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ON THE SPECTRUM OF THE ANALYTIC GENERATOR

A. VAN DAELE

Abstract.

If {u;} is a strongly continuous one-parameter group of unitaries on
a Hilbert space 5#, there is a unique self-adjoint operator & on 5, the
infinitesimal generator, such that u,=expith for all ¢ € R. The operator
A=exph, defined by spectral theory, is positive self-adjoint. Roughly
speaking, 4 is the analytic continuation of %, to the point 2= —i.

In the case of a strongly continuous one-parameter group of isometries
on a Banach space one still has an infinitesimal generator. Recently
also the analogue of A has been defined and is called the analytic genera-
tor [2]. Implicitly this operator has played an important réle in the
Tomita-Takesaki theory for von Neumann algebras [12, 14, 15, 16].

The spectrum of the infinitesimal generator is always real and one
would expect, as in the case of unitaries, that the spectrum of the
analytic generator would always be positive. After all, intuitively spea-
king, the analytic generator is the exponential of the infinitesimal gene-
rator. In this paper we give an example to show that even in fairly nor-
mal cases this is not true in general. In our example the whole complex
plane is in the spectrum. We apply this result to obtain an example of
two unbounded operators, both of which have positive spectrum, but
such that the Banach space tensor product with respect to a certain
cross-norm also has the whole complex plane in its spectrum.

1. The analytic generator.

Let ## be a Hilbert space. By #Z(5#) we will denote the set of all
bounded linear operators in J#. It is well known that # () is the dual
of a Banach space which is uniquely determined up to isometric iso-
morphism. It is called the predual of #(5#) and it can be identified
with the Banach space of all trace class operators in s#. The o-weak
topology on % () is the weak topology induced by the predual, i.e. the
w*-topology on # () as a dual space, [3,8].
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Let {u,| t € R} be a strongly continuous one-parameter group of uni-
taries on . For any ¢ € R we define a linear operator «, on % (5¢) by

() = ug* wuy

Clearly every «, is isometric and o-weakly continuous. Moreover {«,| ¢ € R}
is a one-parameter group of isometries and it is o-weakly continuous in
the sense that for all x € #(5#°) the map

teR —» (Xt(x)

is continuous with respect to the o-weak topology on Z(s#). For such
groups one can define an ‘“‘analytic generator’ as follows [2].

1.1 DerintTION. The analytic generator of the group {x,|fe R} is an
operator A on # () whose domain 2 (A) consist of all elements
x € Z () for which there is an operator valued complex function F,
defined on the strip —1=<Imz=<0, bounded and continuous on this
strip, analytic in the interior, and such that

F (t) = a(x) forallteR.
Of course #(s#) is considered here with its g-weak topology.

Remark that such a function must be unique, because if there were
two such functions, having the same value on R, the difference would
vanish on R, one could use the reflection principle and obtain a function
defined and analytic for —1<Imz<1 and zero for Imz=0. Such a
function must be zero.

Therefore given x € 2(A) one can define 4(x) by

A(@) = F (—i).

Tt is immediately clear that 2(A) is a linear space and that A is linear
on P(4).

Roughly speaking the analytic generator 4 is the analytic extension
of o to the point z= —4. This is easily seen in the following examples.

1.2. ExampLEs. In the definition of 4 we have not used the explicit
form of the &, We could as well have taken the unitary group {u,} on
S itself, with the norm topology, to obtain an operator which we will
denote by 4. It is not hard to verify that in this case 4 =exph where h
is the infinitesimal generator of {u,} in the sense that u,=expith for all
¢ € R. In particular 4 is a positive non-singular self-adjoint operator on
% and w=A% for all t e R.
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In the case where the infinitesimal generator » of {u;} is bounded it
is clear that %, has an analytic extension to all of C, namely expizh. But
then Z(A)=%(s#) and for any x € #(+#) we will have

F(2) = e thgeish

so that A(x)=e"xer=A-124.

Cioranescu and Zsido [2] have proved that the opreator A is g-weakly
closed and that its domain is o-weakly dense (in fact in a much more
general situation). In this particular case the o-weak density of 2(4) can
easily be obtained from spectral theory (see also section 3). The closed-
ness of A is more difficult to obtain, however the weaker condition that
A is closed in the norm topology on #(5#) follows in an easy way from
the maximum modulus principle for the strip. The proof of this fact is
the easy part in Cioranescu’s and Zsido’s proof of the g-weakly closed-
ness of 4. We include it here for completeness.

