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THE SPECTRUM AND COMMUTANT
OF A CERTAIN WEIGHTED TRANSLATION OPERATOR

KARL PETERSEN*

1. Introduction.

A weighted translation operator is an operator on L¥X,%,u), for some
measure space (X,%,u), of the form

8f (@) = e@)f(z2) (feL¥X,%B,u),

where ¢ € L*(X,%,u) and 7: X — X is a measure-preserving transfor-
mation (this means that 1% <% and u(r14)=u(d) for all 4 € @).
The class of such operators has been studied by Parrott [7] and Bastian
[1] and includes all the weighted shifts. We consider the particular
weighted translation operator 7' defined on L?[0,1) by letting

p(x) = r *0.H®

for some fixed >0 and 8 €[0,1) and 7(x)={x + «) for some irrational «,
where (y) denotes the fractional part of a real number y; thus

Tf(z) = 00 f(e+a) (feL¥0,1)).

The operator T' was investigated previously, in the case §=«, by Rudin
(unpublished notes), who showed that then the eigenfunctions of 7' span
L?[0,1) and hence T is similar to a normal operator. He also proved
that, writing

Trf(x) = rxm'w)(z)f<x+ 0‘) (f e L¥0, 1)) s

if 7, #r, then for each nonzero f e L?[0,1) the linear span of
{T:‘lf: n20} U {T;‘zf: nz 0}

is dense in L?[0,1). Thus examples of this type, which are easier to
work with than, for example, the Bishop operators

B,.f(x) = af{z+a) (feL?0,1)),
may be of interest in relation to the invariant subspace problem. Howe-
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ver, just as Davie [2] has found nontrivial invariant subspaces for B,
for almost every «, so it follows already from results of Wermer [11]
and Khintchine [6] that our operator 7' has a mnontrivial invariant
subspace at least for almost every «. (On the other hand, Parrott [7]
has noted that 7" never has a nontrivial reducing subspace.)

Nevertheless, the operator 7' has several interesting properties, per-
haps the most striking of which are the radical differences in its spec-
trum and commutant depending on whether or not §eZx(mod 1) (that
is, whether or not 8= (n«) for some n € Z). In either case the spectrum of
T is {z : |2|=7f} (Proposition 2.2), but 7' has nonzero measurable eigen-
functions if and only if e Zx (mod 1) (Theorem 2.3). Generalizing
the case when f=«, if §€Zx (mod 1) then the eigenfunctions of 7'
span L2[0,1) and 7' is similar to a normal operator (Theorem 2.4). When
B € Zx (mod 1), the commutant of 7' can be characterized (Theorem 3.1)
and contains many weighted translation operators; but if 8¢ Z« (mod 1),
then the only invertible weighted translation operators that commute
with 7' are multiples of the powers of 7' (Theorem 3.2). Our final obser-
vations indicate some possible applications of this line of thought to a
problem in diophantine approximation.

I am grateful to J. Stampfli for interesting me in these matters, to
W. Rudin for apprising me of his work on the operator 7', and to J.
Cima and W. Wogen for their contributions to this investigation.

2. The spectrum.

In order to identify the spectrum of 7' we make use of the following
results, due (in a slightly different form) to Parrott [7], on more general
weighted translation operators. Recall that an invertible (that is, one-
to-one onto a.e. with measurable inverse) measure-preserving trans-
formation 7 is said to be ergodic if every measurable set 4 with 74 <4
has measure 0 or 1. For example, 72 ={x+ «) is ergodic when « is irra-
tional. It is known that v is ergodic if and only if every t-invariant
(that is, for=f a.e. measurable function is constant a.e.

THEOREM 2.1. Let 7:[0,1) - [0,1) be an ergodic measure-preserving
transformation, ¢ € L*[0,1), and Sf(x)=¢(x)f(zx) for fe L*0,1).
(1) If p,(x) =p(x)p(T). . .@(T" 1) for n=1,2,..., then

Lm, , |@n(x)]*® = exp {loglp| a.e.
(2) The spectral radius r(S) of S satisfies r(S) = exp {log|g| .
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(3) The spectrum of S is closed under rotation: e*c(S)<a(S) for each
0 € [0, 2x).

Proor. (1) If log|p| € L'[0,1), then by the Ergodic Theorem
limn—)oon_l 2225 log!‘P(Tkx)! = O(x)

exists a.e., and, since 7 is ergodic, ®(x)= {loglg| a.e. Then the result
follows upon exponentiation. If log|g| ¢ L1, then {(loglp|)~=c and a
standard argument [4, p. 32], shows that

lim My o 7 12;:—- IOg I‘P Tkx)l = o0 a.8.;
hence

hmn—»ool‘pn(x)llm =0= exp SlOgI‘P| a.e.

