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THE EFFECT ON ASSOCIATED PRIME IDEALS
PRODUCED BY AN EXTENSION OF THE BASE FIELD

RODNEY Y. SHARP

0. Introduction.

In his recent note [5], Seidenberg investigates two old questions of
Krull concerning the following situation. Let & be a field, ¥’ be an ex-
tension field of %, and X,,X,,...,X, be independent indeterminates; let
A denote k[X, X,,...,X,], and let B denote the extension ring
kX, X,...,X,] of 4; let a be a proper ideal of 4, and consider the
extension aB of a to B. Krull’'s questions with which Seidenberg was
concerned are as follows.

(1) If a is unmixed, is aB an unmixed ideal of B?

(2) In the situation in which %’ is algebraic over £, is it the case that
a prime ideal of B is an associated prime of aB if and only if its contrac-
tion in A is an associated prime of a?

Using arguments from the context of Krull’s own considerations,
Seidenberg proved that each of these questions has an affirmative answer.

However, in the above situation, there is a natural isomorphism of
k-algebras

¢: B =K[Xy....X,] >k k[Xy,....X,] = k'S A

with the property that the composition of the inclusion map from 4 to
B and ¢ is just the natural k-algebra homomorphism 4 - %'®, 4. One
may therefore take the view that the ring extension concerned in Seiden-
berg’s considerations mentioned above is just one particular member
of a large class of ring homomorphisms about which similar questions
could be asked: if 4’ is a commutative Noetherian k-algebra and &’ is
an extension field of 4 for which the ring ' ®, 4’ is Noetherian, then
there are obvious analogues of questions (1) and (2) above which one
could ask about the natural k-algebra homomorphism 4’ k' ®,4’.
The main purpose of the present note is to answer these two questions
(in the affirmative) under the assumption that either A4’ is a finitely
generated k-algebra or k' is a finitely generated field extension of k.
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(Each of these conditions would ensure that k' @, 4’ is Noetherian, of
course.)

We shall use the theory of fibre rings of faithfully flat extensions of
commutative Noetherian rings: in the above notation, the natural
k-algebra homomorphism 4’ — k' ®; A’ makes k' ®; A’ faithfully flat over
A’, and we shall use information about the fibre rings of this homomor-
phism to provide answers to the two questions.

All the rings (and algebras) considered in this note will be commuta-
tive and have multiplicative identities. Such a ring is called trivial if it
consists of just one (zero) element: it is to be understood that this pos-
gibility is excluded in any given situation unless the words ‘“‘possibly
trivial” are used to describe the ring concerned. In addition, almost all
the rings discussed in the article will be Noetherian.

It is to be understood that ring homomorphisms respect identity
elements. The reader is referred to Chapter 2 of Atiyah-Macdonald [1}
for explanation of the concepts of algebra over a ring R, homomorphism
of R-algebras, and tensor product of R-algebras. (Incidentally, there is a
misprint on p. 31 of [1]: if B and C are R-algebras with structural homo-
morphisms f: R —~ B and g: B — C, then the structural homomorphism
for the R-algebra B ®p C is not the map given by the formula on p. 31
of [1], but rather is the homomorphism %:R > BQ®pC defined by
h(r)=f(r)®1 (=1Qg(r)) (for all r € R).)

If R is a (possibly trivial) ring, then Spec(R) will denote the set of
prime ideals of R. If b is a proper ideal of a Noetherian ring S, then the
set of associated primes of b will be denoted by Assg(b).

1. Results about fibre rings of flat ring extensions.

Throughout section 1, 4 and B will denote Noetherian rings and
f+ A - B will denote a ring homomorphism. If M is an 4-module, then
Mg will denote B® , M regarded as a B-module in the natural way.
If a is an ideal of 4, then aB will denote the extension of a to B, i.e. the
ideal of B generated by f(a). If b is an ideal of B, then the contraction of
b to 4 is the ideal f-1(b) of 4.

If p is a prime ideal of A, then k(p) will denote the residue field of
the local ring 4,; k(p) has a natural A-algebra structure. The possibly
trivial A4-algebra B® , k(p) will be called the fibre ring of f over p.
We shall use the basic properties of fibre rings discussed in the first part
of § 2 of [6]; in particular, we draw the reader’s attention to the follow-
ing important facts about fibre rings. Let p be a prime ideal of 4. Then
there is a bijective, inclusion preserving correspondence between
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Spec(B ® 4 k(p)) and the set of prime ideals of B which contract to p.
In particular, B ® 4 k() is non-trivial if and only if there exists a prime
ideal of B which contracts to p; when this is the case, B® , k(p) is a
Noetherian ring.