1.3. PROPOSITION. The operator A is closed in the norm topology on
B(H).

Proor. Let {x,} be a sequence in 2(4), and « and y operators in
#(H#) such that

i) z, > =,

i) A(x,) >y,
both in the norm topology. Then with the notations of 1.1 we have

I 2, (8) = F (I = o) — (@) | = || — 2l -

On the other hand, from the uniqueness of the analytic extension, it is
easy to see that @ € 2(A4) implies w,(a) € D(A) for all R and

\ Fo(t—i) = A(x(a)) = x(A(a)).
Then
I|F 4 (t—3) = F o (6= 0)]| = lloe(A(,)) — oo A(2))ll
= "A(xn)_A(xm)“ .

From the maximum modulus prineciple for the strip [7] it now follows
that
|z (2) = Frp(@)l < max {|jc, — ], [[4(2,)—A@n)ll} -

for all z in the strip S={ze C| Imze[-1,0]}.
So, from the assumptions on z,, the functions F, form a Cauchy
sequence uniformly on this strip S and therefore converge uniformly to
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a function ¥ defined and bounded on S. Clearly F will also be continuous
on and analytic inside the strip with respect to the o-weak topology
since F is the uniform limit in the norm topology of such functions and
the norm topology is stronger than the g-weak topology.

Now as F(t) = imF, () = limw(z,) = a(x)
we have that v € 2(4) and F=F,. Finally
A(@) = F(—1) = limF, (—4) = limA(z,) = y .
This proves that 4 is closed in the norm topology on %(#).

2. The spectrum of the analytic generator.

For the examples 1.2 it is very easy to locate the spectrum of the
analytic generator. In the case of the unitary group {u,} the analytic
generator 4 is positive self-adjoint and therefore its spectrum c¢(4) is
contained in R+.

In the second example one can show that ¢(4)=0(4-1)o(4); from spec-
tral theory it is not difficult to obtain that at least o(A4)=20(4-1)a(4).
To obtain the other inclusion one can argue as follows. We define two
operators 4, and 4, on #(°) by

Ai(x) = A-1x, Ay(x) =z4,

then A=A4,-4, while 4, and A4, commute. Then we know that
g(d)co(A4,) 0(4,). Now one can easily verify that o(4,)=0(4-1) and
o(4,)=0(4).

Thus one might expect that o(4)< R+ in general, after all roughly
speaking A4 is the exponential of the infinitesimal generator which al-
ways has real spectrum as we are working with isometries.

We will now proceed to show that in general one will not have that
o(A) < R+, In fact in our example o(A4)=C. All this is closely related to a
counter example in [16] where the question of the spectrum came up. We
will deal with a very specific example.

2.1. Noration. Let 5 be the Hilbert space Z,5(R) of (equivalence
classes of) square integrable functions on R with respect to Lebesgue
measure. For the group of unitaries we will take the translations. So

(wé)(s) = &(s—1)

where & € Z,(R) and s,t e R. It is well known that the {u,} defined in
this way form a strongly continuous one-parameter group of unitaries
on .
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Now we are going to determine certain operators in the domain 2(4)
of the analytic generator of the group {«,} associated to the group {u;}
as in section 1.

For any g € £ (R), the bounded measurable functions on R, there is
a bounded operator M, in Z(5#) such that

(M £)(8) = g(s)é(s)

where & € Z,(R) and s € R. Moreover || M || =|lg||, where ||g||, is the essen-
tial supremum of g.

We will now give a sufficient condition for an operator of the form
M, with g e Z_(R) to be in the domain 2D(4) of 4.

2.2. LEMMA. Let g: R - C be bounded and continuous, and suppose that
g has a bounded and continuous extension § to the strip S={z e C|Imze
[—1,01} which is analytic inside S, then M, € D(A4) and
AM,) = M,

where g—¥(t) =g(¢—1¢) for £ € R.

Proor. For each z €S let g° denote the function defined by
g(t) = g(t+2) forallteR.

Then define F(z)= M. This is possible because every g* is bounded since
§d is bounded on 8.
We claim that F(t) = «,(M,). Indeed

(oM )E)(s) = (we* Myuy€)(s) = (Mywé)(s+)
= g(s+t)(w&)(s+1) = gls+1)&(s)
= g'(8)i(s) = (Mypé)(s)

where & € %,(R) and ¢,s € R. So
w(M,) = My = F(t).

g
Next

IF@I = Mgl = ll9°lleo

which is uniformly bounded in z€ S as § was assumed to be bounded on 8.
Clearly F(—1t)=M,.. So it suffices to prove that F is continuous on
S and analytic inside S.
Since the g-weak and weak topology coincide on bounded sets [3,8]
it is sufficient to show that for any pair &;,£, € Z,(R) the function

2€8 > (F(2)Ep, &) = §E2 Gt +2)E(D)E(0)dt
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is continuous and that it is analytic inside S. The continuity follows
from the continuity of §, the boundedness of § and the dominated conver-
gence theorem. The analyticity can be proved from Fubini’s theorem
and Morera’s theorem.

