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MCKAY NUMBERS AND HEIGHTS OF CHARACTERS

JORN B. OLSSON

Let p be a prime integer, and v, the p-adic valuation on Z, the ring
of integers. If G is a finite group, let for ¢ 0, M,(p,d) denote the set of
ordinary irreducible characters of &, for which v, of the degree is ¢, and
let my(p, @) be the cardinality of M (p, ). The integers m,(p, @) are called
the McKay numbers of G with respect to p. Of particular interest is the
integer mq(p, ), which is also denoted m,(G). Let Syl,(G) be the set of
Sylow p-subgroups of G.

McKay has conjectured:

(I) If P eSyl,(G), then m,(G)=m,(Ng(P)).

If B is any p-block of characters of G, we let k;(B) denote the number
of characters of height ¢ in B. (For the definition of height, see e.g.
Section 2 in [2].) Also, k(B) ({(B)) is the number of ordinary (modular)
irreducible characters in B.

Alperin [1] has suggested a more general conjecture:

(II) If P eSyl, (@), b is a p-block of Ny(P) and b¢=B, then kq(b)=
ky(B).

Using Brauers first main theorem, (I) follows from (II) by summation.
We will refer to (I) as McKays conjecture and to (II) as Alperins con-
jecture.

Opinions are divided as to whether (I) and (II) are reasonable conjec-
tures, but it is quite interesting, that (I) was suggested by evidence in
sporadic simple groups. Conjecture (II) is true, if P is cyclic or a 2-group
of maximal class, by the results in [4], [3], [10]. Here we verify Alperins
conjecture for all primes in Sym (n), the symmetric group on n letters,
and McKays conjecture for the general linear groups GL(n,q), ¢ prime-
power, for primes different from the characteristic.

The origin of this paper was a desire to compute the numbers &, (B)
for the p-blocks of Sym(n). The author is generally interested in in-
vestigating possible relations between structure of defect groups and
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block theoretic invariants. Wreathed products of cyeclic p-groups is an
interesting class of defect groups to investigate, and they occur as defect
groups in Sym (n).

Formulas for k,(B) in symmetric groups can be obtained using a method
of MacDonald which he uses to compute m,(Sym(n)). The k;(B)’s are
closely related to the McKay numbers of Sym(n). (Compare (3.4) and
(3.5) below.)

After a preliminary section, we study MacDonalds approach in section
2. In section 3 we derive formulas in Sym (n), and we also show, that any
p-block B of Sym(n) has a nontrivial major subsection (x,b), such that
ky(b)=ky(B) for all 7. The final sections contains the proofs of (II) in
Sym(n) and (I) in GL(n,q). All groups considered are finite.

1. Preliminaries.

Let n be a positive integer and n=ay,+a,p+ ... +a,p* its p-adic
decomposition with respect to the prime p. Thus 0=<a;<p for i=
0,1,...,k A p-adic subsum of n is an integer m=a, +a,"p+ ... +a; Pk,
such that 0<a,/ <a, for ¢=0,1,...,k.

Levmma (1.1). Let n=n,+n,+ ... +n,, where the n;'s are positive inte-
gers. Then
V() +0p(na!) + . . L +0,(n,!) S v,(n!),

and equality holds, if and only if, each n; is a p-adic subsum of n.

The proof of this is an easy exercise, and we omit it.

For n2 0, let Par(n) denote the set of partitions of n, i.e. decreasing
sequences of positive integers, whose sum is n. Let n(n)=|Par(n)|, and
let P(x) be the generating function for n(n), i.e.

P(z) = Y, n(n)x" .

{(We consider (0) as the unique partition of 0, so =(0)=1.)
Define the integers k(r,s) by

(P)) = 3, k(r,8)x® .

So k(r,s) is defined for integers r,8=0. Clearly k(r,1)=r and k(1,s)=
n(8), if r,82 0. This can also be seen from the following general formula,
which the reader should keep in mind in the rest of this paper. An r-split
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of s is a sequence of nonnegative integers (s;,8,,...,s,), such that s, +
8+ ...+8,=s. The s;’s are called the parts of the split. Then

k(r,s) = X n(s))n(sy) . . . 7u(s,)

where the sum is over all r-splits of s.
Let us list some basic properties of the integers m,(G). Wreath product
is denoted by 2, and Z,, is the cyclic group of order p.

Lemma (1.2).

(1) mp(Gl x @) =mp(G1)mp(G2)'

(2) If 0= a=p—1, then m,(G2 Sym(a))=k(m,(&),a).
(3) m,(G2Sym(p))=my,(G2Z,)=pmy(G).

Proor. (1) is trivial by the representation theory of direct products.
(2)-(3) are consequences of the representation theory of wreathed prod-
ucts, as described in [8], Theorem 5.20. (See also 5.21.)

