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FREE PRODUCTS AND ELEMENTARY TYPES
OF BOOLEAN ALGEBRAS

PHILIP OLIN

Abstract.

The algebraic notions of atomic and atomless in the free product of
two Boolean algebras are characterized in terms of these notions in the
factors. From this a multiplication table for the free product of elemen-
tary types is derived. The countably saturated Boolean algebras are
characterized algebraically and the finite free product is shown to pre-
serve countable saturation. Two applications are given, one to a que-
stion of Halmos and another to a refinement property.

1. Introduction.

In the abstract [17] Tarski characterized the elementary types of Boo-
lean algebras by means of certain invariants. The results were later pro-
ved and generalized by Ershov [5], and they appeared recently in Chang
and Keisler [3, sections 5.5 and 6.3]. Our notation follows that of [3].

The invariants are defined using the notions of atomic and atomless
elements, the ideal they generate and the same notions again in the fac-
tored algebras. In section 2 we give characterizations of these notions in
A * B in terms of the same notions in 4 and in B. In section 3 we give
the multiplication table for elementary types of Boolean algebras under
* obtained using these characterizations. In section 4 several properties
of this semigroup of elementary types which follow from the multipli-
cation table are noted. The elimination-of-quantifiers for Boolean alge-
bras, due to Tarski and Ershov (see [5]), is used along with the charac-
terizations of section 2 to give in section 5 an algebraic charactization of
the countably saturated Boolean algebras. These are known to exist
for each elementary type (see 5.5.9, page 303 of [3]). Then in section
6 we show that if 4 and B are countably saturated, so is their
free product A = B. The preservation by * of «-saturation for « > w is
shown to fail badly. The results are applied to explicitly construct de-
numerable Boolean algebras which answer a question of Halmos (page

This work was supported in part by a grant from the N.R.C. of Canada.
Received April 14, 1975.



6 PHILIP OLIN

125 of [9]) and to get counterexamples to the isomorphic refinement
property for free products of Boolean algebras.

Any unexplained notation is from [3], especially section 5.5. We use
* to denote the free product operation relative to the variety of all Boo-
lean algebras (see [6], section 29).

Most of the results of this paper were announced in [13], [14].

The author wishes to acknowledge the continuing advice of B. J6ns-
son. In particular the results of section 4 below are due jointly to Jéns-
son and the author. The author also thanks S. Burris and G. Grétzer
for bringing to his attention the Halmos question and the refinement
question respectively.

2. Ideals of atomic and atomless elements.

If C is any Boolean algebra let I(C) denote the ideal in C' generated
by the atomic and atomless elements of C. For the Boolean algebra A4,
let I, be the trivial ideal {0} and proceeding by induction let I, ., be the
kernel of the canonical map 4-(4/1,)/1(4/I,). To avoid confusion we
denote the corresponding ideals in the Boolean algebras B,4 = B by
J,.,K, respectively. We refer the reader to section 5.5 of Chang and
Keisler [3].

Lemma 2.1. Suppose ae A,be B and 1 Sk< w. Then ab € K, iff one of
the following holds:

(i) there exist i,j such that a € I, beJ;and i +j<k+1.

(ii) a ts atomless in A or b is atomless in B.

(iii) k 18 odd and there exist 1,5 such that each is even and positive, 145 <
k+1, a[I, 20 and atomless in A[I,, and b[J;2 0 and atomless in B/J,.

(iv) k 18 even and there exist 1,j such that each 1s odd and positive, i +j S
k, and afI; 2 0,b/J; 2 0 with either both being atomless or both being atomic
in A[I,, B[J; respectively.

(v) k 18 even and there exist 1,5 such that each is even and positive, i +j =k,
a/l;> 0 and atomless in A[I,, and bjJ;> 0 and atomless in B[J,.

Lemma 2.2, Suppose ac A,be B and 1sk<w. Then ab/K, >0 and
atomic in A *+ B[K, iff one of the following holds:

(i) a/I, >0 and atomic, and b € J, and b not atomless in B.
(ii) b/J)> 0 and atomic, and a € I, and a not atomless in A.
(iii) kodd and there exist 1, such that each 18 positive, s +j =k,a/I;> 0 and
atomic in A[I,, and b|J,;> 0 and atomic in B|J,.
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(iv) k even and there exist ,j such that each i8 even and positive, s +j=Ek,
a/I,>0 and atomic in A|I,, and bjJ;>0 and atomic in B|J,.

(v) k odd and there exist 1,] such that each is odd and positive,t +j=k+1,
a/I;>0 and atomic in A[I;, and b[J;>0 and atomic in B|J,.

Lemma 2.3. Suppose ac A,be B,1sk<w and ab[K,>0. Then ab/K,
8 an atom in A = B|K, iff there exist 1,5 such that s +j=Fk,a[l, is an atom
in A[I,, and blJ; 18 an atom in B|J;. Furthermore, in this case, if a’[I, is
an atom in A[I; and b'[J; i8 an atom in B|J, then ab/K,=a't'|K, iff
afl;=a'[I; and bjJ;=b"|J,.