Asin this case ¢(4)= R+ it is not so hard to show that ¢(4) 2 R+. In fact
using the previous lemma one can easily see that R+< Pg(A4) where Pg(4)
is the point spectrum of 4. However we prove more:

2.3 LEMMA. Po(A4)=R+.

Proor. Define a function g¢(¢)=exp(s4t) for A fixed in R and teR.
Then clearly g satisfies the conditions of the previous lemma and §(z)=
expiiz. Then

gi(t) = §(t—1) = e'g(t)
and therefore
AM,) =M, i= €M

g
showing that R+< Po(4).

To prove the converse inclusion take A € C and assume the existence
of x € P(A) such that x+0 and A(x)=Ax. Then F(t)=w(x) and

F(t—i) = afA(x)) = Aoy(x) = AF,(t) .

If =0 this would imply F (¢t —4)=0 for all { € R which again by Schwartz
reflection principle would yield F,=0 and z=0.
So A% 0 and we may put A=exp(a+bi) with a,b € R. Define

G(z) = exp(—1iaz) - F(2) -
for z in the strip S. Then

G(t—1) = exp(—iat)exp(—a)exp(a+ bi)F(t)
= exp(bi)Q(?) .
Clearly
IG(2)]| £ max{l,exp(—almz)}||F(z)||

so that also @ is uniformly bounded on the strip . Then using the rela-
tion
G(t—1) = exp(bi)G(?)

the function G can be extended periodically, “twisted’”” with the factor
expbi, to a function analytic over C and still bounded as |expbi|=1.
Then it has to be constant so that either G is identically zero, or expbi =1
and A=expa € R+, However @=0 would imply F=0 and =0 which
is a contradiction. This proves the lemma.
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2.4 REMARKS. From the proof of the lemma we see that if A(x)=
(expa)x with x =0, then
x = F (0) = exp(—iat)F(t) = exp(~—iat)oy(x)
so that
o(x) = exp(iat)x

which was to be expected.
The fact that Pg(4)< R+ was implicitly used in [14, 15].

The more difficult part however is to show that also C\ (0, )< a(4).
To do this we first define an analytic branch of the log function. Define

logz = In|z| +iargz where |argz| < = .
So this function is defined and analytic except for z negative real. Fix
« € C and take 0 <e< 1. Then define functions §, by
g(2) = —log(z—1) +1log(z—te) — xlog(z+ ¢+ te) + xlog(z + 27).

These functions are defined and analytic for —¢—1<Imz<e. Denote
the restriction of §, to R by g..

2.5 LEMMA. The functions g, are bounded on R and satisfy the conditions
of lemma 2.2, so that M, € D(A).
Moreover | A(M,)+ «M, | remains bounded as & ~ 0 while

M|l = oo .
In particular — o € a(4).

Proor. To show that g, satisfies the conditions of lemma 2.2 we have
to verify §, is uniformly bounded on the strip

8 ={eC| Imze[-1,0]}.

Now
242

2+1+1e

_'8

7. s || 2= |+ 1ol 1m] ||+ 2a(1+1a1)

z2—1
z—1
and if now Imze[—1,0] this function remains bounded at -inﬁnity.
(This is the reason why we had to add the additional terms, without
the ¢). Then

go(t—1)+ag,(t) = —log(t— 2i)+log(t—1—1e)
—alog(t—1) + olog (t —ie)
—alog(t+1e)+ olog (¢ +1)
—o2log (t+1 +1e) + o2log (£ + 24)
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So
|9.(t —1%) + xg,(})] = (3+ 3|«[?) In Fid +27(1 + |[)?
gs gs = t2+ (1 +8)2 JT 2.4
£ (14«2 In2+ 271 + |x|)?
If we call this last number N then we have that
lA(M,)+aM, || < N forallO0<e<l

while on the other hand

241 2+4
9401 2 3n o~ ol In s — (L )2
and
19l = [Ing|—|x|In2 — 27(1 + |x|)
so that
”Mas” = ||g)lc > Wwhene—0.

This completes the proof.
So we have obtained the following result.

2.6 THEOREM. With the notations 2.1 and definitions 1.1 we have o(4) =
C while Po(4)=R+.

ReMARK. In a forthcoming paper it will be shown by Zsido that in
general either ¢(4)=C or ¢(4)< R+, he will also give other examples for
which ¢(4)=C [17]. We would like to thank Prof. Zsido for discussions
concerning this material.

3. The tensor product case.

The previous example can be used to show that even under nice
situations the tensor product of two operators with positive spectrum can
have the whole complex plane in its spectrum.