The following result of Grothendieck is fundamental to the work in
this article.

TarROREM 1.1. (Grothendieck [4, Chapitre IV, (6.1.2) and (6.3.1)].)
Suppose A and B are local rings, and f: A — B is a local homomorphism
which makes B flat over A. (Thus f makes B faithfully flat over A: see
(2.4) of [6].) Let m (respectively k) denote the maximal ideal (respectively
the residue field) of A. (Thus the fibre ring B® 4 k of f over m is a Noetherian
local ring isomorphic to BfmB.) If M s a non-zero finitely generated
A-module, then M g is a non-zero finitely generated B-module; furthermore

(i) dimgMp=dim, M +dim(BQ 4 k);
(ii) depthgz M p=depth ;M +depth(B ® 4 k).

The next lemma, the proof of which is straightforward and left to
the reader, will be a useful technical aid for applications of 1.1 to more
general, not necessarily local, situations.

LemMa 1.2, Assume that B is A-flat. Let a be an ideal of A and q be
a prime ideal of B. Let p=f-(q), a prime ideal of A. Then

(i) the induced ring homomorphism f': A, - B, given by f'(afs)=
f@)[f(s) (for ac A, s € A—p) makes B, faithfully flat over A,;

(i) (aB)B,=(ad,)B,, the extension of ad, to B, via f’; consequently,
there are isomorphisms of B,-modules:

[(4/a)pl, = (BlaB), = B,/(aB)B, = B, ®4, (4,/a4,)
> B, ®u, [(4/a),].

The next two theorems will provide the keys for our answering the
two questions discussed in the Introduction.

TaEOREM 1.3. Assume that B is A-flat, and that all the non-trivial fibre
rings of f are Cohen—Macaulay rings. (Thus, in the terminology of (2.3) of
[6], f i3 @ Cohen—Macaulay ring homomorphism.) Suppose the proper ideal a
of A is unmized of height r. Then the ideal aB of B, if proper, is also un-
mixed of height r.
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Proor. Assume aB is a proper ideal of B, and let q be an associated
prime ideal of aB; we must show that dim B, =r. Let p =f-1(q), so that
p is a prime ideal of 4 containing a.

Since q € Assg(aB), we have qB, € Asqu((aB)Bq), so that

depthy, (B,/(aB)B,) =
Now, by 1.2(i), f induces a ring homomorphism f’:4, -~ B, which
makes B, faithfully flat over A,; 1.2(ii) now shows that
deptth(Bq @, (4yfad,)) = 0.
Hence, by 1.1(ii),
depthdp(A,p/aAp) =0 and depth(B,®,, k(p)) = 0.

The first of these equations shows that p4, € Ass 4, (ad,), so that
p € Ass (a). As a is an unmixed ideal of 4 of height r, it follows that
dim4,=r.

Furthermore, by (2.2)(iv) of [6], B, ® 4 k(p), the fibre ring of f’ over
the maximal ideal p4,, of 4,, is 1somorph10 to a localization of B ® 4 k(p).
We know that the latter flbre ring is a Cohen-Macaulay ring; hence
B,® 4,y k(p) is a Cohen-Macaulay local ring. Since depth(B, ® 4 k(p))
-—0 it follows that dim(B, ® 4, k(p))=0. We can now apply 1. 1(1) to
the ring homomorphism f’ to see that

dimB, = dim4,+dim(B 1 ®4, k(p)) = r+0,
so that dim B, =7, as required. It follows that aB is an unmixed ideal of
B of height r.

TeEOREM 1.4. Assume that B is A-flat, and that all the non-trivial fibre
rings of f have dimension zero (i.e. are Artinian rings). Let a be a proper
ideal of A and let q be a prime ideal of B which contains aB; let p=f-1(q),
80 that p 13 a prime ideal of A containing a. Then

(i) q € Assg(aB) of and only if p € Ass,(a);

(ii) q ts a minimal prime ideal belonging to aB if and only if p is a
minimal prime ideal belonging to a.