(2) Since the spectral radius of § is given by 7(S)=1lim,,_, . ||S*|'/* and
187 = |@nllo, this statement is an immediate consequence of (1).

(3) Denote by II(R) the set of approximate eigenvalues of an operator
R on L?[0,1); that is, II(R) is the set of all those A € C for which given
any &> 0 there may be found an fe L?[0,1) with

Ifls =1 and |[[Bf=Afl, < .
Define U, on L?[0,1) by U_f(x)=f(zx). We will show first that

IHU,) = K= {z: [z|]=1}
and =(S)II(U,) < II(S).

To see that IT(U,)=K, let ¢>0 and 4 € K be given. A result of Rokhlin
[9] and Kakutani [5] (see also [4, p. 71]) allows us to choose an integer
n>8/e2 and a measurable set F with E,tE,...,t"'E pairwise disjoint
and

w(URZ 7*E) 2 1—¢%[8.

We let fo(x)=A4% on 7*E for k=0,...,n—1 and fy(x)=1 if z € [0,1)\
UrZi t*E. Then |fol=1, ||fola=1, and feor=A4f, on EUzEU...UT"2E;
consequently

o= Unfills? =, g @) om0 2

< 4[u(B) +3 S 41436 < o

Now let oell(S), AeII(U,), and ¢>0. Choose g,c L?[0,1) with
llego— Sfolla < & and g € L™[0,1) with

lg—gollz < &/4(IS|[+lel+1) .
Then
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1S9 —eglla = 11890 —egolla+ g — goll2([ISI| + lo]) < %e .

Let 6=¢/(1+)|Sg|l,) and as before choose an integer n=326-2 and a
measurable set £ with E,<E,...,7*1F pairwise disjoint and

u(Uzt #B) = 1-8%32
Let h(x)=A4% on v*E for k=0,...,n—1 and h(x) =1 otherwise. Then
Ihlls = 1, ||Ah—U.hlly < 46,

and .
1S(gk) — 0Aghils = [((U.h)Sg — oghll,
= (U, h—Ah)Sg + Ah(Sg — 09)lls
= 189lloo Uk — 2R]l3+ [1Sg —o9ll; < & .
Hence oA € II(S).

Since the adjoint S* of § is given by
8*f(x) = ¢(za)f(z"12) (feL0,1)),

the preceding argument may be repeated to show that I7(S*)II(U,.)<
II(S*). Therefore

o(S) = II(8) u (II(8*)) " = [LIS)II(U,)] U [II(S*)I(U-)]
= [II(S)K] U [(I1(8*)) K] = [II(8) u (IT(S*)) 1K = a(S)K ,

where the bar denotes complex conjugation.
We turn our attention now to the operator
Tf(x) = HMoPPflz+ay (fe L?0,1)).
T is invertible with inverse

T-if(@) = rH0e=f(s—ay (feLH0,1)).
If we let
Un (%) = DHI5 Xio, < + o)

for n=1,2,..., then @,(z)=r"“® and, because {(kx):%k=0,1,2,...}
is equidistributed mod 1,

lim, | lg. (@)t = forall ze[0,1).
Prorosrrion 2.2. The spectrum of T is o(T)={z € C : |z| =r}.

Proor. From Theorem 2.1 (2) it follows that »(7') 2 7%. By an elemen-
tary result in number theory, there are infinitely many pairs of relatively
prime positive integers p and ¢ with

lo—plg| < q72;
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choose one such pair. The points { —k«x), 0=k <g—1, are spread through-
out the unit interval with spacing smaller than 2/g, and u,(x) counts
the number of these points that lie in the translate by z of the interval
[0,8). Therefore, if k/g<p<(k+1)/qg we must have k—1=Zu (@)<k+2,
and 50 |uy(x) —u,(y)| <3 for all 2,y € [0,1). Thus

lpg(2)| = 7@ < OF (3 e]0,1))

and

r(T) = lim,_, ||T9e £ lim,_,  r@+30 = 48

I
—>00

A similar argument applied to 7'-! shows that »(7-1)=r-#, and this
implies that o(T) < {z : |2| 2 7%}, so in fact we must have o(T') < {z : |z| =1%}.
The result then follows from Theorem 2.1 (3).

THEOREM 2.3. T has a nonzero measurable eigenfunction if and only if
B € Zx (mod 1).

Proor. If § € Zx (mod 1), say 8= {(nx) for some nonzero integer n, let

_ =)+ ... +{x—nx) fn>0
v(@) = { —{xy—...—{@—(n+a) ifn<0.

(If =0, e?***= i3 an eigenfunction of 7" for each k € Z.) Since

(= B)—<=) = x10,p(x) =8

we have
(4) Y(@)—yp{x+o) = xp,5(x) =8,

and hence 7@ is an eigenfunction of 7' with eigenvalue r%.