If G is any group, G’ denotes its commutator subgroup.

Lemma (1.3). Suppose P €8yl (G). Then m,(Ng(P))=m,(Ng(P)/P’).

ProoF. As P’ is a characteristic subgroup of P, P'<N4(P). Obviously
My(Ng(P)) 2 m,(Ng(P)/P’), because any irreducible character for N o(P)/P’
can be considered as an irreducible character for N,4(P) with P’ in its
kernel. On the other hand, if y is an irreducible character for Ny(P),
then yp=e 3,{;, where the (s are irreducible characters for P of the
same degree, and e is a positive integer. (Cliffords theorem). Thus, if
21 x2(1), then pt {,(1) for all 7, so {,(1)=1 for all . Then all ;s have P’
in their kernel, so the same is true for y. The result follows.

In the following, if H is a subgroup of Sym(n), and @ is any group,
then the elements in G H are written as (zy,...,%,;y), where z,€ G
and y e H.

Lemma (1.4). We have for any group G
(GZ,) = {(x3,. ., 2p3 1) | ®y...0,€G'}.
Proor. Note that if x; ..., € @, then the same is true for ...
Zyp for any o € Sym(p). Let
H={,...,2,1)| 2,...2,€G'}.
It is easy to verify, that H is a normal subgroup of G2 Z,, and that the
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factor group is isomorphic to Z, x (G/@'), i.e. it is abelian. On the other
hand, elements on the form (z,,...,2,; 1), z;,. . .,2, € &', and on the form
(1,...,,xzLx1,...,1; 1), z € G, are easily shown to be in (G2Z,)’, and
they generate H.

ProrosrTioN (1.5). Suppose P eSyl, (G), and let F=Ngy,(Z,), where
Z, € Syl (Sym(p)). If G=G2Sym(p), then Q=P2 Z, € Syl (&), and

NzQ)/Q = Ng(P)/P'xF .

Proor. Let N=Ny(Q) and N,=Ny4(P). It is easily computed, that

N = {z,,...,2,;y) | #;,€ N, and x,=2; (mod P) for all 1,5, and y € F}.
et M = {(x,...,%;1)| x;€ N, and z;=2; (modP) for all 4,5} .
Embed F as the subgroup
F={1,.,1;9)| yeF}

of N. Then N =MF. By the previous lemma,

Q = {(%y,...,2,;1)| ay,...,40,€P and 2,...7,€ P'}.
Let us note, that [M ,F]gQ’. In fact, the generating elements of
[M,F] have the form (x;,7x,y),...,2,"%yy,); 1), where yeF and
(®3,...,%,; 1) € M. By definition of M each x;x,, € P, so obviously

27,y - - - Xy My € P'. Thus [M, F]c@'. Tt then follows, that since
Q'sM, N|Q'~F x M|Q', so we need only show

(*) M|Q' ~ N,/P'.
By the Schur-Zassenhaus theorem there exists a complement T’ to P in
N,. We define a map @: N,=PT -~ M[Q by

D(xt) = (xt,t,...,t;1)Q’, if zeP and teT.

This is clearly a well-defined homomorphism. Now at € Ker® if and only
if te P and zt? € P’ or equivalently ¢t=1 and x € P’. Thus Ker®=/P",
and since | M :Q'|=|N,:P’'|, (x) is proved.

CoRrOLLARY (1.8). In the notation of (1.5), m,(Ng@))=pm,(Ng(P)).

Proor. By (1.3), (1.2)(1) and (1.5)
mp(‘Na(Q)) = mp(Né(Q)/Q’) = p(F)mp(NG(P)/P,) = p(F)mp(NG(P)) .

Now F is the Frobenius group of order p(p—1), so m,(F)=p. (F has
p— 1 linear characters and one of degree p—1.)
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CoroLLARY (1.7). G satisfies McKays conjecture with respect to p, if and
only if, G2 Sym(p) does.

Proor. Combine (1.2)(3) and (1.6).

2. MacDonalds approach.

In his paper [9] MacDonald derives a formula for m,(Sym(n)). If
ay+a;p+ ... +a,p"is the p-adic decomposition of n, then he proves

my(Sym (n)) = k(1,a0)k(p,ay) . .. k(p",a,) .

{For the definition of k(r,s), see section 1.) Without mentioning it ex-
plicitly, he gives a new description of the power of p dividing the degree
of a representation of Sym(n). There are several other ways of doing
this, but for counting characters, MacDonalds description is the most
convenient.

If 2 ePar(n), let [A] be the corresponding irreducible representation
of Sym (n) and f(4) the degree.