Proor. By 1.2(i), f induces a ring homomorphism f': 4, - B, which
makes B, faithfully flat over 4,. By (2.2)(iv) of [6], the fibre ring of f”
over the maximal ideal of A4, is isomorphic to a localization of
B ® 4 k(p), and so, by hypothesis, is an Artin local ring. Hence

dim (B, ® 4, k(p)) = depth(B, ® 4, k(p)) = 0.

(i) Now suppose p € Ass,(a). This means that 4 s/ad, is a non-zero
finitely generated 4,-module of depth zero. Hence, by 1.1(ii),

depthp (B, ® 4, (4y/ady)) = depth A’(A,/aA,,) +depth(B, ® 4, k(p)) = 0.
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Thus, by 1.2(ii), qB, € Asqu((aB)Bq), whence ¢ € Assg(aB) .

The converse is even easier, and is left to the reader.

(ii) Assume now that p is a minimal prime ideal belonging to a. Then
A,jad, is a non-zero A,-module having finite length. Use of 1.1(i) and
1.2(ii)) now shows that dimBq(Bq/(aB)Bq)=0, so that the (non-zero)
B,-module B,/(aB)B, has finite length. Hence q is a minimal prime
ideal belonging to aB. Again, the converse will be left to the reader.

We now describe some further notation. Let R be a Noetherian ring,
let t be a prime ideal of R, and let X be a finitely generated R-module.
Denote by k(x) the residue field of the local ring R.. Then (for each in-
teger 1) Exthi (%(r),X,) has a natural structure as & (finite dimensional)

vector space over k(x): we denote the dimension of this vector space by
i, X).

Suppose now that ¢ is a proper ideal of R, and that t is an associated
prime ideal of ¢. It is well known that ¢ can be expressed as an irre-
dundant intersection of irreducible ideals of R, and that the number of
r-primary terms in such an expression is (positive,) independent of the
particular irredundant intersection chosen, and equal to u%(t, R/c). (See,
for example, § 2 of Bass [2].) We shall therefore refer to ur,R/c) as the
t-irreducibility index of c.

Let us now return to the situation described in the hypotheses of
Theorem 1.4, and suppose that g is an associated prime ideal of aB, so
that p=f-1(q) is an associated prime ideal of a. In this situation, it is
natural to ask whether there is any connection between the p-irreducibil-
ity index of a and the g-irreducibility index of aB. We shall see that, if
all the non-trivial fibre rings of f are not only Artinian rings but also
Gorenstein rings, then these two irreducibility indices are equal; in
particular, this additional hypothesis on the fibre rings would imply
that, in the situation in which ¢ is a minimal prime ideal belonging to
aB (so that, by 1.4(ii), p is a minimal prime ideal belonging to a), the
unique g-primary component of aB would be irreducible if and only if
the unique p-primary component of a were irreducible.

Lemma 1.5. Suppose A and B are local rings, and f: A — B i3 a local
homomorphism which makes B flat over A (so that, in fact, f makes B
Jaithfully flat over A). Let m (respectively n) denote the mazximal ideal of A
(respectively B), and let k denote the residue field of A. Let a be a proper
tdeal of A. Then

pO(/mB, BjmB)- u%(m, 4fa) = p%n, BlaB) .
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Consequently, if the fibre ring BQ® 4k of f over m is a zero-dimensional

Gorenstein ring, then
w(m,Afa) = u’(n,BfaB) .

Proor. If r is a non-negative integer and Y is a B-module, then the
notation @rY denotes the direct sum of r copies of Y.
By (2.8) of [6], there is a spectral sequence

Ep9 = @ue(n/mB, B/mB)-ud(m, A[a)[B/n] =,
@u™(n, BlaB)[B/n] .

It is clear that E,??=0 whenever p <0 or ¢ <0. It therefore follows from
Corollary 5.4 of Chapter XV of Cartan—Eilenberg [3] that E,%%x
E %~ @u(n,B/aB)[B/n], whence

po(n/mB, BlmB)- u(m,A/a) = u®(n,BlaB).

Now suppose the fibre ring B ® , k of f over m is a zero-dimensional
Gorenstein ring. Since B ® 4 k is a Noetherian local ring isomorphic to
B/mB, it follows from Bass’s Fundamental Theorem of § 1 of [2] that
p°(n/mB, B/mB) =1, whence

po(m, Afa) = po(n, BlaB) .

The next theorem returns to the more general, not necessarily local
situation discussed in Theorem 1.4, and gives the promised results about
the irreducibility indices concerned in that situation.

