MEASURES WHICH AGREE ON BALLS

J. HOFFMANN-JØRGENSEN

Introduction.

Let (E,d) be a metric space and let μ and ν be two Radon probabilities on E, which coincide on all closed balls, that is

$$\mu(b(x,a)) = \nu(b(x,a)), \quad \forall x \in E, \ \forall a \ge 0.$$

Then one can ask, if this implies that $\mu = \nu$?

The problem has been trated by R. O. Davies in [4], J. P. R. Christensen in [3] and G. Andersen in [2].

- J. P. R. Christensen has shown that if there exists a uniform measure, m, on E, then (*) implies $\mu = v$, where m is said to be uniform, if m(b(x,r)) is finite and positive for all $x \in E$ and all $0 < r < \infty$ and m(b(x,r)) is independent of $x \in E$.
- G. Andersen has shown that if E is finite dimensional (that is there exists an integer N, so that every ball of radius r can be covered by N balls of radius $\frac{1}{2}r$) then (*) implies that $\mu = \nu$.
- J. P. R. Christensen has also shown (private communication) that if E is a Hilbert space and d its norm then (*) implies that $\mu = \nu$.

In this note I shall show that for a large class of Banach spaces including L^p for $1 , <math>L^1$ over a non atomic measure space, C(K) and c_0 , we have that (*) implies $\mu = \nu$.

Determination of a measure by its values on balls.

Let $(E, \|\cdot\|)$ be a *real* Banach space with dual E^* and let μ and ν be two Radon probabilities on E, so that

(1)
$$\mu(b(x,a)) = \nu(b(x,a)), \quad \forall x \in E, \ \forall a \ge 0,$$

where b(x,a) is the closed ball with center in x and radius a. We shall then show that (1) implies $\mu = v$ for a large class of Banach spaces.

To see this we introduce the set \mathcal{H} , consisting of all Borel functions, $f: E \to \mathbb{R}$, satisfying

$$\int_E g(f(x)) \mu(dx) = \int_E g(f(x)) \nu(dx)$$

for all bounded continuous functions, $g: \mathbb{R} \to \mathbb{R}$.

Let S and S^* denote the unit spheres in E and E^* , that is

$$S = \{x \in E \mid ||x|| = 1\}, \quad S^* = \{x^* \in E^* \mid ||x^*|| = 1\}.$$

If $x \in S$ then we let T(x) denote the set of normals to S at x, that is

$$T(x) = \{x^* \in E^* \mid ||x^*|| \le 1 \text{ and } \langle x^*, x \rangle = 1\}.$$

Note that T(x) is a convex non-empty w^* -compact subset of S^* . And we let $\tau(x,\cdot)$ denote the tangent functional at x, that is,

$$\tau(x,y) = \lim_{t\to 0+} t^{-1}(||x+ty||-1), \quad \forall y \in E.$$

It is well known (see [5, V. 9]) that $\tau(x, \cdot)$ is subadditive, positively homogeneous, and that

(2)
$$\tau(x,y) = \sup_{x \in T(x)} \langle x^*, y \rangle, \quad \forall x \in S, \ \forall y \in E$$

Lemma 1. Let $x_0 \in S$ and let φ be a lower semicontinuous, affine, Baire function: $T(x_0) \to]-\infty, +\infty]$. Then the function:

$$f(y) = \sup_{x^* \in T(x_0)} \{ \langle x^*, y \rangle - \varphi(x^*) \}$$

belongs to \mathcal{H} .

PROOF. By [1, I.1.4] we know that, if A is the set of affine functions, $\psi: T(x_0) \to \mathbb{R}$, satisfying

(4) ψ is the restriction of a w^* -continuous affine function defined on all of E^* .

