p. Therefore,

) 1o = By (mod ) ,

and by using (25) and the argument in the first part of the proof of
Theorem 2.7, this implies

AMPHAP) = gm®) (mod p)
which we may write in the form
(28) AP D = 0 (modp) .
Multiplying (27) by A™®), we obtain
AM@Y ) grieT) E) = ( AMPID)(AMPD)Dr-2 = 0 (mod p*+1)
according to (26) and (28). By going back to (25), this shows that
(29) @ o910, @ 409 = Byt ) (OAP*H)

We infer from (29) that n,(p*+l) Sn,(p®) +n.(p) and »(p*+!) < py(p®). It
follows that

H(p**Y) = my(p*H) +v(p°H) = my(P%) + 1y (D) + P¥(P%) = 2my(p°) + (D)
since d,,, 0.9 = dy,9(mod p) implies ny(p) < n,(p®). Therefore,

(30) wp*t) = pu(p®) forszl.
We are now ready to estimate the sum in (20). We have

Zgl,,;w(d)d"’”(f(d)u(d))“* = 271 @(B)P*H(p)u(p)) .
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Moreover, repeated application of (30) yields u =< p*~Ju(p’) for 15j <.
Similarly, the inequality 7(p**!)<wpt(p®) for 1<s<a—1 yields 75
w*~Ip*—iz(p?) for 155 < a. Therefore,

(P)u(p)) 2 wfep¥-2eu for1Sjs«,
and so, by (20),

3Bl)  J4,(V)— %card 14

A

e R o

= b( V)(i)‘(l —%)wu/zz;_l(pg)j .

The following argument shows that w <p*. For 821, let ny(p®) be the
length of the preperiod of (y,) modulo p?, and consider the state vectors

Yngoh+gon 9=0,1,....
They are all congruent to each other modulo p#. There are p* possibilities
for pairwise incongruent k-tuples of integers modulo p#+! to which these
state vectors may be congruent modulo p#+l. Thus, by the pigeon-hole
principle, we have
Ynion oo = Yngpsepn(mod p*+)

for some g and k with 0 < g <h < p*. It follows that 7(p*+*) < (h—g)r(p®) <
P*7(p®), and 80 w < p¥-1< p*. By summing the finite geometric series in
(81), we readily obtain (23). The inequality (24) is an immediate conse-
quence thereof.

REMAREK 5.4. There are various interesting cases in which the number
w defined in the statement of Theorem 5.3 satisfies w < 1. For instance, if
(y,) is a homogeneous linear recurring sequence with

Yntk = O-1Ynik-1F Ok—s¥nikat ... +aoY, forn=01,...,

if (y,) is purely periodic modulo m =p®, and if, in the double modulus
notation of Ward [10], the polynomial

U(x) = yer* '+ (Y1 — G—1%0)2* 2+ . . . + (Ypo1— VY2~ - - - — )

is a unit modd (p, 2* —a;_;2*1— ... —a,), then it follows easily from [10,
p. 606] that w < 1. Furthermore, if the conditions of [10, Theorem 13.1]
are satisfied, we have again w<1 (note that the term ‘characteristic
number” is used in that paper to denote the length of the period).

Using the information obtained in the proof of Theorem 5.3, the case
of a general modulus m can also be treated.
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THEOREM 5.5. Let m=p,*. . .p,* be the canonical factorization of the in-
teger m =z 2, and let (y,), n=0,1,. .., be a kth order linear recurring sequen-
ce of integers. Then, for any subset V of {0,1,...,m—1} we have

(32) |[4n(V)—(t/m) card V| = Y(V)(z/u)}t Py, ,
where
R (P72 — w0 1) (p; — p21  (w(p)u(p;))t
Py = Hj=1( pFA— g + oy )_
. (T )ulp)
T

where b(V) is given by (21) and where w;=max,, . . 17(P;"*)[p;(p’)
if o;> 1 and w;=1 if a;=1. In particular, for any v,0Sv<m—1, we have

(33) |4 u(v) = (z/m)| < (t/u)t Py, .