THEOREM 1.6. Assume that B is A-flat, and that all the non-trivial fibre
rings of f are zero-dimensional Gorenstein rings. Let a be a proper ideal of
A for which aB 18 a proper ideal of B; assume that q is an associated prime
tdeal of aB, so that, by 1.4(i), p=f-Y(q) s an associated prime ideal of a.
Then the g-irreducibility index of aB is equal to the p-irreducibility index
of a, that is,

#%q,BlaB) = p°(p,4/a) .

Consequently, in the case in which q 18 a minimal prime ideal belonging to
aB (so that, by 1.4(ii), p s a minimal prime ideal belonging to a), the unique
q-primary component of aB is irreducible if and only if the unique p-prim-
ary component of a t8 irreducible.

Proor. By 1.2(i), f induces a ring homomorphism f’: 4, -~ B, which
makes B, faithfully flat over A,; also, the fibre ring of f’ over the maxi-
mal ideal of 4, is isomorphic to a localization of B® k(p), and so, by
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hypothesis, is a zero-dimensional Gorenstein local ring. Therefore, by 1.5,
luo(pA;)’Ap/aAp) = I“’o(qu’Bq/(aAp)Bq) *

But, by 1.2(ii), (a4,)B, = (aB)B,. Hence u’(p4,, (4/a),) = u%(qB,, (B/aB),).
But, by (2.4) of Bass [2], u°(p4,,(4/a),) =u%p,4/a) and u°qB,,(B/aB),)
=u%q, B/aB). The result follows.

2. The effect of extension of the base field.

Throughout section 2, k will denote a field and A4 will denote a Noether-
ian k-algebra; £’ will denote an extension field of k for which the k-algebra
B=k ®; A is a Noetherian ring. Also, f: 4 -~ B=F'®, A will denote
the natural homomorphism of k-algebras: it is clear that f makes B faith-
fully flat over 4. We shall be concerned with applications of the results of
section 1 to this situation.

Note that, for each prime ideal p of A4, the residue field k(p) of 4,
has a natural structure as a k-algebra (i.e. as an extension field of %),
and the (necessarily non-trivial) fibre ring B ® 4 k(p)= (k' Q; 4) @4 k(p)
of f over p is isomorphic to &’ ®,, k(p)-

In order to ensure that B=%k'®, A is a Noetherian ring, we shall
usually impose either an additional condition on 4 or an additional con-
dition on %’: specifically, we shall normally work either (a) under the
agsumption that A is finitely generated as an algebra over k, or (b)
under the assumption that %’ is finitely generated as an extension field
of k. (The reader will, of course, note the two different uses of the expres-
sion “finitely generated”.) For each of these situations, there is a cer-
tain amount of information about the structure of the fibre rings of f
already available in the literature.

Prorosrrion 2.1. (a) If A is a finitely generated k-algebra, then B=
k' ®,, A is a Noetherian ring and, furthermore, for each prime ideal p of A,
the field k(p) is finitely generated as an extension field of k and the fibre
ring B ® 4 k(p) of f over p s (not trivial and) a Gorenstein ring.

(b) If &' is finitely generated as an extension field of k, then B=F' ®, A
8 a Noetherian ring and, for each prime ideal p of A, the fibre ring
B® , k(p) is (not trivial and) a Gorenstein ring.

Proor. (a) Assume A is a finitely generated k-algebra. It is clear that
k' ®; A is a finitely generated k’-algebra, and so is a Noetherian ring.
Let p be a prime ideal of 4. Now k(p) is isomorphic (as a k-algebra) to

Math. Scand. 38 — 4
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the field of fractions of A/p, and since the latter is finitely generated as
an algebra over £, it follows that its field of fractions is finitely generated
as an extension field of k. Finally, B® 4 k(p) > k" ® k(p), and this is
clearly not trivial; that this ring is a Gorenstein ring is now immediate
from Proposition 2 of Part IT of [7].

(b) This is also immediate from (the statement and proof of) Proposi-
tion 2 of Part II of [7].

Since every Gorenstein ring is a Cohen-Macaulay ring, we may use
2.1 in conjunction with Theorem 1.3 to provide the following answer to
one of the questions raised in the Introduction.

THEOREM 2.2. Let A be a Noetherian algebra over the field k, and let k'
be an extension field of k. Let a be a proper ideal of A, and let aB denote
the extension of a to B=Fk' ®, A under the natural k-algebra homomorphism
A~k @, A. Assume that either

(a) A s finitely generated as a k-algebra, or
(b) &' is finitely generated as an extension field of k.