Then A is filtering upwards. Now the set $\{\varphi > a\}$ is an open Baire set in $T(x_0)$ and so it is σ -compact. Since the sets $\{\psi > a\}$, $\psi \in A$, is an open covering of $\{\varphi > a\}$, there exists a countable subset, $A_0 \subseteq A$, so that

$$\bigcup\nolimits_{\varphi\in\mathcal{A}_0}\left\{\varphi>a\right\}\,=\,\left\{\varphi>a\right\},\quad\,\forall\,a\text{ rational }.$$

Let $\{\psi_1, \psi_2, \ldots\}$ be an enumeration of A_0 . Since A is filtering upwards we find $\varphi_n \in A$, so that

$$arphi_{n+1} \, \geqq \, \psi_1 \, \lor \, \dots \, \lor \, \psi_{n+1} \, \lor \, \varphi_n \; ,$$
 $arphi_1 \, = \, \psi_1 \; .$

Then we have

(5)
$$\varphi_1 \leq \varphi_2 \leq \ldots \leq \varphi \quad \text{on } T(x_0)$$
,

(6)
$$\lim_{n\to\infty}\varphi_n(x^*) = \varphi(x^*), \quad \forall x^* \in T(x_0).$$

(5) is obvious from the construction of (φ_n) . Let $x^* \in T(x_0)$ and let $a < \varphi(x^*)$, then for some rational number, r, we have $a < r < \varphi(x^*)$. And so there exists an $m \ge 1$ with $\psi_m(x^*) > r$. But this implies that $\varphi_n(x^*) > r$ for all $n \ge m$ and so $\lim_{n \to \infty} \varphi_n(x^*) > a$. This shows that

$$\lim_{n\to\infty} \varphi_n(x^*) \ge \varphi(x^*)$$

and since the converse inequality is obvious we have proved (6).

Now let

$$f_n(y) = \sup_{x^* \in T(x_0)} \{ \langle x^*, y \rangle - \varphi_n(x^*) \}$$

then $f_1 \ge f_2 \ge \ldots \ge f$ by (5), and we have

(7)
$$f(y) = \lim_{n \to \infty} f_n(y), \quad \forall y \in E.$$

To see this we let $y \in E$ and consider a real number, a > f(y). Then the set

$$U_n = \{x^* \in T(x_0) \mid \langle x^*, y \rangle - \varphi_n(x^*) < a\}$$

is open and $U_n \uparrow T(x_0)$. By compactness of $T(x_0)$ we can find $m \ge 1$ with $U_m = T(x_0)$. Hence $f_n(y) \le a$ for all $n \ge m$, which shows that

$$\lim_{n\to\infty} f_n(y) \leq f(y) ,$$

and since the converse inequality is obvious we have proved (7).

The φ_n 's were chosen in A, and so we can find $y_n \in E$ so that $\varphi_n(x^*) = \langle x^*, y_n \rangle$ for all $x^* \in T(x_0)$. So if we define

$$f_{nk}(y) = ||kx_0 - y_n + y|| - k, \quad n, k \ge 1,$$

then we have

$$f_n(y) = \tau(x_0, y - y_n) = \lim_{k \to \infty} f_{nk}(y) .$$

Now $f_{nk} \in \mathcal{H}$ by (1) and so $f_n \in \mathcal{H}$, since \mathcal{H} is obviously closed under pointwise limits. And by (7) we find that $f \in \mathcal{H}$.

LEMMA 2. Let F^* be a linear subset of E^* , which separates points of E. If μ and ν are Radon probabilities on E such that $\hat{\mu}(x^*) = \hat{\nu}(x^*)$ for all $x^* \in F$, then $\mu = \nu$ (here $\hat{\mu}$ denotes the Fourier transform of μ).

PROOF. Let π be the topology on E^* of uniform convergence on compact subsets of E. Then $\hat{\mu}$ and $\hat{\nu}$ are π -continuous, since they are Radon measures.

Let $x^* \in E^*$, and let K be a compact convex set in E and ε a positive number. Then the $\sigma(E, F^*)$ -topology coincides with the norm topology

on K, and so $x^*|K$ is $\sigma(E,F^*)$ -continuous. Hence by [1, I.1.5], there exists $y^* \in F^*$ so that

$$|\langle x^*, x \rangle - \langle y^*, x \rangle| \leq \varepsilon, \quad \forall x \in K.$$

But this shows that F^* is π -dense in E^* , and so $\hat{\mu} = \hat{\nu}$ and $\mu = \nu$.

DEFINITION. Let K be a convex set in some linear space, then $F \subseteq K$ is called a *face* of K if F is convex and $]x,y] \cap F = \emptyset$, $\forall x \in K$, $\forall y \in K \setminus F$, where]x,y] denotes the line segment between x and y, with x excluded.