Conversely, suppose that there is A€ C and a nonzero measurable
function f with Tf(x)=Af(x) a.e. By Proposition 2.2, |1|=7%; by taking
absolute values we may assume that A=7% and f(x)=0 a.e. Since {:
f(x)=0} is invariant under translation by « and hence has measure 0, we
may define

&(x) = exp [29173 lolgf(x)];
ogr
then, since
7060 flo + oy = rPf(x) ae.,
log f(x+a) = [B—x10,p(®)]logr +log f(z) ,
and

1
&z +a) = exp [2m‘(ﬂ—— Yoo, p(®)) + OliJ; (:3)] = eiBE(x)

and this implies that § € Z« (mod 1).
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THEOREM 2.4. If f € Zx (mod 1), then every eigenvalue of T is simple,
every eigenfunction of T is a constant multiple of one of the functions

fk(x) — e?.nika:,rvp(z)

for some k € Z (where y is as in the proof of Theorem 2.3), the eigenfunc-
tions of T span L*0,1), and T s similar to a constant multiple of the
unitary operator U, defined on L2[0,1) by U f (z)=f{x+ ).

Proor. It is easily verified that each f,(x) is an eigenfunction of 7T
with eigenvalue e?***5, Now if 7T'f = Af and T'g=2g a.e. for some nonzero
measurable f and g, then, noting that {z:g(z)=0} is invariant under
translation by « and hence has measure 0, we see that

f@+a) fx)
giz+a) g(=)

and hence f/g is constant a.e. This shows that every eigenvalue is simple.

To show that every eigenfunction is a multiple of some f,, it suffices
now to prove that the argument of every eigenvalue of 7' is a multiple
of o« mod 1. But if T'f=Af and A=1rfe?®, then from the equation

7410, 8Y®) f(x + oc) = pPe2nid f(x)

*

we find that

e2m’ argf<x+oy __ ,2ni0 ezm' arg f(x)
- b

and hence 6 € Zx (mod 1).

If h e L?[0,1) and A is orthogonal to all the functions f;, k € Z, then
h¥® =0 a.e. and hence A=0 a.e. Thus the eigenfunctions of 7' span
L2[0,1).

Finally, if we let Sf(x)=r%@f(x) for fe L?0,1), then § is invertible
and, because of (A),

8-1TSf(x) = rif(z+ o) = U, f(z).

3. The commutant.

In this section we seek information about operators S on L2[0,1)
that commute with the operator 7'f(x)=r"A®f(x+«). In case § is a
weighted translation operator, say Sf(z) =¢(x)f(zz) with ¢ € L*[0,1) and
T a measure-preserving transformation on [0,1), the condition TS =S8T

says that
Q@) O flrz+ oy = 100D oz + a)f (v + o))

a.e. (fe L0,1)),
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and this implies, upon taking f=1, that
(B) P@)r O = FOD (x4 x)  ae.,

and hence {(7(z)+a)=1{(x+«) a.e. From the latter statement it follows
that there is y € [0,1) such that tz={x+y) a.e. If

n(x) = log|gp(x)|/logr ,
then

© N(@) —nx+ o) = x10,p(%) — xio,p{x+¥) a.e.

THEOREM 3.1. Suppose §={n«) and let f(x)= e ke yv@ for k e Z.

(1) If 8T'=TS8, then there are constants c,, ke Z, with Sf;,=c,f, and
lex! 2 1IS)| for all k.

(2) Conversely, given a bounded sequence {c;:k e Z}, the equations
Sfi.=cpfi (k€ Z) define a bounded operator S which is a strong limit of
polynomials in T and hence commutes with T.

(8) If ST =T8S and Sf(x)=¢(x)f(zx) (f € L?[0,1)) for some ¢ € L*[0,1)
and some measure-preserving v on [0,1), then are constants ce C and
y € [0,1) such that rx={x+y) a.e. and

p(x) = cr?@7vEEY g,
(4) Conversely, given any c € C and y € [0, 1), let

(P(Q?) = crw(z)—cp(a:+y)
and
8f (@) = @) Kz+y) (feL0,1)).

Then ST =TS8 and
Sfy, = ce*rf,  for all k .

Proor. Since 7' is similar to ##U,, (1) and (2) follow from known
results on the commutants of diagonal operators. However, we include
proofs of these statements for the sake of completeness.

(1) It is easy to check that for k& € Z Sf, is an eigenfunction of 7' with
eigenvalue e27ikarf, Since each eigenvalue is simple, Sf,=c,f;, for some
¢ € C, and clearly |c,| £ ||S|| for all k.