Then, if a is an unmized ideal of A of height r, the proper ideal aB of B
18 also unmixed of height r.

In order to provide an answer to the second question raised in the
Introduction, we wish to show that, if £’ and ! are extension fields of the
field £ with %’ an algebraic extension of k and one of &, [ a finitely gen-
erated extension of k, then the ring ¥’ ®,, ! is Artinian. The next lemma is
directed towards this end.

Lemma 2.3. Let k' and | be extension fields of the field k with k' an
algebraic extension of k. Then the dimension of the ring k' ®,,1 is zero.

Proor. Let g: | - &' ®,;, 1 denote the natural k-algebra homomorphism.
It is clear that (&' ®,! is not trivial and that) g is injective. Now let
yek’, and consider the element y®1 of k' ®, I: since &’ is an algebraic
extension of , it follows that y®1 is integral over g(l). As the integral
closure of g(I) in &' ®, 1 is a subring of ¥’ ®, I, it is now easy to see that
k' ®; 1 is actually integral over g(l).

But g(l) is a field, and so it is immediate from 5.9 of [1] that, if g
and q' are prime ideals of k' ®,! for which g=q’, then q=gq’. Hence
dim (&' ®,1)=0.

COROLLARY 2.4. Let k&' and I be extension fields of k, with k' an alge-
braic extension of k. If the ring k' ®,1 is Noetherian, then it is Artinian.
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In particular, if one of ¥',1 is a finitely generated extension of k, then
E ®,1 is an Artinian ring.

Proor. This is immediate from 2.3 and 2.1(b).

We are now in a position to answer the second question raised in the
Introduction.

TrEOREM 2.5. Let A be a Noetherian algebra over the field k, and let k'
be an algebraic extension field of k. Assume that either

(a) A is finitely generated as a k-algebra, or
(b) &' is finitely generated as an extension field of k.

Let a be a proper ideal of A, and let aB denote the extension of a to
B=k' QA under the natural k-algebra homomorphism f: A -k’ ., A.
Let q be a prime tdeal of B containing aB; let p=f-1(q), so that p is a
prime ideal of A containing a. Then

(1) q € Assg(aB) if and only if p € Ass ,(a);
and

(ii) when this is the case, the g-irreducibility index of aB is equal to the
p-irreducibility index of a.

Also,

(iii) q 48 @ minimal prime ideal belonging to aB if and only if p is a
minimal prime ideal belonging to a;
and

(iv) when this is the case, the unique q-primary component of aB is
irreducible if and only if the unique p-primary component of a is irreducible.

Proor. By 2.1, B is a Noetherian ring. The remarks made at the
beginning of § 2 show that, for each prime ideal p of A4, the fibre ring
B® _k(p) of f over p is isomorphic to &' ®,%(p). Now %’ is an algebraic
extension field of %, and it follows from 2.1 that either k(p) or &’ is
finitely generated as an extension field of k. Therefore, by 2.1 and 2.4,
all the fibre rings of f are zero-dimensional Gorenstein rings. The result
therefore follows from Theorems 1.4 and 1.6:

REFERENCES

1. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, st edition,
Addison-Wesley, London, 1969.
2. H. Bass, On the ubiguity of Gorenstein rings, Math. Z. 82 (1963), 8-28.



52 RODNEY Y. SHARP

3. H. Cartan and 8. Eilenberg, Homological algebra, 1st edition, Princeton University
Press, Princeton, 1956.

4. A. Grothendieck, Kléments de géoméirie algébrique, Inst. Hautes Etudes Sci. Publ.
Math. 24 (1965).

B. A. Seidenberg, The prime ideals of a poly tal ideal under extension of the base field,
Ann. Mat. Pura Appl. 102 (1975), 57-59.

6. R. Y. Sharp, The Euler characteristic of a finitely generated module of finite injective
dimension, Math. Z. 130 (1973), 79-93.

7. K. Watanabe, T. Ishikawa, 8. Tachibana and K. Otsuka, On tensor products of Goren-
stein rings, J. Math. Kyoto Univ. 9 (1969), 413-423.

DEPARTMENT OF PURE MATHEMATICS,
THE UNIVERSITY,

SHEFFIELD 88 7RH,

ENGLAND.