Note that $\{x\}$ is a face of K, if and only if x is an extreme point of K. The set of extreme points of K is denoted $\operatorname{ex}(K)$.

A simple argument shows that if G is a face of F, and F is a face of K, then G is a face of K.

If x_1, x_2, \ldots, x_n are points in a linear space, then $[x_1, \ldots, x_n]$ denotes their convex hull.

It is easily checked that if F is a face of K, then we have

$$[x_1,\ldots,x_n]\cap F=\emptyset,\quad\forall x_1,\ldots,x_n\in K\setminus F.$$

K is called an algebraic simplex if $[x_1, \ldots, x_n]$ is a face of K for $x_1, \ldots, x_n \in ex(K)$. It is easy to verify that we have

(12) If K is an algebraic simplex then ex(K) is affinely independent.

It is also easy to check that every Choquet simplex is an algebraic simplex.

A convex set having the property (12) (i.e. whose extreme points are affinely independent) is called a *polytope*.

THEOREM 3. Let E be a real Banach space and let μ and ν be two Radon probabilities, which coincide on all closed balls. Let $x \in S$, and suppose that F is a subset of T(x), satisfying

(3.1)
$$F$$
 is a closed face of $T(x)$.

$$(3.2) F is an algebraic simplex.$$

(3.3)
$$F$$
 is metrizable and a G_{δ} -set in $T(x)$.

Then we have $\hat{\mu}(x^*) = \hat{v}(x^*)$ for all $x^* \in \operatorname{span} F$.

PROOF. Let
$$x_1^*, \ldots, x_n^* \in ex(F)$$
, and let

$$G = [x_1^*, \ldots, x_n^*]$$

then G is a finite dimensional simplex (see (12)) and G is a face of T(x). Moreover from (3.3) it follows that G is a compact G_{δ} -set in T(x). Now we let a_1, \ldots, a_n be given real numbers and define

$$\varphi(x^*) = \begin{cases} \sum_{j=1}^n \lambda_j a_j & \text{if } x^* = \sum_{j=1}^n \lambda_j x_j^* \in G \\ +\infty & \text{if } x^* \in T(x) \setminus G \end{cases}$$

Then φ is well-defined, since G is a simplex and φ is affine since G is a face of T(x). Now G is compact and $\varphi \mid G$ is continuous, hence φ is lower semicontinuous, and since G is a G_{δ} -set in T(x) we have that φ is a Baire function. So by Lemma 1 we have that

$$f(y) = \sup_{x^* \in T(x)} \{ \langle x^*, y \rangle - \varphi(x^*) \}$$

= $\max_{1 \le j \le n} \{ \langle x_j^*, y \rangle - a_j \}$

belongs to \mathcal{H} . Hence

$$\mu(y \mid \langle x_j^*, y \rangle \leq a_j, \ \forall j = 1, \dots, n)$$

$$= \mu(y \mid f(y) \leq 0) = \nu(y \mid f(y) \leq 0)$$

$$= \nu(y \mid \langle x_j^*, y \rangle \leq a_j, \ \forall j = 1, \dots, n)$$

And so we have

$$\hat{\mu}(\sum_{j=1}^n \alpha_j x_j^*) = \hat{\nu}(\sum_{j=1}^n \alpha_j x_j^*)$$

for all $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1^* \ldots x_n^* \in \operatorname{ex}(F)$.

If π is the topology on E^* of uniform convergence on compact subsets of E, then π coincides with $\sigma(E^*, E)$ on bounded subsets of E^* , and $\hat{\mu}$ and $\hat{\nu}$ are π -continuous. Now by the Krein-Milman theorem we have that $\operatorname{co}(\operatorname{ex}(K))$ is w^* -dense (and so π -dense) in F and so the theorem follows by π -continuity of $\hat{\mu}$ and $\hat{\nu}$.

COROLLARY 4. If μ and ν coincide on all balls and if $x \in S$ and x^* is an extreme point of T(x), so that

$$(4.1) {x*} is a G_{\delta}-set in T(x)$$

then $\hat{\mu}(tx^*) = \hat{v}(tx^*)$ for all $t \in \mathbb{R}$.

COROLLARY 5. If $\|\cdot\|$ is Gateaux differentiable on S, and μ and ν are Radon probabilities which coincide on all closed balls in E, then $\mu = \nu$.