LemmMa 2.4, Suppose ac A,be B and 15k <w. Then ab/K;>0 and
atomless in A = B|K, iff one of the following holds:

(i) a/I,>0 and atomless in A[I,, and b e J, and b not atomless in B.

(ii) a/I; 20 and atomless in A[I,,b/J,>0 and atomless tn B|J,, and
alI,,_, >0 and not atomless in A|I,_,.

(ili) there exist ©,j such that a/I;>0 and atomic in A[I,b[J;>0 and
atomless in B[J;,b not atomless in B,i+j=Fk, and either k even or both k
and j odd.

(iv) k odd and there exist 1, such that each is odd and positive, ++j=
k+1,a/I,20 and atomless in A[I;,b[J;>0 and atomless in B|J;, and
all,_,>0 and not atomless in A[I,_,.

(v) k even and there exist 1,5 such that each s even and positive, t+j=
k+2,a/I,20 and atomless in A[I;,b/J;>0 and atomless in B|J,, and
all;_y> 0 and not atomless in A[I,_,.

(vi)~(x) are gotten from (i)—(v) respectively by interchanging + and j,
aand b, I and J.

(xi) k even and there exist 1,5 such that each is even and positive, 1+j=
k+2,a/I;=0=b/J,, and a/I;_;>0,b|J;_, >0 but not both atomless and not
both atomic in A[I,_,, B|J,_, respectively.

We note first that the following can be proved easily.

ab=0iff a=0or =0,

ab atomioc iff both @ and b are atomic,
ab atomless iff one of a,b atomless,

ab an atom iff both a and b are atoms.

One also shows directly that Lemma 2.1 is true with k= 1. The proofs
of Lemmas 2.1-2.4 now proceed simultaneously by induction on k.
Assuming that Lemma 2.1 is true for k, the “if”’ parts of Lemmas 2.2-
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2.4 are established. Then we assume acl,,,—I;,bedJ; ;—J; and by
considering the five cases ¢+j<k, i+j=k, t+j=k+1, 1+j=k+2,
t+j>k+2 the possible conditions on a/I;, b/J; not given in Lemmas
2.2-2.4 are enumerated and shown not to imply the appropriate condi-
tion on ab/K,. In this way the “only if”’ parts of Lemmas 2.2-2.4 are
established, and we get Lemmas 2.2-2.4 for k. Finally one shows that
if ab e K;, then a,b satisfy one of (i)—(v) of Lemma 2.1 for k41, and
then by considering the five cases above with £+ 1 in place of £, Lemma
2.1 is established for &+ 1. The details of the proofs are very lengthy and
involve Boolean algebra computations which are in the spirit of those in
section 5.5 of [3]. Hence we omit them.

3. The invariants.

If 4 is any Boolean algebra with at least two elements, we define
m(4) to be the largest finite m such that I,,+ 4, or m(4)=oco if this
largest does not exist. If m(4) < oo we define |n(4)] to be the number of
atoms in 4/I,,, if that number is finite, and |n(4)| =0 otherwise; and
n(d)=|n(4)| if A/, is an atomic Boolean algebra and n(a)= — |n(4)|
otherwise. If m(4)=oc we define n(a)=0. We say {(m(4),n(4)) is the
pair of invariants of 4. The following theorem was announced in Tarski
[17], proved in Ershov [5], and can also be found in section 5.5 of [3].

TrarEOREM 3.1. For any non-trivial Boolean algebras A and B, A =B iff
(m(4), n(4))=(m(B), n(B)).

We note that the set of elementary types of non-trivial Boolean alge-
bras is in one-one correspondence with

{{m,n): me w,neZu{+o}}u {0},

where Z denotes the set of all integers.

The results of section 2 can be used to obtain the invariants of 4 x B
from those of 4 and B. First of all, (0,0) * (m,n)={0,0), and if (m,n) %
{0,0) then (oo,0) * {m,n)={oc0,0).

Now excluding these cases we have

max(m(4),m(B)) £ m(4 » B) £ m(4)+m(B).

Then using Lemmas 2.1-2.4 we can obtain the remaining possibilities, as
given below. The lengthy but straightforward verifications are omitted.

NoraTioN FOR THE TABLES BELOW. The tables below give the inva-
riants for 4 +B. Since 4 *Bx~ B »4 we avoid many of the obvious repe-
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titions. To simplify further we adopt the following conventions and no-
tation.

(i) = +means 0 <x < + o for first invariants and O<xz< +o0 for
second invariants,

(ii) x= —means—oc <0,
(iii) if >0 then z- 0 =00,
(iv) 0-00=0,

(v) m=m(A)+m(B),

(vi) n=|n(4)|* [n(B)].