Let r,n be nonnegative integers, > 1, and let 1 € Par(n). To A we can
associate its r-core A, and its r-quotient A". Here 4, is a partition with
no hooks of length r and A" =(4,,4,,...,4,_;) is an r-tuple of partitions,
such that

no= 12 = Ppl+r(Aol+ - - +1A,a) -

A partition is determined uniquely by its r-core and r-quotient. (See [12,
5.16]). Let H(A) be the set of the n hook-lengths of 1, listed with multi-
plicity. Let

HA)™ = {he H(2) | r divides A} .

A basic property of the r-quotient is

Lemma (2.1). H(A)® is a disjoint wnion of rH(%,), 1=0,...,r—1, where
A= (2g,...,A,) and rH(A)={rh | h € H(4;)}.

For a given A€ Par(n), we define its r-core tower as follows: It has
rows numbered by ¢=0,1,.... Its ith row contains 7 r-cores. The Oth
row is Ay, the r-core of A. The lst row i8 Ayy,,...,A, 3, Where A" =
(Ags- - - yAp—q)- Lot 1,0 = (4405 . .,A;p—1). Then the 2nd row is the r-cores of
Ag0s« + +sAgr-1sA10- - - sAp_1r-1, i that order. Continuing this proces of
taking cores of quotients gives us the r-core tower of 1. A partition is
described uniquely by its r-core tower, which contains only finitely many
nonzero partitions. This follows by repeated use of the fact, that a
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partition is uniquely determined by its r-core and r-quotient. It should
be mentioned, that Robinson makes a somewhat similar construction
for r a prime. (See [12, p. 94]).

ExamMpLE. A=(5,4,22,12) € Par(15), r=_2. The hooklengths of 1 are

10 431]

211

| Ol =

Lol R e ]

We get Ag=(1), 8= ((22’ 12), (l))
The 2-core tower of A looks like this

(1)
0 1)
(0) (1 (0) (0)

(1 (0 (0) (0) (0 (@ (0 (0).

Let for a given partition 4 and for ¢ = 0, 8,(r,1) be the sum of the car-
dinalities of the partitions in the ith row of the r-core tower of 1. Thus
Bo(r,A)=|4»|. It follows from the construction of the r-core tower, that
the following holds:

LeMma (2.2). n=|A|=3,8,(r,A)rt, where the summation ts on iz 0.

If ag+a,r+ . .. +a,r® is the r-adic decomposition of n and 1 € Par(n),
define the r-deviation of A as

dA) = (2 Bulr, ) -3 45)(r—1)  (i20,0=5k).

Since r*=1 (modr—1) for all i20, we get

n = 3, pr,A) = 3, a; (modr—1),

8o d (1) is a nonnegative integer.
ProrostTioN (2.3). If A € Par(n), and p is a prime, then v (f(1))=d,(A).

Proor. This follows directly from (1.1), (3.3) and (3.4) in [9].
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An r-expansion of n is a sequence (x4, y,. . .) of nonnegative integers,
such that n =0+ ;7 + a2+ . ... The set of these expansions is denoted
E(r,n). If a=(xg,0q,...) € B(r,n), let the deviation of a be

d(r,a) = (X ;—2350)[(r—1) (820, 05j<k),
where the a,’s are as above. E4(r,n) denotes the set of r-expansions of n
of deviation d. Let us note, that (a,,a,,...,8,0,0,...) is the unique
element in Hy(r,n).

If @ is a finite group, the elements of M (p,@) are called p’-characters.
Abbriviate M,(G)=M(p,G). AcPar(n) is called a p’-partition, if
[4] € M,(Sym(n)). If Ay,...,A,_, is & sequence of p* p-cores, (¢20), let
Ag* ... *Ayi_; be the partition of p%(3;|4,), whose ith row in the p-core
tower is this sequence.

LeMMA (2.4). Let 0sx<p—1. For i 20, any p'-partition of «p can be
written uniquely as a *-product of p-cores.

Proor. By (2.3), 4 € Par(«p?) is a p’-partition, if and only if, 8;(p,A) =«
and g;(p,A)=0 for j+1, if and only if, only the ¢th row in the p-core
tower of A contains nonzero partitions, and the sum of their cardinalities
is . The result follows.

Denote by ¢(p,n) the number of p-cores of (cardinality) n. It is also
the number of p-blocks of defect 0 in Sym (n). Obviously ¢(p,n) < n(n)
for all n, ¢(p,n)=n(n), if n<p, and c¢(p,p)=n(p)—p. Let F (x) be the
generating function for ¢(p,n), and define C,(r,s) to be the coefficient
in (Fp(x))" of 28, r,s20. Note the similarity between the definitions of
k(r,s) and Cy(r,s). In view of the above, k(r,s)=C,(r,s), if s<p.

We illustrate a method inspired by the above to prove the following
result, which is used in section 3. The method is also essential in the re-

duction steps of section 5.