Proor. Let d>1 be a fixed divisor of m. If necessary, we change the
enumeration of the prime divisors of m in such a way that we can write
d=p/1...pf for some ¢, 1<t<r, and with 18,5« for 15i<t. By a
result of Ward [10, Theorem 7.1], we have

7 = [7(p™)s. .., T(p,)] and t(d) = [T(plﬁl)" < T(ptﬂt)] ’

where, as usual, the square brackets denote the least common multiple
of the integers enclosed. For 1=<i<t, 7(p/%) divides v(p,™), so that
() = ¢; 7(p/) with an integer c; satisfying ¢, < (w;p,)* % by the defi-
nition of w;. Now

7 = [[v(p,), - - -, 7o), W((Pra) ™. . .27
where

[z(P),. . ()] = [ey 7(P1ﬂ1)»~ c G T(Pf)]

divides ¢;...¢z(d). It follows that 7 divides [c,...c(d), T((pr) ™. . .
2,*)], and so

(84) 7 = 6. .qr(@)t((Pra)*. . . 2,) S TR Bph
o e(d) (P ™).

A similar inequality relating x4 and u(d) will now be established. In the
proof of Theorem 5.3 we have shown, using the notation introduced
there, that »(p*+l) < pv(p®) for any prime p and any s 1. By the same
argument that led to (34), we obtain then

(35) v S p P P d (D) L0,
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If (d,) is the impulse response sequence associated with (y,), let n, be
the length of the preperiod of (d,) modulo m and n,(d) the length of the
preperiod of (d,) modulo d. By a result of Ward [10, Theorem 7.1] (note
that the term “numeric’ is used in that paper to denote the length of the
preperiod), we have

n = max(”’l(plal):' .. ,nl(p,.“")) ’

and a similar formula for n,(d). In the proof of Theorem 5.3, we have
shown that n,(p+!) < n,(p®) + n,(p) for any prime p and any s= 1. There-
fore,

ny(P™) £ 1y (D) + (05— B (i) S my(d)(1+ max, (o, — By))

for 1=:<t,
and so

(36) my = max(nl(d)(l +max, (0 — By)), 0 (D)™ .. 0,))
Since 1+ max, ;,(x; — f;) S max, ;. p "%, we clearly have

ay(@)(1+max; g (o — B7) < P70 pt Py @)((prn) ™ - .0,)
and so, by (36),

ny S PP T Py @ (D) D) TP p R
B (Brsa) ™ . . 2).
Combining this with (35), we obtain
po=rving S P 'pla‘—ﬁ‘(”(d)”((?t+1)a'+l- D) +
+ 1y @P((Pra)™. . . 2,7) +2(D)ny ()™ . . 1,™))

< po P o) + 1y (D) (WD) - 2 1 ((Daa) L 2,))
Hence,
(37) p S p PP P p(d)u((Pa) . o)
From (20), we have

(38) |A4n(V)—(v/m)card V| = b( V)(r/m)zg;ml P(d)d*"*(v(d)u(d))
= b( V)ZLH lzlsj1<jg<- . .<j¢§'rSj1, eeandit?

Sjryenns = (7)) Zap(@)*¥(w(@)p(d))

with the sum being extended over all positive divisors d of m that are
divisible exactly by the primes p,,...,p;. For simplicity of notation, we

where
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will just estimate S,
analogous. We have

Sl,... g4 = (T/m)2§i=1~ . -Z§:=1¢(p1”‘- . ~P:6')(P1ﬂl- . -Pzﬁ')klz'
'(T(plﬂl- . -Ptﬁ')M(P1ﬁ1° . -Ptﬁ'))—‘ .