Each box in tables IT and III below contains a pair of invariants, the
first written above the second. For example the entry in the third row

and second column of table III tells us that if 0 <m(A4) < o0, m(A4) even,
n(4)=0, m(B) < oo,m(B) odd, and 0<n(B) =< + oo then
m(4 * B) = m(4)+m(B)-1
and
n(4 * B) = |[n(4)|-[n(B)| (= 0 in this case).

Similarly the entry in the third column and second row of table II tells
us that if 0 <m(A4) < oo, — o0 =n(4)<0,m(B)=0, and 0 <n(B) = + o« then
m(A *B) = m(4)+m(B) (= m(4) in this case)

and
n(4 *B) = —|n(4)|-[n(B)| .

The entry in the third row and sixth column of table III will have im-
portant applications in section 6 of this paper.

The result I and the tables II and III below give a complete multi-
plication table for elementary types of Boolean algebras under the ope-
ration of free product of two Boolean algebras.

CoroLrLARY 3.2 (Weglorz [19]). For any Boolean algebras B,, By, By, B,,
if B,=B, and By= B, then B, x By=B, » B,.

The question of free products preserving = in other varieties has
been studied in [11], [12].
I (a) For any pair of invariants {(m,n},
{0,0) * (m,n) = (0,0).
(b) For any pair of invariants (m,n) + (0,0,
(00,0 * (m,ny = (0,0} .
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Table I1
N 4 + + + 0 0
BN + - 0 + -
0 m m m m m
+ n —n n n -n
0 m m m m m
- n -n n -n —-n
Table TI1
. 4 |even>0|even>0jeven>0| odd odd odd
B\ 0 + - 0 + -
odd m—1 m m m m m
- n —n —-n n 0 0
odd m—1 m m m m—1
+ n n n n + o0
odd m—1 m m m—1
0 n n n n
even>0 m m m
- n —-n -n
even>0, m m
+ n n
even>0 m—2
0 n

S. Burris [2], working independently and at the same time as the au-
thor, has obtained several results of which the following are corollaries.

1. For any Boolean algebras B;,B,,B;, B, if B;= (<) B, and By=
(<) B, then B, * By= (<) B, * B,.

2. For any Boolean algebra B and any filter D on a set I,B x 2I/D
can be elementarily embedded in BI/D.

Burris’ work is based on the well-known results of Feferman and
Vaught and does not use the invariants.

A. 1. Omarov [15] has shown that the elementary types of B and 2I/D
determine that of BZ/D. Omarov’s paper seems somewhat sketchy (see
the review [20]) but the multiplication table which could be derived
from his work is the same as that given above. This of course would also
follow from the second result of Burris mentioned above. For some other
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related work the reader is referred to Ash [21], Bacsich [1], and Bana-
schewski and Nelson [22].

4. The semigroup of elementary types.

The results of this section were obtained jointly by B. Jénsson and the
author. We use ¢,p,0 to denote elementary types of Boolean algebras,
and @ * yp is the type of 4 * B where 4 € ¢ and B e y. It is easy to see
that the semigroup 7' of elementary types is in fact a commutative mo-
noid. We write ¢ for the free product of ¢ with itself » times, and in
general we abbreviate ¢ * y by gy.

DeriniTION 4.1. (8) |y if there exists § € T' such that pf=y.
(b) ¢ is weakly indecomposable if ¢ =0 implies p =1y or p=0.
(c) @ is prime if p|yp@ implies ¢|yp or ¢|0.

(d) ¢ is idempotent if p?=¢.

(e) @ is cancelable if for every ¢,0 € T', @y =0 implies p=40.

The following results can be derived from the multiplication tables of
section 3. We omit the derivations.

ProrosriTioN 4.2. (a) The divisibility relation @ly induces a partial order
onT.

(b) The partial order of (a) i3 neither an upper nor a lower semilattice
(since {2,+1) and (2,—1) have no l.u.b. and since (3,+1) and (3,—1)
have no g.1.b.).

(c) The prime types are {0,0), {0,1), {0,—1) and {(c0,0); any finite
product of primes 18 prime and (because of (d) below) prime tmplies weakly
indecomposable.

(d) The weakly indecomposable types are {0,0), {0, + 1), {0,+ p) where
P is a prime >1, {0,+00), (1,05, {(1,+1), (2,+1) and (,0); any type
can be written as a finite product of weakly indecomposable types.

(e) The idempotent types are the primes and

€0, + 00%, (1,0, (1, + o) and (2,0)

(f) Let p={my,n,) and p={mg,nyy. Then for any finite r 2 2: ¢"=vy" iff
@t =92 iff either (i) p =1y or (ii) my=my=o0dd and either 0 <ny,ny < + oo or
— 00Xy, Ny < 0 or (iii) m, 8 odd, my=m,+1,— 0 <n, <0 and ny=0.

