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MEASURES WHICH AGREE ON BALLS

J. HOFFMANN-JORGENSEN

Introduction.

Let (E,d) be a metric space and let 4 and » be two Radon probabili-
ties on B, which coincide on all closed balls, that is
(*) wb(x,a)) = »(b(x,a)), VxekE, Yaz0.

Then one can ask, if this implies that y=»?

The problem has been trated by R. O. Davies in [4], J. P. R. Christen-
sen in [3] and G. Andersen in [2].

J. P. R. Christensen has shown that if there exists a uniform measure,
m, on E, then (*) implies u=v», where m is said to be uniform, if m(b(x,r))
is finite and positive for all x € E and all 0 <7< oo and m(b(z,r)) is in-
dependent of x € K.

G. Andersen has shown that if # is finite dimensional (that is there
exists an integer IV, so that every ball of radius r can be covered by N
balls of radius %) then (*) implies that y=v».

J. P. R. Christensen has also shown (private communication) that if ¥
is a Hilbert space and d its norm then (*) implies that u=v».

In this note I shall show that for a large class of Banach spaces in-
cluding L? for 1 <p < oo, L! over a non atomic measure space, C(K) and
¢y, we have that (*) implies u=v.

Determination of a measure by its values on balls.

Let (E,||*|) be a real Banach space with dual E* and let y and » be
two Radon probabilities on X, so that
(1) wb(z,a)) = »(b(x,a)), Vzek, Yaz0,

where b(z,a) is the closed ball with center in « and radius a. We shall
then show that (1) implies u=» for a large class of Banach spaces.
To see this we introduce the set 5, consisting of all Borel functions,
f: E — R, satisfying
§z 9(f (@) u(da) = §g 9(f(x))(dx)
for all bounded continuous functions, g: R — R.
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320 J. HOFFMANN-JORGENSEN

Let § and S* denote the unit spheres in £ and E*, that is
S={weh| [pl=1}, 8*=(z*eB*| |a*|=1}.
If x €S then we let T'(z) denote the set of normals to S at xz, that is
T(x) = {x*€ E*| |lz*|<1 and (a*,z)=1}.

Note that 7T'(x) is a convex non-empty w*-compact subset of S*. And
we let z(x, -) denote the tangent functional at z, that is,

©(@,y) = lmy o, i (lz+tyl-1), Vyek.

It is well known (see [5, V. 9]) that z(z,-) is subadditive, positively
homogeneous, and that

(2) T(x’y) = SUPg+e 7(z) <x*’y>’ Vze S: Vye E

LeMMA 1. Let x5 € S and let ¢ be a lower semicontinuous, affine, Baire
Sfunction: T(x,) > ]— o0, + oo]. Then the function:

f(y) = SUPgxc7(zg) {(w*!y>—¢(x*)}
belongs to .

Proor. By [1, I.1.4] we know that, if 4 is the set of affine functions,
y: T(x,) - R, satisfying
(3) p(a*) < p(a*), Va*eT(x),
(4) v is the restriction of a w*-continuous affine function defined

on all of E*,

Then 4 is filtering upwards. Now the set {p >a} is an open Baire set in
T(x,) and so it is g-compact. Since the sets {y >a}, p € 4, is an open
covering of {¢>a}, there exists a countable subset, 4,4, so that

Uyes, (w>a} = {p>a}, Va rational.

Let {1,v,,...} be an enumeration of 4,. Since 4 is filtering upwards
we find ¢, € 4, so that

Pn+1 g PV e e VYpia VP

P11 =Y.
Then we have

(6) prE@= ... =9 onT(z),
(6) lim,_,  @,(@*) = @(x*), Va*eT(x,).
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(5) is obvious from the construction of (¢,). Let z* € T'(x,) and let
a < p(x*), then for some rational number, r, we have a <r <g(2*). And
so there exists an m =1 with ¢, (x*)>r. But this implies that ¢, (z*)>r
for all n=m and so lim, , ¢,(z*)>a. This shows that

lim,_, @, (%) 2 p(x*)
and since the converse inequality is obvious we have proved (6).
Now let
fn(y) = SUPgre (g {<x*7y> - ‘Pn(x*)}

then fy2f,2 ... 2f by (5), and we have

(7) f(y) = hmn—-)oofn(y)’ Vy el.

To see this we let ¥ € E and consider a real number, a > f(y). Then the
set

Un = {x* € T'(x,) l <x*’y>—q’n(x*)<a’}

is open and U, 4 T(z,). By compactness of T'(x,) we can find m =1 with
U,.=T(z,). Hence f,(y)<a for all n=m, which shows that

and since the converse inequality is obvious we have proved (7).
The ¢,’s were chosen in 4, and so we can find y, € F so that ¢,(z*)=
{x*,y,y for all z* € T'(x,). So if we define

far®) = lkzo—y, +yl—k, n,kz21,
then we have

fn(y) = T(xo:y_y'n) = limk—)oofnk(y) .