From (34) and (37), we get
(e(ps. . .pMu(p. . . p)

Pt . -p;“‘wl(“l—ﬂl)lz- . wt(“t"pt)/2(-t((pt+l)°‘t+l. . -pr“') a((Drea) 2. .pr“'))}

., the argument for the others being completely

,,,,,

= B ] ’
i pf ()t
and so
S < (T)i w12, -“’ta'lz(f((Ptn)M“- 2 ()™ -pr“'))i
..... t= (- = .
. u (i)™ . .0,

o o P@ M
p =1 ﬁ =1 A. A,
! Loph

_ (3)* o ot (t((pra) ™ - 2 )((Pra) -Pra'))}.
H (Prsd)™ . .. 2,

1 1 plklz f p‘klz Bt
dl——) . (1==)D5 ... D% — ] |/
(1-50) - (15) B 2 () (%)

_(z H (T((Pt+1)a‘+1- D)D) -P,“'))* __}_ w2,
(U (1.

y 4
Piklz Bi
'(2§§=1 (w—i*) :

By an argument in the proof of Theorem 5.3, we have w;<p*for 1<j<r.
Therefore,

—B12 B2
(plﬂl_ . .pgp‘)kmwl Bz o Bl

8y, S (E)i ()™ - 2, J((Pes) ™. - 'p'“r))ify.- gy
..... =z (Do) ™. ..,
where
ikl2 _ og)2 — k/2-1
Py ik )(p;—1)ps for 1sj<r.

Since 7((pnd)**...0,") = [((Perd)*"),. . ., *(p,™)], We have ((py)™+
oo 2,) S ((Pr4)™*).- . . 7(p,’r). The inequality (37) shows that u(dd’) <

u(d)u(d’) for d and d’ relatively prime, and so u((ppy)*...p,") <
H((Pe42)™*). . . p(p,"). Thus,
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8. 4% ( 1)* ('t((pt+1)“‘+1)ﬂ(j£:+1)a'+l))*_ N .(T(praf)/i(rpr“'))* fooofs
(39) JZ (Pr+1) y2
_ (7Y e,
= (l‘) 91 - -grgl. N
where

g, = @)
! 2

It follows from (38) and (39) that

for1gj=sr.

!Am( V) - (T/m) card Vl = b( V)('r/,u)*gl. . '9r2=121§.il<.1':<‘ . .<jz§'H
1 9%

= b(V)(z/w)ig- . -9 (TTj=2 (1 +f3l9) —1)
= b(V) ([ (TT;-1(f;+95) — ITj-19)
which is just (32). The inequality (33) is an immediate consequence.

The results obtained so far in this section deal with the distribution of
elements in a full period of (y,) modulo m. Our method can also be app-
lied to yield information about the distribution of elements in segments
of the period of (y,) modulo m. We shall use the notation introduced in
the beginning of this section. Furthermore, for a subset ¥V of {0,1,...,
m—1}, for Ny2n, and 1SN <7, let A,(V; Ny, N) be the number of =,
Ny=n=Ny+N -1, such that y,=v(modm) for some ve V. If V is a
singleton {v}, we write 4, (v; N,,N) instead of 4,,({v}; Ny, N).

THEOREM 5.6. Let m=2 be an integer, and let (y,), n=0,1,..., be a
kth order linear recurring sequence of integers. Then, for any subset V of
{0,1,...,m—1}, for any Ny=n, and for any N with 1 < N < v we have

|An(V; No, N) — (N [m) card V| < b(V)(N /m)zgmﬂd)d"’ Hr(@du(d)?+
(40) >1
+(0( V)/m)%;ml<r(d)dk’ *((@)[(d)}((2/n) logw(d) + ) ,

where b(V) is given by (21). In particular, for every integer v,0Sv<m—1,
Jor any Ny =ng and for any N with 1 <N < v we have

[Am(v; No, N)— (N[m)| = (N/m)Egm1 p(d)d*2(z(d)u(d))? +

+m“‘Zgg‘lw(d)d"”(f(d)lﬂ(d))’( (2/) logz(d)+ ¢) .

(41)
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Proor. By the same arguments that led to (22), we obtain
(42) |4n(V; No,N)— (N[m) card V| < (B(V)/m) 373 S0k~ e(rynlm)].