(g) For any finite r=2: (i) ¢"0=1y"0 iff p20=1920 and (ii) pb=1yp0 im-
plies pr0=y"0. However ¢20=y20 does not imply p0=vy0 (use (f) with
0=1).

(h) @=gpy? implies p=gy; hence ¢ =g® implies p = 2.
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(1) The common refinement property fails.

That i3: @y, =@y, does not tmply that there are 0,,0,,0,,0, such that
@1="0,0,,9,=0304,p,= 0,0, and p,=0,0, (see section 6 below).

(j) The type @ ={m,n) is cancelable iff m is even and 0<n < + .

(k) It is known (see Waszkiewicz and Weglorz [18]) that ¢ ={m,n) is
Ry —categorical iff m=0 and |n| <occ. Hence gy is Ry-categorical iff either
(i) @ or p 18 0,0) or (ii) both ¢ and vy are Ry-categorical. It is known that no
@ 18 R,-categorical.

We end this section with some miscellaneous remarks. Let 4,B,C be
any Boolean algebras.
(4.3.1) By considering Stone spaces it follows easily that

A+ (BxO) =~ (A*B)x(4+0).

(4.3.2.) AxA=Bx B implies A=B. In a sense this was a difficulty
which Hanf and Tarski (see [10]) had to overcome in getting non-iso-
morphic, denumerable Boolean algebras D,E such that Dx D~ E x K.
In contrast see Corollary 6.2 below and also the remark following it.

(4.3.3) E. Nelson has pointed out (private communication) that a
Boolean algebra B is elementarily equivalent to its completion iff the
set of atoms in B has a join in B (iff m(B)=0). The proof (see [22]) is
not difficult. Moreover, in this case B is in fact an elementary subsystem
of its completion.

5. Countably saturated Boolean algebras.

The ideals I,,,n < w, in the Boolean algebra C were defined at the be-
ginning of section 2.

Drrinrrion 5.1. Let C be a Boolean algebra and z € C. For n < w and
m < o we define

(i) I, (x) tomeanzel,,
(ii) B,(x) to mean /I, is atomic in C/I,,
(iii) 4,™x) to mean z/I, contains at least m atoms of C/I,,.

The following theorem is usually credited to Tarski. To the author’s
knowledge the only place it appears in print is Ershov [5].

TerOREM 5.2. The theory of Boolean algebras with the added set of
predicates
8 = In’Bn’Am“}n<w,m<w

admits elimination-of-quantifiers.
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DerFmnrtioN 5.3. A Boolean algebra C is countably saturated iff C is
countable and for any finite subset ¥ of C' and any set T of formulas
from the language for Boolean algebras with at most one free variable
and possibly constants from Y, if 7' is finitely satisfiable in C then T is
satisfiable in C.

For the basic facts about countably saturated models the reader is
referred to [3], especially section 2.3, and for Boolean algebras, 5.5.9 on
page 303. In particular each elementary type of Boolean algebras has,
up to isomorphism, exactly one countably saturated Boolean algebra.

The next theorem gives an algebraic characterization of the countably
saturated Boolean algebras. A.I. Omarov [23] has obtained a some-
what different characterization of »-saturation for Boolean algebras. The
abbreviations V, 3,~,&, have the usual meanings “for all’, “there ex-
ists”, “not”, “and”.

THEOREM 5.4 Suppose C is a countable Boolean algebra. Then C is count-
ably saturated iff all of the following hold in C:

(1) Ve,¥yn, ifxél,

then 3y < x such that B,(y) and Ym A, (y).
(2) Vz,¥n, if B,(x) and Ym A,,™(z)

then y <z such that Ym A,™(y) and Ym A4, (§x).
(3) Yz, if Vo~ 1, (x)

then Jy < x such that Yn~1,(y) and Yn~ I, (jx).

Proor. Suppose first that C is countably saturated. We show that
(1), (2) and (3) hold in C.
(1) Say a e C—1,,,. By saturation it suffices to show that the collec-

tion
{y<a,B, (1), 4™ }m<w

is finitely satisfiable in C. Since a ¢ I,,,,, /I, must contain an infinite
number of atoms of C/I,, ; otherwise if b/I, is the join of the finite number
of atoms of C/I, under a/I, then a/I,=b[I,+ba/I, with b/I, and ba/I,
being atomic and atomless respectively in C[I, and so a € I, ;. Now let
mq be the largest m such that 4,"(y) is in the finite subset which is to be
satisfied in C. If 2/I, is an atom under a/I, we can easily arrange z<a.
If b is the join of any m, such 2’s then b satisfies the finite subset.

(2). Suppose a/I, is atomic and contains an infinite number of atoms
of C/I,. Using the same method as in (1) above it follows that
{y<a,4,™y),4,™#a)}m<. is finitely satisfiable, and hence satisfiable,

in C
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(3). Suppose Vn,a ¢ I,. Let n, be the largest n in a finite subset of
the collection
{y<a’~ Y) & ~ n(ga)}n<m .