Now f,, € by (1) and so f, € #, since 5 is obviously closed under
pointwise limits. And by (7) we find that fe .

LeMMA 2. Let F* be a linear subset of E*, which separates points of E.
If u and v are Radon probabilities on E such that fi(x*)=7p(x*) for all
a* e F, then u=v (here fi denotes the Fourier transform of u).

Proor. Let x be the topology on E* of uniform convergence on com-
pact subsets of E. Then /i and # are n-continuous, since they are Radon
measures.

Let z* € E*, and let K be a compact convex set in & and ¢ a positive
number. Then the o(E,F*)-topology coincides with the norm topology
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on K, and so a*|K is o(H,F*)-continuous. Hence by [1, I.1.5], there
exists y* € F* so that

Ka*,2)—(y*,2)| < e, VexekK.

But this shows that F'* is n-dense in E*, and so g=7 and p=v.

DermviTION. Let K be a convex set in some linear space, then F < K
is called a face of K if F is convex and Jz,y|nF =8, Veec K,YVyc K\ F,
where Jz,y] denotes the line segment between x and y, with x excluded.

Note that {x} is a face of K, if and only if « is an extreme point of K.
The set of extreme points of K is denoted ex (K).

A simple argument shows that if ¢ is a face of ¥, and F is a face of K,
then G is a face of K.

If x,,2,,...,%, are points in a linear space, then [x,,...,z,] denotes
their convex hull.

It is easily checked that if I is a face of K, then we have

(11) [),. .,z 0 F =@, Va,,...,.z,e K\F.

K is called an algebraic simplex if [z,,...,x,] is a face of K for xy,.. .,
z, € ex(K). It is easy to verify that we have

(12) If K is an algebraic simplex then ex(K) is affinely independent .

It is also easy to check that every Choquet simplex is an algebraic
simplex.

A convex set having the property (12) (i.e. whose extreme points are
affinely independent) is called a polytope.

THEOREM 3. Let B be a real Banach space and let u and v be two Radon
probabilities, which coincide on all closed balls. Let x €S, and suppose
that F is a subset of T'(x), satisfying

(3.1) F 1s a closed face of T'(x) .
(3.2) F is an algebraic simplex .
(3.3) F is metrizable and a Gy-set in T(z) .

Then we have ji(x*)=7(x*) for all * € spanF.

Proor. Let z,*,...,2,* cex(F), and let

G = [x,*,...,2,*]
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then @ is a finite dimensional simplex (see (12)) and G is a face of 7'(x).
Moreover from (3.3) it follows that G is a compact G,-set in 7'(x). Now

we let a,,...,a, be given real numbers and define
+ oo if x*el(x)\G

Then ¢ is well-defined, since G is a simplex and ¢ is affine since G is a
face of T'(x). Now G is compact and ¢ |G is continuous, hence ¢ is lower
semicontinuous, and since G is a Gy-set in T'(x) we have that ¢ is a Baire
function. So by Lemma 1 we have that

f(y) = SUPy+e7(x) {(w*’ ?/) - ‘P(x*)}
= max; ;. {(z*,y) —a;}

belongs to 5. Hence

ply | &*ydsa;, Yi=1,...,n)
=uly| fl¥)20) =2y ]| f(y)<0)

=y | &% y)<a; Vi=1,...,n)
And so we have

A7 ogm®) = B2 oy 2%)

for all «y,...,x, € R and all z,*...2,* € ex(F).

If = is the topology on E* of uniform convergence on compact subsets
of E, then 7 coincides with ¢(£*,E) on bounded subsets of E£*, and g
and # are m-continuous. Now by the Krein—-Milman theorem we have
that co(ex(K)) is w*-dense (and so =-dense) in F and so the theorem
follows by m-continuity of 4 and 7.

CorOLLARY 4. If u and v coincide on all balls and if x € S and x* is an
extreme point of T(x), so that

(4.1) {x*} s a Gy-set in T'(x)
then j(tx*)=19(tx*) for all t € R.

CoROLLARY 5. If ||-|| ¢s Gateaux differentiable on S, and p and v are
Radon probabilities which coincide on all closed balls in E, then u=y.

ReMARK. This includes all L?-spaces (1< p < o).

Proor. Let us put
V* = {a* € 8* | Jx e 8 so that {x*,2)=1}.
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If x* €8, £>0, and F is a finite dimensional subspace of , then we can
find a finite dimensional subspace G2 F, so that

1 = |w¥|* £ 1+¢ where u* = a*|@.