Let X and Y be two Banach spaces, and let 4 and B be two bounded
linear operators on X and Y respectively. If X ® Y is the completion
of the algebraic tensor product of X and Y with respect to some uniform
cross norm, there is a unique bounded linear operator A @ Bon X ® Y
such that

AB)(rRy)=Ax Q@ By forallzxeXandyeY.
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Moreover ||[4 ® Bl||=||4||||B]. (See [9].) To find the spectrum of 4 ® B
one considers
A® B = (4 ® 1)(1 ® B)

where 1 denotes the identity operator both on X and Y, and since one
can show that ¢(4 ® 1)=0d(4) and o(1 ®B)=0(B), it follows from the
fact that A ® 1 and 1 ® B commute that

o(4 ® B) < o(A)a(B).

In fact Brown & Pearcy [1] have proved equality when X and Y are
Hilbert spaces, and X ® Y the Hilbert space tensor product, while
Schecter [11] has extended this result to Banach spaces and any uniform
reasonable cross norm. See also [5].

In the unbounded case the situation is quite different. It has been
considered by Ichinose [5] and by Simon and Reed [6]. As was remarked
by Ichinose, in general it is not to be expected that o(4 ® B)=0a(4)o(B)
because the product of two closed sets need not be closed. Take his
example with ¢(4)=N and o¢(B)={n"1| n e N} so that o(4)e(B)=Q+
which is not closed. Then one might expect that

o(4 ® B) = o(4)o(B) .

In the same paper however an example is given of two operators 4 and
B such that ¢(4)={0} and o(B)=N while ¢(4 @ B)=C.

In Ichinose’s example 4 and B are operators on Hilbert spaces, B
self-adjoint but 4 nilpotent. To prove that ¢(4 ® B)=C he uses a result
due to Taylor on operators with non-empty resolvent set, [13]. We
will now give another example based on our previous results.

Therefore let o be a Hilbert space, and {u;} a strongly continuous
one-parameter group of unitaries. Let A be the unique non-singular
positive self-adjoint operator on # such that 4%=w, for all ¢ e R.

Denote by 5#’ the conjugate Hilbert space of 5, i.e. the set 5 with
addition as in &£ but new scalar multiplication and scalar product defi-
ned as

(LE e CxH# —~ I,
(S,n)eéfxéf - <4:’_77—>'

Then {u;} as well as 4 may be considered as operators on 5 because 5
and J#' coincide as sets. Clearly also on 2#’ we will have that {u;} is a
strongly continuous one parameter group of unitaries, and that 4 is a
positive non-singular self-adjoint operator. However on #”’ we will have
=4~ instead!
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Now let 5# @ #’ denote the algebraic tensor product of s# and 5.
If x € () and

=20 .5@muelX QN

(p,wy = i1 @Epng) -
Clearly (y,z) is bilinear and one can show that

we denote

llpll = suppy<al<p, )|

defines a uniform cross norm on # ® H#’ (see [9]) and we will let
H# @ H#' denote the completion of S ® s’ with respect to this norm.
Then we have identified %(#) as the dual space of J# & ", see also
[10].

Now we define «, on #(5#°) as before, and an operator, denoted by
A® A4, on # Q H#' by

DA Q@47 ={y =376 @] & eD(4), n,€ D(A7)}
and (4 @ A )y = D7 1 4&, Q@ A1y,

We then have the following lemma

3.1 LemMA. The analytic generator A of {«;} is contained in the adjoint
of 4 ® A-1.

Proor. Let x € D(4), and & € D(A4), € D(4-1). Then by the defini-
tion of 4 there is a complex function f defined, bounded and continuous
on the strip §={z € C| Imz € [—-1,0]}, analytic inside and such that

F@) = @), my,  f(—1) = CA@)é,m)
Now

Coy(@)é,my = Cu*awé,ny = (owd,wym) .
So

(@), & @ m) = (=& @ uym) .

Because £ € 9(4) and 1 € D(4-1) and because 4 is the analytic generator
for u, on 5 and A4-! is the analytic generator for %, on 5’ we have that
there are vector valued functions p and ¢ on the strip S, bounded and
continuous on 8, analytic inside S and such that

p(t) = wé q(t) = wn
p(—1) = 4¢ q(—t) = 471y
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By uniqueness of analytic extensions we must have that

f(z) = {z,p(2) @ q(2))

so that in particular

CA@)E,n) = f(—i) = (&,p(—1) @ ¢(—1)) = (2,45 @ 471}
=@xA@4)ERn)).

Then the following is an easy application.
3.2 THEOREM. With 3£ and w, as in section 2 we have ¢(4 @ A-1)=C.

Proor. Denote 4, the adjoint of 4 ® A-1 as an operator on Z(#).
Then o4 ® A1) = a(4,)

(by [4]). By the previous lemma 4 c 4,.
But as 4, is an extension of 4 lemma 2.5 is still valid for 4, so that
a(4,) = C.
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