Since a ¢ I,,,,, we can get b<a such that be I, ,,—TI,. Since a=ba+
ba=b+ba, we get
0 < afl, 1y = (B/Lngsr) + (b0 1q) = bafLyy.y -

Hence ba ¢ I,,,,,. Thus b satisfies the finite subset and the result now
follows by saturation.

Now assume that C satisfies (1), (2) and (3) and we will show that C is
countably saturated. The following lemma is not difficult to prove.

Lrmma 5.5. In a Boolean algebra, suppose zy=0. Then for all n< w,
m<aw:

(1) L(x+y) off I(x) & L,(y)
(ii) B, (x+y) iff Bu(x) & B,(y)
(ii) 4,"(x+y) iff 3 my,my such that my+my=m and 47, (v) & 4}, (y).

Using this lemma and Theorem 5.2 it can be seen that our result fol-
lows if we can show the following.

(#) Say a,,...,a,,r finite, are members of C such that a;+ ... +a,=1
and if ¢+ then aa;=0. Let S={I,,B,,4}}nc0,n<o 8nd let + mean
either not negated or negated. Suppose the collection

€ = {1 P(ay), £ P(a@), + P(a%)} pes,15i5r
is finitely satisfiable in C. Then ¥ is satisfiable in C.

Write € =%,U...U%,, where €; is the subset of € consisting of the
formulas of € which mention a;. Note that if x; satisfies €, then z=
3. ag, satisfies €. So it suffices to show the following.

(##) Say S and + are as defined in (#), a € C, and the collection
€ = {+ P(a), + P(az), £ P(a%)}p.g
is finitely satisfiable in C. Then ¥ is satisfiable in C.

We will now prove (##). If =0 then any z will do, if I (az) € € (that
is, ax=0) then z=a will do, and if I(aZ) € € then z=a will do. So we
now assume ~ Iy(a),~I(ax),~ Iy aZ)ec¥.

Cask 1. {~I,(ax),~I,(a%)}, <, €.
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Finite satisfiability yields, for each n < w, that ~I,(a) € €. The other
formulas in € are now completely determined as to %, and (3) yields
the required element.

Cask 2. For some n,r < w,

u/l’ == {~In+l(a5),1n+1(ax), ~ n(aw)’ ~_Ar‘n(ax)} < % .
We can assume r is minimal and r2>1. Let .# be the finite subset of ¥

defined by
M = MU {+B,(ax),A}_,(ax)} .

The element b € C which satisfies # will in fact satisfy all of €. The
formulas in .# determine each P(ab), and it follows from ~ I, ., (ab) and
I,,,(ab) that P(ab) iff P(a). Using finite satisfiability we get P(a%) e €
iff P(a) € € iff P(a) is true in C, and the result follows.

Cask 3. For some n< o,

{~In+1(a'i)’In+1(ax): ~ n(ax)’Amn(a'x)}m<m = ? *

By finite satisfiability, ~I,,,(a) holds in C. Apply (1) to a and-get
b<a,B,(b), Ym 4,*®b). If B,(az) € ¥ then b satisfies €. If ~B, (azx)e ¥
then ~ B, (a) € € and so there must be some d < a such that ~ I (d) and
~A,Md) (that is, d/I,>0 and atomless in C/I,). Then b+d satisfies €.
The reasoning in this case is similar to that in case 2 above.

CasE 4 and Case 5. Interchange ax and aZ in cases 2 and 3.

So we can now assume that for some 7 < w,

N = {In-u(ax):“‘In(ax)’ Iu+1(aa):~ln(a5)} c¥.
Casg 6. For some r<w, A U{~A4,az)}<¥.

We can assume 7 is minimal and 2 1. In this case the element that
satisfies

AN U {~A}azx),A]_,(ax), + B(ax), + B(aZ)} will satisfy all of € .
Cask 7. Replace az by aZ in case 6.

Cask 8. A u{d)(ax), Ap(a%)}nen SF.
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By finite satisfiability, 7, ,(a) and ~1I,(a) hold in C. So there are
b,d such that a=b+d, bd=0, and a/I,=b/I,+d[I, where b/I,>0 and
atomic in C/I, and d/I,=0 and atomless in C/I,. Further, we must
have ¥Ym A, "a); that is, Ym 4,"(b). And of course B, (b). Apply (2) to
b and get c<b such that c¢,cb both satisfy B, and Vm 4," Further,
there is some e<d such that d/I,, > 0 iff both e/I, >0 and ed/I, > 0. De-
fine f to be c if B,(ax) € €, to be c+d if B,(a%) € €, and to be ¢+ ¢ other-
wise. It follows that f satisfies €, and the theorem is complete.

Let C,, ,, denote a countably saturated Boolean algebra of elementary
type (m,n). Because they will be important in the next section we apply
Theorem. 5.4 to explicitly describe certain C,, ,.