Now let v* = |ju*||-1u*, then v* has an extension y* to E, so that |jy*||=1.
Now since |[o*||=1 and G is finite dimensional we can find z € G@n S so
that {(v*,z)=1. Hence y* € V* and

[e*—y*,2)| = (fle*||7 = 1)[<z™, 2)|
el{z*, )|

Al

forall ze F.

This shows that V* is w*-dense (and so =-dense) in S*. Moreover
since [|-|| is Gateaux differentiable we have that for all 2* € V*, there
exist € § with 7'(x) = {x*}. Hence by Corollary 4 we have j(tx*)=p(tx*)
for all ¢ e R and all «* € V*. The corollary now follows from the n-con-
tinuity of y and ».

CoroLLARY 6. Let E be a real Banach algebra satisfying:
(6.1) llel® = 122 +9%l, Vxyek.

If p and v are Radon probabilities on B, which coincides on all closed balls
in B, then p=v.

REmMARK. This includes all real function algebras (with the sup norm),
in particular C(T') for T a topological space, c4(I") for I' an arbitrary
index set. Moreover it includes L*(8,2, u) over a general measure space
(8, Z,1).

Proor. It is no loss of generality to assume that E is separable. By
{7, (4.2.3)] we find that F is isometric isomorphic to C(£2) (=the set of
real continuous functions on which vanishes at infinity), where 2 is a
metrizable locally compact space. Then E*=M(Q2) (=the set of Radon
measures on 2 with finite total variation).

An easy computation shows that

T(x,y) = supweN(x)x(w)y(w)’ Vz e, Vye E,

where N(z)={w € 2: | x(w)= +1}. Hence T'(x) consists of all measures
m on L satisfying

m = ov;— (1 —a)v,
where v, is a probability measure concentrated on {w | x(w)= +1} and
v, i8 a probability concentrated on {w | 2(w)= —1}, and 0=« <1.
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Now let K be a compact subset of 2, then since £ is metrizable we can
find z € E, so that 0<z(w)=1 for all w, and
K = {o| z(w)=1}.

Then T'(x) is the set of all probability measures on K, and so 7T'(x) is a
Choquet simplex. Now £ is metrizable, and so we have that 7'(x) is
metrizable in its w*-topology; hence we can use Theorem 3, to conclude
that g(m)=19(m) for all measures m on 2 which are concentrated on a
compact subset of 2. Since these measures are norm-dense in M(£2), the
corollary follows from continuity of 4 and .

CoROLLARY 7. Let (8,X,m) be a o-finite non-atomic measure space. If
u and v are two Radon probabilities on E =LY8,X,m), which coincides on
all closed balls in E, then u=v.

ProoF. In this case we have

E* = L8, Z,m)

T(z,y) = Ss {(1(x>0}_ 1{z<0})y+ 1{z=o)l?l|} dm
Now let
V*={21,—-1]| AeX}.

Then V* is a subset of S*. If 4 € X then by o-finiteness of m, we can
find x € E, so that {x>0}=4 and {x<0}=4¢, hence we find

T(x,?/) = SS(ZIA_ l)ydm: Yy,
and so T'(x)={21,—1}. From Theorem 3 it follows that
i(tg) = #(tg), VgeV* VteR.

We shall now show that V* is w*-dense in S*. So let g € 8* and let
Zy,. . .,%, € S. Then we consider the n-dimensional vector measure:

v(4) = §2(s)m(ds)

where ®(s)=(2,(s),. ..,%,(s)). Since m is nonatomic we find that v is
nonatomic. So by Lyapounov’s theorem (see for instance [6, 12.1, p. 266])
there exists 4 € X' so that

v(d) = {s¥(g(s) + L)w(s) m(ds)
since 0= 3(g+1)=<1. Now we find
(s(21,—1)edm = 20(4)—v(S) = {ggedm .
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Orif h=1,—1,c€ V*, then
(shadm = (ggr;dm, Vj=1,...,n,

which shows that V* is w*-dense (and so n-dense) in S*.
So by m-continuity of £ and #, we find that u=».

ReMARK. It follows from the proof of Lemma 1 that all results are
valid if (1) is substituted by

(1) Vr,eS Yy, E I(a,) < R, so that a, 1 o and for all te R

Hmn»w”(b(anxo + yo’“n + t)) = limn—»oov(b(anxo + yo: a, + t)) .

This leads us to the remarkable result that it suffices to assume that u
and » coincide on balls of sufficiently large radius and with center suf-
ficiently far away from 0.

I conjecture that (1) (or even (1)*) implies that u=» in arbitrary
Banach spaces.

In many cases it would be more natural to consider the following

condition
(1), w(b(z,a)) = »(b(x,a)), Vazek, VOZa<e(x)

where ¢ is a map: £ — R, with ¢(x)>0 for all z€ £. And I conjecture
that (1), implies p=» in arbitrary Banach spaces. But the problem
seems to be open, even when E is a separable infinitely dimensional
Hilbert space.
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