(2) If we let du(x)=r-2@dx, then in L% u) the functions f, form a
complete orthonormal set, and

r™flle = Wllzey = ™12

for each measurable function f on [0,1]. The equations Sf}, =c,f; define a
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bounded linear operator of norm suplc,| on L%u), and hence S is a
bounded operator on L2[0,1) as well.

Let 4, =e?*k*f for k € Z. By a theorem of Rudin [10], for each N =
1,2,... it is possible to choose a function fy continuous on the closed
disk of radius »# and analytic on its interior such that

(e = supglegl

and fy(4,)=c, for |k]|<N. For each N choose a polynomial p, with

oy —fnlle < 1N .
If f e L?[0,1), write f=D3. _ a.fr in L2(u); then

lon(T)f—Sflle? = r2lpn(T) f—Sf ”%2(,;)
= 13 oo 1| [Py(Ar) —cif?
= 7’2"[N-2||f||%2(,4)+21k|>1v lag>(1+2 StuICjDz] -0.
(3) We have seen already that there is y € [0,1) such that zx={z+y)
a.e. If we let
7'(x) = p(@)—ylz+y),

then (A) and (C) imply that

7' (@) =n'(x+a) = n(x)—Kx+a) ae.,

and 7’ —7 is constant a.e. Since (B) shows that arge(x) is also constant
a.e., (3) follows.
(4) Routine verification using the computations found in the proof of

(3).

THEOREM 3.2. Suppose that f & Zx (mod 1) and let Sf(x)=g¢(x)f(rx)
(fe L?0,1)) be an invertible weighted translation operator, where @ €
L™[0,1) and 7 is a measure-preserving transformation on [0,1). If ST =TS,
then S =cT™ for some n € Z and some constant c.

Proor. We already know that zx={(xr+y) a.e. for some y e[0,1).
Since S is invertible, 0 < ||1/g]|, < oo, and there is an x, € [0,1) such that
(C) holds and

I/els" = le@)] = liple

for all x € {{xy+ma+ny) :m,neZ}. If we let

N(n) = k-0 [xt0, 5<% + ko) — %10, p<(To + ¥ + k)] ,
then N(n)=n(z,)—n{x,+na) for n=1,2,..., and hence N(n) is a boun-
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ded function of n. It follows then from a result of Furstenberg, Keynes,
and Shapiro [3, Corollary 2.3] that y € Zx (mod 1).

Suppose then that y ={nu«) for some n € Z. If =0, (B) and (C) imply
that ¢ is constant a.e. and so S=clI for some constant ¢. If n+0, we let

| xo,p@®) +x0,p{EFa)+ .+ 2, a2+ (R—1)x) ifn>0
— X0, pX¥ — &) — Y10, p{T — 200 — . . . — X1, pXT +N0x) n<0

and note that

9(@) =g+ oy = g0, (%) — X0, p<T +1x) = () —N{T+x) a.e.

Since g —7 is invariant under translation by «, it is constant and

p(z) = crd®@ |
But
Tf(x) = r@f{x+na)y (feL?)0,1)),

and hence S =cT™.

4. Remarks and conjectures.
The results of Section 3 extend to some other operators of the form

Tf(x) = rM@fx+ay (fe L?0,1)).

In particular, the analogue of Theorem 3.2 holds whenever the existence
of an L* solution 7 of

(D) nx)—néw+a) = h(@)—h{z+y) ae.

implies that y € Za (mod 1). For some functions A, for example h(z) =z,
the existence of a merely measurable solution of (D) implies that y € Z«
(mod 1). It is likely that in Theorem 3.2 the hypothesis that S be invert-
ible is superfluous, and we conjecture that the existence of a measurable
solution 7 of (C) already implies that either 8 e Za (mod 1) or y € Zx
(mod 1).

The proof of this conjecture would lead to some interesting results in
the theory of diophantine approximations. For example, if we denote
by ||| the distance from a real number x to the set of integers, then
manipulation of Fourier series shows that (C) has an L? solution if and
only if

s, LIkBEle
R o

Truth of the conjecture would then imply that this series converges if

Math. Scand. 37 — 20



306 KARL PETERSEN

and only if either 8 € Zx (mod 1) or y € Z« (mod 1). Indeed, it is reason-
able to suppose that a series

5 1B - . B2
Ok

where « is irrational, converges if and only if at least one 8, € Z« (mod 1).

We mention in conclusion a result along these lines that can be proved
by the techniques of [8]. If «y,...,«, are rationally independent (in
the sense that >7 ; n;x; € Z for integers n, only if all the n, are 0), and
if gy,...,8, €[0,1), then

1 lmaBall®. - - llm,Bal®
O | P S o 7 o |

ZmieZ —{0} m12

implies that g8,...8, € Zay + ... + Zx, (mod 1).
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