It is easy to identify an isomorphic copy of C, , as a subalgebra B, of
P(w), the power set of w considered as a Boolean algebra in the usual
way. Let B, be the Boolean algebra generated by B, and the atoms (single-
ton sets) of #(w). Then B,~C, ., and By=B, x By~C, _, (using The-
orem 1.5 of Waszkiewicz and Weglorz [18], together with the solution
to exercise 5.5.6 of [3]). Now, in the direct power (B,)*, let ®,.B, denote
the ideal

{x € (B,)® : « is a finitely non-zero sequence} .

Let B, be the subalgebra of (B,;)” given by
By =®,B,u{Z: ze®,B,}.

From Theorem 5.4 it follows that By~ C, ,,. Using [18] and [3] as was
done above, it follows that for 1 <7< w, the direct power (Ba)'x 0y, 4

6. The preservation theorem.

This section containsg the major results of the paper. We will however
use heavily Lemmas 2.1-2.3 and Theorem 5.4 above.

Burris [2] remarks that it follows from work of Pacholski (see [18])
that if B is a countably saturated Boolean algebra and A4 is a countably
saturated algebra (not necessarily a Boolean algebra) then it does not
necessarily follow that the bounded Boolean power A[B]* (see [2] for
the definition) is countably saturated, However if we also assume that
A is a Boolean algebra then by a result of R. W. Quackenbush [16],
A[B]*~ A » B and hence by the next theorem, A[B]* is countably sa-
turated in this case.

Pacholski has informed the author that alternate proofs of Theorems
5.4 and 6.1 can be obtained using results from his [24].
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TaEOREM 6.1. If C and D are countably saturated Boolean algebras then
C * D is countably saturated.

Proor. Let I,,J,,K, denote the usual ideals (see section 2) in C,D,
C * D respectively. We assume that C' and D satisfy (1), (2) and (3) of
Theorem 5.4 and we will show that C = D also does.

(1) Suppose z€C xD and z¢ K, ,,. Now x=3]_,a;b; with a;eC,
b,e D. So some ab; ¢ K, ,; and we denote it by ab. Hence a is neither
atomless nor 0 in C and b is neither atomless nor 0 in D.

Casel. aé¢l, ,orbé¢J, ;.

Say a¢ I, ,,. Apply (1) and get c<a,B,(c) and Vm 4,"(c). Also get
d<b,d an atom in D. It follows that cd <ab and, using Lemma 2.2 (i)
and Lemma 2.3, that B, (cd) and VYm A4,™(cd) hold, so that cd is the re-
quired y. If b ¢ J,,,, the proof is similar.

We can now assume aecl;,—I;bedJ;,,—J;,i<n,j<n. Since ab¢
K, ,, we get from Lemma 2.1 that (¢+1)+(j+1)>(n+1)+1; that is,
t+j>n. Hence ¢ 21 and j= 1.

CasE 2. 1+j=n+1 and » is even.

Without loss of generality say ¢ is odd and j is even. We know n+1 is
odd, a/I;,;,=0,j+(i+1)S(n+1)+1 and j and i+1 are even. If b/J,
were atomless then by Lemma 2.1 (iii) we would have abe K, _,. Hence
there is an atom d/J; of D/J; with d <b. Since a ¢ I,, apply (1) and get
c<a,B;_,(c) and Ym A4,*1(c). Since ¢ —1 and j are even and (¢ — 1) +j=mn,
it follows that cd<ab and, by Lemma 2.2 (i), (iv) and Lemma 2.3,
B, (cd) and Vm 4,cd).

CasE 3. 1+j=n+1,n is odd and ¢ and j are even.

By Lemma 2.1 (v), a/I; and b/J; could not both be atomless. Without
loss of generality say c<a,c/I; an atom in C/I,. Since b ¢ J; apply (1)
and get d<b with B;_,(d) and Vm 4,/-}(d). Hence cd<ab and, by
Lemma 2.2 (iii), (i) and Lemma 2.3, B,(cd) and Vm 4,,7(cd).

Case 4. i+j=n+1, nis odd and 7 and j are odd.

Using Lemma 2.1 (iv) instead of (v), the proof is the same as that for
case 3.

Math. Scand. 38 — 2
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CASE. 5 1+j=n+2,n is even and ¢ and j are even.

So 422 and j2=2. By Lemma 2.1 (iii), a/I; and b/J; are not both
atomless. Suppose ¢ <a,c/I; an atom in C/I;. Since b ¢ J;,b ¢ J;_;. Apply
(1) and get d <b with B;_,(d) and YmA,7-*d). Now c¢d <ab and, by Lem-
ma 2.2 (i), (iv), B,(cd) and Ym 4,,"(cd) hold.

CaASE 6. 1+j=mn+2 and not all of »,%,j are even.