Lemma (2.5). Let w,k be nonnegative integers. Then

mk(p’ Zp 8 Sym (w)) = Z (Op(l:“o)gp(P: “I)Cp(pz: 0‘2) . °) H
where the summation is on all (xg, 00, %,,. . .) € By (p,w).

Proor. By [8, 5.20], an irreducible character y of Z,2 Sym (w) can be

described uniquely by a p-tuple of partitions (4,,...,4,), such that if
X< (A, ..,4,), then |4+ ... +|4,|=w and

W) = —2f). . fh) .
TTNATAL
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(All irreducible characters of the base subgroup of Z,2 Sym (w) are one-
dimensional.) Let a4+ . . . +a,p" be the p-adic decomposition of w. Then
using (2.3) it is readily computed, that in the above notation

”p(l(l)) = (Z'i,j ﬂj(p’}*i)"Zm a’m)/(p" l)’ (Oé ¢ §P, .7 2 O, Oémér) .
Thus v,(x(1)) =k, if and only if

(Z’t ﬂo(p: zt)r Z't »31(1’, }'i):' . ) € Ek(p,w) .

To y > (4y,. . .,4,) We associate a tower T'(y) of p-cores with pi+! partitions
in the sth row, ¢=0: The sth row of 7'(y) is the ¢th row in the p-core
tower of 1,, followed by the ith row in the p-core tower of 1,, ete.

We have then to any y with v,(x(1)) =% constructed in a unique way
a p-expansion of w of deviation k ((xg,xy,. . .), where o;=3;8,(p,4;)), and
for each «; a unique p/+!-split of a; (the cardinalities of the partitions in
the jth row of 7T'(y)), and a unique p-core of each of the parts of these
splits. This construction can obviously be reversed, so the lemma is
proved.

3. Block invariants and McKay numbers in symmetric groups.

It was proved by Brauer and Robinson, that if 1,4 € Par(n), then [1]
and [u] belongs to the same p-block of Sym (n), if and only if, A, =u,.
(They have the same p-core). Thus, if Bis a p-block of Sym (n), we define
the weight of B, w(B), as follows: If [A]e€ B, then || |Ay|=pw(B).
The defect group of B is a Sylow p-subgroup of Sym(pw(B)), so its
structure depends only on the weight of B.

Lemma (3.1). Let B be a p-block of Sym(n), w=w(B) and [A] € B.
Suppose that ay’ +a,'p+ ... +a, p* is the p-adic decomposition of w. Then
the height h(A) of [1] is

k() = (Zi>0 Bi(P,A) — D420 aj')/ (p-1).

In particular, since the first summation is only for 1>0, k() does not
depend on the p-core of A.

Proor. Let ay+a,p+ ... +a.p® be the p-adic decomposition of n. Let

a=ay+...+a, a =a'+...+a,,
b = Bo(p, )+ By, M)+ ..., b =Db—Byp,A).
By definition

h(3) = vy(F(A)) —vp(n!)+v,((wp)!) .
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Clearly
n=a+(p—1w,(n!) and wp = a'+(p—1L)v,((wp)!).

(A general fact). Note also

n—wp = Bo(p,4) = b-b".
Therefore, by (2.3)
(p—DAA) = (p—1)vp(f(A) — (P —1)vp(n!) + (p—1)vy((wp)!)
=b—a—-n+at+wp—a’
— b/_a/ ,

which proves (3.1).

This result shows, that k;(B) depends only on w(B), if B is a p-block
of Sym(n). (Follows also from 5.21 in [12].) The same is true for k(B)
and [(B), as is shown by Robinson, [12, Chapter 5 and 6]. If w(B)=w,
let k(p,w), U(p,w), kp,w) denote k(B), U(B), k,(B). By 5.18 in [12],
k(p,w) is the coefficient to 2 in (P(x))?, so there is no conflict with the
previous definition of k(r,s). Also I(p,w)=k(p— 1,w). (See [12, Chapter 6].)

REeMARK. In the formula for A(1) in (3.1), we may replace p by any
integer r>1 and use the formula as the definition of height of 1 with
respect to r. Most of the arguments below does not depend on p being a
prime. In fact, (3.2)-(3.5) and (3.7)—(3.8) have r-analogues.

Let us briefly investigate the relation between the ¢(p,n) and the n(n).
PROPOSITION (3.2). 7t(n) =3B k(p,3)c(p,n — pi).

Proor. Clear, because the number of p-blocks of weight ¢ in Sym (n)
is C(P N — pi)'

(3.2) can be regarded as a recursive formula for ¢(p,n) in terms of n(n).
Stanley remarked, that in terms of generating functions it can be for-
mulated as follows:

PROPOSITION (3.3) F,(x)=(P(2?))PP(x).
Proor. The coefficient to 2% in (P(x?))P F,(x) is just the right hand

gide of (3.2).