Remark. This includes all L^p -spaces (1 .

PROOF. Let us put

$$V^* = \{x^* \in S^* \mid \exists x \in S \text{ so that } \langle x^*, x \rangle = 1\}.$$

If $x^* \in S$, $\varepsilon > 0$, and F is a finite dimensional subspace of E, then we can find a finite dimensional subspace $G \supseteq F$, so that

$$1 \leq ||u^*||^{-1} \leq 1 + \varepsilon$$
 where $u^* = x^* | G$.

Now let $v^* = ||u^*||^{-1}u^*$, then v^* has an extension y^* to E, so that $||y^*|| = 1$. Now since $||v^*|| = 1$ and G is finite dimensional we can find $x \in G \cap S$ so that $\langle v^*, x \rangle = 1$. Hence $y^* \in V^*$ and

$$\begin{array}{l} |\langle x^*-y^*,x\rangle| \,=\, (||u^*||^{-1}-1)|\langle x^*,x\rangle| \\ & \leq \, \varepsilon |\langle x^*,x\rangle| \end{array}$$

for all $x \in F$.

This shows that V^* is w^* -dense (and so π -dense) in S^* . Moreover since $\|\cdot\|$ is Gateaux differentiable we have that for all $x^* \in V^*$, there exist $x \in S$ with $T(x) = \{x^*\}$. Hence by Corollary 4 we have $\hat{\mu}(tx^*) = \hat{\nu}(tx^*)$ for all $t \in \mathbb{R}$ and all $x^* \in V^*$. The corollary now follows from the π -continuity of μ and ν .

COROLLARY 6. Let E be a real Banach algebra satisfying:

$$(6.1) ||x||^2 \le ||x^2 + y^2||, \quad \forall x, y \in E.$$

If μ and ν are Radon probabilities on E, which coincides on all closed balls in E, then $\mu = \nu$.

REMARK. This includes all real function algebras (with the sup norm), in particular C(T) for T a topological space, $c_0(\Gamma)$ for Γ an arbitrary index set. Moreover it includes $L^{\infty}(S, \Sigma, \mu)$ over a general measure space (S, Σ, μ) .

PROOF. It is no loss of generality to assume that E is separable. By [7, (4.2.3)] we find that E is isometric isomorphic to $C_0(\Omega)$ (= the set of real continuous functions on which vanishes at infinity), where Ω is a metrizable locally compact space. Then $E^* = M(\Omega)$ (= the set of Radon measures on Ω with finite total variation).

An easy computation shows that

$$\tau(x,y) = \sup_{\omega \in N(x)} x(\omega) y(\omega), \quad \forall x \in S, \ \forall y \in E$$

where $N(x) = \{\omega \in \Omega : | x(\omega) = \pm 1\}$. Hence T(x) consists of all measures m on Ω satisfying

$$m = \alpha v_1 - (1 - \alpha)v_2$$

where v_1 is a probability measure concentrated on $\{\omega \mid x(\omega) = +1\}$ and v_2 is a probability concentrated on $\{\omega \mid x(\omega) = -1\}$, and $0 \le \alpha \le 1$.

Now let K be a compact subset of Ω , then since Ω is metrizable we can find $x \in E$, so that $0 \le x(\omega) \le 1$ for all ω , and

$$K = \{\omega \mid x(\omega) = 1\}.$$

Then T(x) is the set of all probability measures on K, and so T(x) is a Choquet simplex. Now Ω is metrizable, and so we have that T(x) is metrizable in its w^* -topology; hence we can use Theorem 3, to conclude that $\hat{\mu}(m) = \hat{\nu}(m)$ for all measures m on Ω which are concentrated on a compact subset of Ω . Since these measures are norm-dense in $M(\Omega)$, the corollary follows from continuity of $\hat{\mu}$ and $\hat{\nu}$.

COROLLARY 7. Let (S, Σ, m) be a σ -finite non-atomic measure space. If μ and ν are two Radon probabilities on $E = L^1(S, \Sigma, m)$, which coincides on all closed balls in E, then $\mu = \nu$.