Without loss of generality, say ¢>j. Let i,=i—1. Since a ¢ I;,=1, ,,,
we can get c<a with ¢ € I, ,, — I, and ¢/I, neither atomic nor atomless
in O[I,. We claim cb ¢ K, ,,. Consider the five conditions in Lemma 2.1.
Since

(to+1)+(j+1) =t+j+1 =n+3> (n+1)+1,
(i) does not apply. Clearly (ii) does not apply. An application of (iii)
would have n+1 odd, (1g+1)+j=(n+1)+1, and ¢;+ 1 and j even. But
then n,%,7 would all be even, contradicting the hypothesis of this case.
To apply (iv) we would need to consider ¢/I; +1=0 and b/Jj. But

G+ D+j=1t4+j=n+2 > n+1

and so (iv) does not apply. Because ¢/I, >0 and is not atomless in C/I,
(v) is excluded. So ¢b ¢ K,, ;. Since j=<n, 122 and so 4,2 1. Also, ¢,<
1<n and ¢y+j=n+1. So apply one of cases 2,3, or 4 to cb and the re-
sult follows.

Case 7. i4+j>n+2.

Hence ¢23 and j 3. Let ,,j, satisfy 1> 4,5 >Jjg %9 +jo=n+1. As in
case 6 get c<a,d<becely —I,,ded; ,~J;, and c/I;,d[J; nei-
ther atomic nor atomless in C/I,,D/J; respectively. As in case 6 it fol-
lows that c¢d ¢ K,,,; and an application of one of cases 2, 3 or 4 completes
the proof that (1) holds in C = D.

(2) Suppose x € C * D and x satisfies B, and ¥Ym 4,". Since z is a
finite sum of terms of the form ab, a € C, b € D, it follows that one of
these ab also satisfies B, and Vm A4,". Suppose a.by/K, is an atom and
is <ab/K,. It follows from Lemmas 2.2 and 2.3 that there is a unique
pair (3,5) such that all of the following hold:

(a) either i+j=nori+j=n+1,

(b) ay/I, is an atom in C/I,,

(¢) by/J; is an atom in D/J,,

(d) for any ceC,de D, if ¢/I;>0 and atomic in C/I; and d/J;>0
and atomic in D/J; then ¢d/K, > 0 and atomic in C * D/K,,.
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For the different atoms under ab/K,, (a) above yields that there are
only a finite number of such pairs {z,j). Hence there is a fixed such pair,
call it (3.7, such that an infinite number of the atoms under ab/K,, sa-
tisfy (a)— (d) for this {z,5).

Since aghy/K, <ab/K,, (ab)ag, € K,, and so (@a,)b, € K,, and a,(bb,) €
K,. Also, 0 2d@ay/I; < ay[I;, the latter being an atom in C/I,. If Gay/I;> 0
then since by/J; >0 and each is an atom, we get by (d) above that (@a,)b,/
K, >0, contradicting (@a,)b, € K ,.

So @ayf/I;=0. Since a,=aqa+ad@ we get ay/l,=aya/l;. This shows that
we can assume d,<a. Similarly we can assume b,<b. Using the second
part of the statement of Lemma 2.3 we can without loss of generality
assume that there are an infinite number of atoms by/J;,b,<b, and at
least one atom ay/I;,a, =< a, such that ayby/K, is an atom under ab/K,.

Casg 1. b ¢J;,,. In this case apply (1) to b and get d <b with d/J;
atomic and containing an infinite number of atoms ¢,/J;. We can assume
eg<d.

CasE 2. beJ;,;. Then b=t+u,tu=0, and ¢/J;>0 and atomic in
D[J;,u[J;z 0 and atomless in D/J;. We can arrange b,<t. In this case
let d=t and e,=b,.

In either case apply (2) to d and get g <d with By(g), B,(gd), Ym 4,3(g),
vm A,J(gd). Since
(agg)ab z (aeg)apd = ay(gd) ,
it follows that
0§ < ab, By(asg), Ba((@9)ab), Vim Au™acg), Vm A,{(aeg)ad) ,

completing the proof of (2).

(3) Suppose z € C * D and Yn ~ K, (x). Then z is a finite sum of terms
of the form ab,a € C,b € D and it follows that for one of these ab, Vn ~
K, (ab). Hence in particular a is neither atomless nor 0 in C, and similarly
for b. From Lemma 2.1 (i) we can without loss of generality assume that
Vn~1I (a). Apply (3) to @ and get c<a,¥Vn~1,(c) and Yn~ I, (a). Since

(cb)ab = (ca)b ,
Lemma 2.1 yields that

Va~K,(cb) and Vn~K,((cb)ab),

completing the theorem.
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CorOLLARY 6.2. There is a denumerable collection S of denumerable and
patrwise not elemeniarily equivalent Boolean algebras, and a particular
Be8, such that if By,...,B;e8 (repetitions allowed) and 2<t< w then
By»...xB~B.