Math. Seand. 88 — 38
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REeMARK. It is straight forward to prove, that ¢(2,n) =1, if n=k(k—1)/2,
k>0, and ¢(2,n)=0 otherwise. Therefore (3.3) for p=2 is “Gauss’ iden-
tity”’. See Theorem 354 in [7].

In the results below C,(r,s) and E,(p,w) are as in section 2. Let
mg(p,n) be my(p, Sym(n)), the ath McKay number for Sym (n), a = 0.

ProrosrrioN (3.4). Let a2 0. Then
ma(psn) = z Cp(l’“O)Cp(pyal)ay(pz’o‘z) ey

where the summation 18 on all (xg, 00,069, . .) € By (p,m).

ProrosrTioN (3.5). Let a,w=0. Then
p,’llJ) z C P» 0‘0) (pz’(xl)op(ps’ 0‘2) L

where the summation s on all (xg, %y, %s,. . .) € B (p,w).

Proor. (3.4) is an easy generalization of MacDonalds argument,
using (2.3). To prove (3.5), let us note, that in the notation of (3.1), if
[1] € B, then

w = w(B) = (p,2)+ By(p, )P+ fs(p, A)p* +
80 (B1(p,4),B5(p,4),. . .) € Epp(p,w). To get all characters [A] of height a
in B, one should therefore for ¢>0 choose the ith row in the p-core
tower of A arbitrarily, subject only to (8y(p,A),B:(p,4),...) € E (p,w).
Thus (8.5) follows.

CoROLLARY (3.8) If w0, then ko(p,w)=m,(Sym (pw)).
Proor. This follows from (3.4) and (3.5) with a=0.

CoROLLARY (3.7). If ay+a;p+ ... +a,p" is the p-adic decomposition of
w, then
ko(P,w) = Cp(P:a'o)Op(pz, al) vee Gp(p'+1’ar)
= k(p,ao)k(p%ay). .. k(p'+1,a,) .

Proor. We have that Ey(p,w) = {(ay,ay,. . .,4,,0,0,...)}, and C,(s,a) =
k(s,a), if a <p.

CoroLLARY (3.8). If w(B)=w, then the maximal possible height of
characters in B is
h=(w-a—a,—...-a)/(p-1),
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where ay+a;p+ . .. +a,p" i8 the p-adic decomposition of w. The number of
characters of this height is Cp(p,w).

Proor. b is the maximal deviation of p-expansions of w, and
Ey(p,w)={(w,0,0,...)}.

REMARKS. C,(2,8)=0, so there is no characters of height 7 in a 2-block
of weight 8. In fact, C,(2,w)=0 for infinitely many w. However,
Cy(r,w)+0, if r> 2, w arbitrary. This is because any integer is a sum of
3 “triangular” numbers, where a triangular number is an integer of the
form k(k—1)/2, k>0 (Gauss). (See the previous remark.) Probably
Cplp,w)>0, if p>2, w20, but the author has been unable to find a
reference for this,

ProrosITION (3.9). The following statements are equivalent for a p-block
of weight w:

(1) wzp.

(2) The defect group 18 nonabelian.

(3) k(p,w) = ko(p,w).

(4) ky(p,w)+0.

Proor. The defect group for a p-block of weight w is a Sylow p-sub-
group of Sym (pw), so (1) and (2) are equivalent. If w < p, then k(p,w)=
kqo(p,w), by (8.8), so (3) implies (1). Trivially (4) implies (3), so we need
only show (1) implies (4):

Let us note, that Cp(pf,w)>0, if w=<pip—1), £20. In that case w
can be written as a sum of pf nonnegative integers, each <p—1.

Suppose that w=p and that k,(p,w)=0. Let a,+...+a,p” be the
p-adic decomposition of w. Then >0 and

a = (Gg...,0,_g,@,_1+7P,2,—1,0,0,...) € Ei(p,w).

Therefore C,(p",a,,+p)=0, because all other integers in @ are <p—1.
By the above
2p-12za,+p 2 p'(p-1).

This is only possible, if p=2 and r=1, that is, p=2 and w=2,3. How-
ever, k,(2,2)=0C,(2,2)=1 and k,(2,3)=0C,(2,3)=2, so we have a contra-
diction.

Remarks. (1) It has been conjectured, that for any p-block of a group,
the defect group is abelian, if and only if, all characters have height 0.
(3.9) verifies this for all blocks of Sym (»).
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(2) Using the method of (3.9) one can prove fairly easily, that k(p,w)=
ko(p,w) + ky(p,w), if and only if, w<2p.

We finish this section by proving a rather curious result, which may
be a special case of something more general.