For fixed r with 1 Sr<m—1, set d=(r,m). Then we can write

No+N-1 —‘N0+N—1 (r/d)yn
2w = 3 (i)

By the division algorithm, we have N =gt(m/d)+h with an integer
¢20 and 05k < 7(m/d). Then,

Nog-le((r/d)yn) =No+q1(mld)~1 ((r/d)yn) +No+qr(m/d)+h-1e((r/d)yn)

n=Np m|d n=No m|d n=No+gr(m/d) m/d
No+t(m/d)-1 d No+gqr(m/d)+h~1 d
s e("/ )yn) N e((r/ )yﬁ).
n=Np m/d n=2Ny+gr(m/d) m/d

We note that the length of the preperiod of (y,) modulo m/d is at most n,,.
Therefore, by (12) and Corollary 3.8,

L) = o) G+ () e
2 m\ 2 h
'(;“’g’(?z) *37@)
- (Td)m(;zz;)*(z log ,(’L;) +§+}—(71:77i))

_N 'm,)"’/2 (m) m) —*+ (m k2 ry(m[d)\} 2l (m) +2

- (d ""d”(d d) (,u(m/d)) z 8°\3) "5/
Since for each positive proper divisor d of m the number of r,1<r<m—1,
with (r,m)=d is given by @(m/d), we obtain from (42) that

|[4,(V; N, N)— (N[m) card V| £ b(V)(N/m)2 gy,  @(m]d)(m[d)*/2.
1sd<m
(w(m|d)p(m/d)) = + (b( V)/m)zm <mq')(mlﬂl)(m/d)"’ *(z(m[d)[p(m[d))}-

*((2/m)log t(m/d)+ ) ,
which yields (40). The inequality (41) is a special case thereof.

n=Np

THEOREM 5.7. Let m=p,"t...p,°r be the canonical factorization of the
integer m = 2, and let (y,), n=0,1,. .., be a kth order linear recurring sequ-
ence of integers. Let w,,...,w, be defined as in Theorem 5.5, and set o=



76 H. NIEDERREITER

max v(d)/u(d), where the maximum is extended over all divisors d>1 of m.

Then, for any subset V of {0,1,...,m—1}, for any Ny=n, and for any N

with 1 <N £ 7 we have

(43) |Ap(V'; N, N) = (N/m) card V| < b(V)N(vu) P,
+b(V)ym¥/2}((2/m) log v+ %) ,

where b(V) is given by (21), and P,, i3 defined in Theorem 5.5. In particular,
for every integer v,0=v<m—1, we have

(44) |[4p(v; No, N)— (N[m)| = N(wp)?P,
+mk/%¥((2[n) log T+ §)
for Nozngand 1N <7.

Proor. We start from (40). Since the bound in (32) was obtained as
an upper bound of the right-hand side of (20), it is clear that an upper
bound for the first term on the right-hand side of (40) is given by N/z
times the bound in (32). This accounts for the first term on the right-
hand side of (43). For the second term on the right-hand side of (40), we
have

(o V)/m)Eglm1 @(d)d**(x(d)[u(d))¥((2/n) logv(d) + §) = (b(V)/m)et-
+((2f) log 7+ &) Xamp(d)d*? ,

where the last sum is extended over all positive divisors d of m. Deno-
ting this sum by G(m), we observe that G is a multiplicative arithmetic
function. For a prime p and x> 1, one obtains by a straightforward cal-
culation,

/241 _ mk/2
(45) Q(p*) = 1+?Lk___pk_(pa(k/2+1)_1) < poli2D) |

plc/2+1 —1

This implies G(m) £ m¥/2+1, and so
(o V)/”‘)qum1 p(d)d¥"*(v(d)/u(d))¥((2/7) log 7(d) + %)
< B(V)m+/%H(2/n) log 7 + 3).

Thus, (43) is established. The inequality (44) is an immediate consequ-
ence.

Remark 5.8. If (y,) is a homogeneous linear recurring sequence of in-
tegers or if (y,) is at least homogeneous modulo m, then the number o
defined in Theorem 5.7 satisfies p < 1 in view of Theorem 2.7.
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REMARK 5.9. Bounds that are slightly better, but even more compli-
cated than those in (43) and (44) can be given by using the exact formula
for G(p®) in (45) instead of the upper bound established there.
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