Proor. Let 8={0) .,}1<r<o0r Where C, ., is the countably saturated
Boolean algebra of type (1,+7). For 1 <r<,(, ., was explicitely con-
structed at the end of section 5 above. Let B be C, .. All of the desired
properties of § now follow from the entry in Table III of section 3 in
the third row and sixth column, from Theorem 6.1, and from known
properties of saturated structures (see the remarks preceding Theorem
5.4).

In [10] Hanf and Tarski obtained denumerable, non-isomorphic (but of
necessity elementarily equivalent) Boolean algebras 4,B such that
A x A~BxB. On page 125 of [9] Halmos asks whether this can be done
with *in place of x. Comer [4] has used results from [10] to obtain a
positive answer to Halmos’ question. However the Boolean algebras
which Comer uses are uncountable and elementarily equivalent (each
being atomic with an infinite number of atoms). It follows as a special
case of Corollary 6.2 above that if C, ,;,C; ,, are the countably saturated
Boolean algebras of types (1, + 1), {1, + 2) respectively (explicitely con-
structed at the end of section 5, with Oy ,,=C, 1%, ,,) then C, ,,; =
C,,+s and

Cr1*Cria = Craa* O (2 Ohh) -

After obtaining these results the author learned of an earlier solution
to the Halmos problem, due to R. S. Pierce [25, page 58]. Pierce consi-
ders the Boolean space X gotten by taking the Cantor set on the interval
from —1 to 0, together with the Cantor set on the interval from 0 to 1,
and adjoining the midpoints of the omitted intervals between 0 and 1.
He shows X is not homeomorphic X x X but X x X is homeomorphic
to X x X x X and hence to (X x X) x (X x X). Using Theorems 5.4 and
6.1 above it can be shown that if A, B are the dual algebras of X,X x X
respectively then 4 ~C, ,; and BxC, ..

In [8] Gritzer and Sichler show that for any non-trivial variety of
lattices the strict common refinement property for free products holds.
It is easy to see that the strict common refinement property implies the
isomorphism common refinement property, and the next corollary shows
that the latter property fails for the variety of all Boolean algebras.

CorOLLARY 6.3. There are denumerable Boolean algebras B,,B,, By, B,,
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such that B, * By~ By * By, and there do not exist Boolean algebras D, D,,
Dy, D, such that

DyxDy=B,, Dy3xD;=DB, D,*D3g=DB;, Dy»D;=B,.

Proor. With C, ,, defined as at the end of section 5, let
By x By = Cy,, and By By x 0 4.

Corollary 6.2 yields B, * By~ B, * B, (= C, ;). Suppose such Dy, D,, D,
D, exist. An examination of the multiplication tables of section 3 shows
that D, * Dy = B, iff either D, has type (0, + 1) and D, has type (1,+2),
or D, has type <0, +2) and D, has type (1,4 1). Whichever possibility
holds, we will get by similar reasoning that 2 divides 3, a contradiction
which completes the proof.

We note that Theorem 5.4 above actually characterizes the w-satu-
rated Boolean algebras, and Theorem 6.1 in fact shows that w-satura-
tion is preserved by the free product of two Boolean algebras. Does this
hold for x-saturation, o> w? The answer is negative in a very strong
way, as we show next.

Part (i) of the following theorem was obtained earlier by Burris [2,
Corollary 6.3].

THEOREM 6.4 Suppose A and B are Boolean algebras.

(i) (Burris) If a2 w, A 18 finite, and B is x-saturated then A + B is
a-saturated.

(ii) If A and B are infinite then A » B 18 not w,-saturated.

Proor. (i) So 4~2» for some finite n. Since 2 x B~ B, the remark
4.3.1 above yields 4 * B~ B", a finite direct power of B. The result fol-
lows by Theorem 1.5 of [18].

(ii) Any infinite Boolean algebra C contains a denumerable subset
{¢.}i<,, such that c;+0 and if ¢4 then ¢;c;=0. If C contains an atomless
element this follows easily, if not then C' contains an infinite number of
atoms. So let {a,};. ., {0;}4-, be such subsets of 4, B respectively. Consider
the following type 7' over 4 * B:

T = {a’tbt = x’a’zzi = f}4<m
If 8 is a finite subset of 7" then
Sidab;: “ab; £ «” is in S}

is easily seen to satisfy S in 4 * B. Assume 7' is satisfiable by 2 in 4 * B
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and a contradiction will be obtained. By the results of section 3 of Grat-
zer and Lakser [7] we can get x=37_ ,uw, u,€ 4,9, € B,n finite, and
such that for any a € 4, b € B, if ab <z then for some ¢, ab < v, (that is,
a<u; and bsv,). So there must be some ¢,j,k such that ¢+j and a;b, <
vy, and a;b; < u,v,.. Hence a;b; < w,w;, < . Since a,+ 0,b;+ 0 we get a;b; +0.
Since bb; =0 we get a;b;<ab;<Z. So 0<a;b, a7, a contradiction which
completes the proof.
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