If B is a p-block of a group G with D as a defect group, then a major
subsection for B is a pair (z,b), where x € Z(D) and b is a p-block of Cy(x)
with D as defect group, such that b¢=B. It is called nontrivial, if z=+1.

ProrostTioN (3.10). If B ts any p-block of Sym(n), p=n, then there
exists a non-trivial major subsection (x,b) for B, such that k,(b)=k,B) for
all 120, if w>0.

Proor. Suppose B is a p-block of Sym(n) of weight w, w>0. Write
n=a+pw, a=0. A defect group D of B is a Sylow p-subgroup of the
subgroup Sym (pw) of Sym(n). Consider the central element z of D
which is a product of w cycles of length p. Then

C= OSym(n) () =~ (sz Sym(w)) x Sym (a) .
Since DCgypm (D)< O, there exists a p-block b of C with D as defect
group, such that %=B. We can write d=>5 x b’, where b is a p-block of
Z,28ym(w) and b’ is a p-block of Sym(a). By (5C) in [2], Z, 2 Sym (w)
has only one p-block, so &’ must be of defect 0. We conclude, that k;(6) =
my(p,Z, 2 Sym (w)), so (3.10) follows from (2.5) and (3.5).

Remark. It follows from Brauers results, [3], that if B is any 2-block
of any group with Z,2 Z, as defect group, then the conclusion of (3.10)
holds, In fact, this is true, if the defect group is any 2-group of maximal
class. It may fail, if the defect group is cyclic.

DierEssioN. The following statement is a common feature in all ex-
amples known to the author. It is probably not generally true, but it
would be interesting to know a counter example.

Let B be a p-block of G with D as defect group. Then there exist a
subgroup L of G' and a p-block b of L with D as defect group, such that

(1) DCy(D) = L. (2) b¢ = B.
(3) O,(L) # 1. (4) kyb) = ky(B) for all 4.

4. Alperins conjecture in Sym (n).

Let P, € Syl,(Sym (p*)) and N;=Ngp, i6(P;) for all = 0. Thus Py=1
and P;=P; ,2Z,fori>0.Let ay+ ... +a,p* be the p-adic decomposition
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of n(>0). Then P=P,* x ....x P, is a Sylow p-subgroup of Sym(n),
where P/ is a direct product of a, copies of P,.

LeMmA (4.1). N=Ng 0 (P)2(No2Sym(ay)) x ... x (N2 Sym(ay)).

Proor. Use that any element of N permutes the orbits of P on
{1,2,...,n}, and that P has exactly a; orbits of length p?, i=0,...,k.

Lemma (4.2). m,(N;)=p' for all 12 0.

Proor. For 7=0 this is trivial. Suppose 7 > 0. Let @, be the base sub-
group of P,, that is, the direct product of p copies of P, ;. We claim,
that @,<N,. Generally, @, is not a characteristic subgroup of P,, but
@,<N, follows, if we prove
(%) Q; = {x € P;| =z has a fixpoint) .

Obviously (x € P; | # has a fixpoint)<@),, because @, is generated by
the P,_,’s. On the other hand, no element in P,—@, has any fixpoint.
This can be proved in several ways, e.g. by considering the permutation
character of P; and @; on {1,2,...,p'}, using (9.6) in [5]. Thus () holds,
80 @,<N,;, as N, permutes the generators of ¢, by conjugation. The
normalizer of @, in Sym(p?) is contained in a subgroup of Sym(p?),
whieh is isomorphic to Sym (p*-1) 2 Sym(p). Therefore

N; & Ngymai-ssyme) (Pi-12 Zp) -
By (1.6) m,(N,;)=pm,(N,_,), so we are done by induction on .
Combining (4.1), (4.2) and (1.2) we get
Lemma (4.3). m,(N)=k(1,a0)k(p,a,) . . . k(p*,ay).

Now (4.3) and (3.4) for a=0 (MacDonalds result) proves McKays con-
jecture for Sym (n), but in fact

ProrosrrioN (4.4) Alperins conjecture is true for Sym(n).

Proor. Any p-block of N is a product of p-blocks of N,;2Sym (a;),
t=0,...,k From (5C) in [2] it follows, that for >0 N,2Sym(a;) has
only one p-block, because P,% contains its own centralizer in N, 2 Sym (a;).
Since ay<p, N therefore has exactly m(a,) p-blocks (one for each irre-
ducible character in Sym/(a,)), each containing

my,(Sym (a,p)) . . . m,, (Sym (a,p¥)) = k(p,a,) . . . k(p*,a)
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characters of height 0. Since the weight of p-blocks of full defect in
Sym(n) is a;+a,p+ ... +a;p*1, (4.4) now follows from (3.7).

ReMARK. If ¢ > 0, then the p'-partitions of p* are exactly the partitions
on the form (pt—r,17), r=0,1,...,p¢—1. (“L-shaped”).