PROOF. In this case we have

$$E^* = L^{\infty}(S, \Sigma, m)$$

$$\tau(x, y) = \int_{S} \left\{ (1_{\{x>0\}} - 1_{\{x<0\}})y + 1_{\{x=0\}}|y| \right\} dm$$

Now let

$$V^* = \{21_A - 1 \mid A \in \Sigma\}.$$

Then V^* is a subset of S^* . If $A \in \Sigma$ then by σ -finiteness of m, we can find $x \in E$, so that $\{x > 0\} = A$ and $\{x < 0\} = A^c$, hence we find

$$\tau(x,y) = \int_{S} (21_{A} - 1)y \, dm, \quad \forall y ,$$

and so $T(x) = \{21_A - 1\}$. From Theorem 3 it follows that

$$\hat{\mu}(tg) = \hat{\nu}(tg), \quad \forall g \in V^*, \ \forall t \in \mathbb{R}$$
.

We shall now show that V^* is w^* -dense in S^* . So let $g \in S^*$ and let $x_1, \ldots, x_n \in S$. Then we consider the *n*-dimensional vector measure:

$$v(A) = \int_A x(s) m(ds)$$

where $x(s) = (x_1(s), \ldots, x_n(s))$. Since m is nonatomic we find that v is nonatomic. So by Lyapounov's theorem (see for instance [6, 12.1, p. 266]) there exists $A \in \Sigma$ so that

$$v(A) = \int_{S^{\frac{1}{2}}} (g(s) + 1)x(s) m(ds)$$

since $0 \le \frac{1}{2}(g+1) \le 1$. Now we find

$$\int_{S} (21_A - 1)x dm = 2v(A) - v(S) = \int_{S} gx dm$$
.

Or if $h=1_A-1_Ac\in V^*$, then

$$\int_{S} hx_{i}dm = \int_{S} gx_{i}dm, \quad \forall j=1,\ldots,n$$

which shows that V^* is w^* -dense (and so π -dense) in S^* . So by π -continuity of $\hat{\mu}$ and $\hat{\nu}$, we find that $\mu = \nu$.

REMARK. It follows from the proof of Lemma 1 that all results are valid if (1) is substituted by

$$(1)^{\infty} \qquad \forall x_0 \in S \ \forall y_0 \in E \ \exists (a_n) \subseteq \mathsf{R}_+ \ \text{so that} \ a_n \uparrow \infty \ \text{and for all} \ t \in \mathsf{R}$$

$$\lim_{n \to \infty} \mu(b(a_n x_0 + y_0, a_n + t)) = \lim_{n \to \infty} \nu(b(a_n x_0 + y_0, a_n + t)) \ .$$

This leads us to the remarkable result that it suffices to assume that μ and ν coincide on balls of sufficiently large radius and with center sufficiently far away from 0.

I conjecture that (1) (or even $(1)^{\infty}$) implies that $\mu = \nu$ in arbitrary Banach spaces.

In many cases it would be more natural to consider the following condition

$$(1)_{\varepsilon} \qquad \qquad \mu(b(x,a)) = \nu(b(x,a)), \quad \forall x \in E, \ \forall 0 \le a < \varepsilon(x)$$

where ε is a map: $E \to \mathbb{R}$, with $\varepsilon(x) > 0$ for all $x \in E$. And I conjecture that (1)_{ε} implies $\mu = \nu$ in arbitrary Banach spaces. But the problem seems to be open, even when E is a separable infinitely dimensional Hilbert space.

REFERENCES

- E. M. Alfsen, Compact sets and boundary integrals (Ergebnisse Math. 57), Springer-Verlag, Berlin · Heidelberg · New York, 1971.
- G. Andersen, Measures on finite dimensional metric spaces, Unpublished thesis, Matematisk Institut, Aarhus Universitet, Denmark.
- J. P. R. Christensen, On some measures analogous to Haar measure, Math. Scand. 26 (1970), 103-106.
- R. O. Davis, Measures not approximable or specificable by means of balls, Mathematika, 18 (1971), 157-160.
- N. Dunford and J. T. Schwartz, Linear operators I (Pure and Applied Mathematics 7), Interscience Publishers, New York · London, 1963.
- S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics, Interscience Publishers, New York · London, 1966.
- C. E. Rickart, General theory of Banach algebras, Van Nostrand Co. Inc., Princeton .
 New York · London, 1960.

MATEMATISK INSTITUT, AARHUS UNIVERSITET, DENMARK