5. McKays conjecture in GL(n,q).

If p|g, then McKays conjecture has been proved for p in GL(n,q)
by Alperin [1]. If ptgq, the p-blocks of GL(n,q) are not known, so it is
impossible to check Alperins conjecture. However, McKays conjecture
can be proved after some analysis.

The ordinary irreducible characters of GL(n,q) were determined by
Green [6]. The degree formula for these characters was studied in [11,
gection 2]. It is rather similar to the formula in Sym(n), which explains
why the above methods can be applied.

If » is a positive integer and ¢ a primepower, let ¢® —1 denote the
product (g—1)(g2~1)...(¢g"—1), so that

|GL(n,q)| = gn-Dr2(g2—1).

We fix some notation for the rest of this section. p is a prime divisor
of (g2—1) of degree e with respect to ¢, that is, p|(¢¢—1) and pt(¢’—1),
if f<e. Write n=c+me, where 0<c<e, and let m=ouy+ ... +a,p" be
the p-adic decomposition of m. Define D;=Z .2 P;, where a=v,(¢°—1),
Z, is the cyclic group of order p* and P;e Syl,(Sym(p?)). Then
D, e Syl,,(GL(p'e,q)). Let M, be its normalizer in GL(p’e,q). We have

D = Dy x...xD, e8yl,(GL(n,q)) .

(It may be advantageous for the reader to keep in mind, that GL (p’e,q)
will play the same role for GL (n,q) as Sym (p*) did for Sym (n).)

As a special case of (1.8) in [11] we have

Lemma (5.1).
N = Ngyn, (D) = GL(c,q) x (My2 Sym(op)) % ... x (M,2Sym(«,)) .

Lrmma (5.2).
my(M,;) = p'm,y(My) for 120.

Proor. Use induction on 3. Suppose i>0. If D, is considered as
D; 1227, then by (1.4) D/ is a subdirect product of p copies of D;_,.
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Therefore, if V is the p’e-dimensional vector space on which GL(p'e,q)
acts faithfully, then ¥ decomposes into p irreducible subspaces of dimen-
sion pi-le under the action of D/, say V,,...,¥V,. (Use e.g. (1.3) in [11].)
Since M;< Ngp e, o (Di'), each element of M, has to permute the sub-
spaces V,,...,V,. Thus M; can be embedded as the normalizer of the
Sylow p-subgroup D, ,2Z, of GL(pi-le,q)2Sym(p) in GL(pile,q)2
Sym (p). By (1.6) we get m,(M,)=pm,(M;_,), so we are done by induc-
tion.

If A is the set of irreducible polynomials over GF(g) (excluding
g(x)=x) and A is the set of all partitions of all nonnegative integers,
then the conjugacy classes and the irreducible characters of GL(n,q) can
be indexed in a canonical way by all functions 0: X~ — A, satisfying

g deg(9)16(g)] = n,

where deg(g) denotes the degree of g. Denote the set of these functions
by PV (n,q). (See [6, section 1].) If 6 € PV (n,g), let x, be the corresponding
character. Let €(0)=|{ge A | 0(g)*(0)}|. If £(6)=1 and 6(g)=A=(0),
we also denote yx, by (g,4). The (g,4)’s are the ‘“primary irreducible”
characters of GL(n,q). Any x,, 6 € PV(n,q), is a ‘“circle product” of
$(6) primary irreducble characters of subgroups of GL(n,q). (Section 8
in [6].)

Lemma (5.3). Let 6 € PV (n,q), £ =£(0). Write yy=y10%50. . .0y, where o
denotes circle product and each y; is a primary irreducible character in
GL(n,,9), s0o n=3;n;. Write nyj=c;+me, 0<¢c;<e, j=1,...,4. The fol-
lowing statements are equivalent:

(1) 2o € M, (GL(n,q)), that is, y, is a p'-character

(2) Each y; 18 a p'-character, ¢+ ... +c,=c and each m; is a p-adic
subsum of m.

Proor. By [6, Theorem 14],

vp(2e(1)) = vp(g=—1) =3 v,(¢Y — 1)+ 35 v, (15(1),  (055=9).

Clearly 3,v,(¢%—1)Sv,(¢%—1), 80 x, is a p’-character, if and only if,
vp(2;(1)) =0 for all j and

(%) ‘”p(qﬁ- 1) = Zj vp(qﬁ’—' n, (© éjé‘e) .
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So we need only show, that (x) is equivalent to the statements about the
¢;’s and m,’s in (2). Now
vp(@R—1) = ma+v,(m!),
25 0@ —1) = X mja+ 3, vy(myl) .

Since I;n;=n we have 3;m;<m, so 3;v,(m;!)Svy(m!). Therefore (x)
holds, if and only if, 3;m;=m and 3;v,(m;!)=v,(m!). The last equality
is equivalent to the fact, that each m; is a p-adic subsum of m, by (1.1).

LemMa (5.4). Let y=(g,A) be a primary irreducible character of GL(n,q),
deg(g)=d. Then the following statements are equivalent:

(1) x=(g,4) ts a p’-character

(2) dle. If &' =e[d and X=(y,...,Ay—y) and |A;|]=m,/, i=0,...,e' =1,
then my' + ... +m,_y=m, and for i=0,...,¢'—1, m; is a p-adic subsum
of m and 2, is a p'-partition. Also d|A,,)|=c.

Proor. The proof is somewhat similar to that of (5.4) and we omit the
details. Using (1.1), (2.1) and (2.2) in [11] and (2.1) above, we can write
down an inequality, starting with v, (¢3*—1) (summation on % € H(1))
and finishing with v,(¢®—1). (1) is equivalent to equality everywhere,
and the result follows.

Levma (5.5). McKays conjecture is true, if n=ple, 120.

Proor. Use induction on . If 1=0, D;=Z, is cyclic, so (5.5) is a
consequence of Dade’s results. Suppose ¢>0. The only p-adic subsums
of p* and 0 and p*, so a p'-character of GL(p’e,q) is primary irreducible,
by (5.3). Using (5.4) and (2.4) for x=1 we now get, that a p’'-character
can be indexed uniquely by a triple (g,%,j), where g € ", d=deg(g) e,
0sk<e, 05j<p', e =eld. (g9,k,j) corresponds to the character (g,1),
where A,)=(0) and A= (4,...,4,1), A=(0), if &'k, 1;,=(0)%...x(0)*
(1)%(0)*. .. %(0) € Par(p?), (1) occurs in the jth place. In this indexing, the
values of g and k are independent of ¢, 8o in particular m,(GL(p'e,q))=
pm., (GL(p*-e,q)). Now (5.5) follows from (5.2).

Lrmma (5.6). McKays conjecture is true, if n=apie, 120, 0<x <p.
Proor. In this case m,(N)=k(m,(M,),«)= k(mp (GL(pte,q), oc)) by

(1.2) (2) and (5.5). Any p-adic subsum of xp® has the form «'pt, 0 < o’ < ox.
Let us use the indexing of M,(GL(p'e,q)), introduced in the previous
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lemma. To a split a=3(g,%,7j) of », and partitions u(g,%,j) of x(g,k,J)
we associate a p’-character y, for GL(xp’e,q) as follows:

It deg(g)te, 6(g)=(0).

If e=deg(g)e’, O(g) is defined by 0(g),,=(0) and

6@ = (0@ - -, 0(9)er) -

where 0(9),=p(g,%,0)%. . .*u(g, k,p*—1).

By (5.3), (5.4) and (2.4) g, is a p'-character, and each p’-character of
GL (ap'e,q) arises in this way. (Note that each u(g,k,j) is a p-core, be-
cause its cardinality is <p.)

For Ae€Par(n), we define the p-expansion of 42 as the sequence
(A9,A154g, - - . ), where for ¢=0 4, is the *-product of all the partitions in
the ¢th row of the p-core tower of 4 (in the same order). 1 is uniquely
determined by its p-expansion. If 1,,...,4, are arbitrary partitions, we
define A;v...vl, as the partition 1 of s(|4,|+...+|4,|) with A®@=
(A3, - .,4,). The v-product is neither associative nor commutative.

Lemma (5.7). McKays conjecture is true for all n.

Proor. We want to establish a bijection

¥: M,(GL(n,q) >
- M, (GL(c,q)) x M, (GL(xge,9)) X . . . x M, (GL(x,p",q)) .

It is defined as follows: Suppose y, € M,(GL(n,q)) is given. For each
ged, let e(g)=e/(e, deg(g)), and 0(g)€=(6(g),,. . .,0(g)em-1)- For each
0(g);, let (6(9)% 0(g)s,. ..) be the p-expansion. Then

Y(xe) = (Xe'sxeo»Xol’- - s Xep) >

where for all g e A" and for 1=0,...,r

0'(9) = 0(9ien »
0:(9) = 0(9)e*v0(9)1?v. . . v0(9)si—1" -

We have that each |6(g),| is a p-adic subsum of m and that |6(g),%| +
10(g)t|p+ ... is the p-adic decomposition of |6(g);]. Using this and
(6.3)—(5.4) one shows that ¥ is in fact well-defined. Once this is shown,
¥ is clearly a bijection, because each step in the construction of ¥ is
unique and reversable. Since ¥ is a bijection, (5.7) follows from (5.1)
and (5.6).
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11.
12.
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