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THE STANDARD FORM OF VON NEUMANN ALGEBRAS

UFFE HAAGERUP

Introduction.

To any left Hilbert algebra &/ we associate a selfdual cone P, which
generalizes the cones PEO in [3] and V§0 in [1]. P is defined as the closure
of the set

{£(J8) | ées}

in the completion H of 7. Using this cone we prove that any von Neu-
mann algebra is isomorphic to a von Neumann algebra M on a Hilbert
space H, such that there exists a conjugate linear, isometric involution
J of H and a selfdual cone P in H with the properties:

1) JIMJI=M",

2) JeJ=c* VceZ(M) (center of M),
3) JE=& VEeP,

4) ad(P)cP VaelM, at=JaJ.

A quadruple (M,H,J, P) satisfying the conditions 1)-4) is called a stand-
ard form of the von Neumann algebra M. We prove that the standard
form is unique in the sense, that if (M,H,J,P) and (JM,H,J,P) are two
standard forms, and @: M — M is a *isomorphism then there is a unique
unitary w: H - H such that

a) O(x)=uxu* VzelM,
b) J =uJu*,
c) P=u(P).

An easy application of this uniqueness theorem gives that the group of
all *automorphisms of a von Neumann algebra on standard form has a
canonical unitary implementation.

If the von Neumann algebra M admits a cyclic and separating vector,
our results are more or less trivial consequences of the results of H. Araki
and A. Connes in the papers [1] and [3]. Therefore the proofs are concen-
trated mainly on the special difficulties in the non ¢-finite case.

This paper is a shortened version of my thesis [5] for the cand. scient.
degree in Copenhagen 1973.

Received September 13, 1973; in revised form May 1, 1975.
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1. Positive elements associated with an achieved left Hilbert algebra.

Let P be a cone in a Hilbert space H. The dual cone P° is defined
by P°={(e€H| (¢|n)20 Vne P}. If P=P°, P is called selfdual.

Let o/ be an achieved left Hilbert algebra, and &/’ the corresponding
right Hilbert algebra. Since & € &/ implies £*=J& € &/’ it makes sense
to put

P={s&| e},

where the closure is in the completion H of 7.
The von Neumann algebra #(&f) will be denoted by M.

TarorEM 1.1. P s a cone in H with the properties

(1) Jé=¢ VE&eP.

(2) 4¥P)=P VieR.

(3) P is selfdual.

(4) VYaeM: ad(P)< P, where at=JaJ.

ReMARK 1.2. Let M be a von Neumann algebra with a cyclic and
separating vector &,. The set M¢&; is a left Hilbert algebra with product

(a&o)(b&y) = (ab)é,
and involution

(at)¥ = a*&, .

An easy computation gives P={aa'4,| a € M) where a'=JaJ. Hence
in this case P coincides with P, in [3] and V} in [1].

For the proof of Theorem 1.1 we shall use a result from [8]. It is proved
that the cones

Ph— ¥ | sey, PV = (| nexy”
are dual cones, i.e.
teP¥ o (Emz0vVneP? and nePP < (&n) 2 0 vee PF.

LemMA 1.3. Let &7, be the maximal Tomita algebra equivalent to &
(cf. [2, lemma 2.7]). For & € & there exists a sequence {£,}< o/, such that

Q) &~ & ¥ > &¥,
(i) (€l S @l Vne N,
(i) 7(E,) - n(€), (&, F) > n(e¥) strongly.
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Proor. o7, consists of the elements & € H for which

(a) éeD(4*) VaeC
(b) 4% e/ VaeC.

Put
fn(x) = exp(— w2/2n2) and &p = fn(logA)E .
Obviously &, € D(4%) for any « € C. Note that

A%(fa(logd)) = @,,(log4)

where ¢, ,(x)=exp(ax—x?/2n?). Since ¢, , is a linear combination of
positive definite functions, ¢, ,(log4) maps &/ into &7 (see [9, lemma
10.1]). Hence 4%¢, € o Yo € C.

(1) Since f,(log4) converges strongly to 1 we get

& = fn(logA)E - &

&F = fullog)6¥  ¢¥
(cf. [9, lemma 10.1])
(ii) Since

Jal) i (o exp (—n?t2[2)e™dt

R

Sfn(x) are positive definite functions. By the proof of [9, lemma 10.1] we
find that

(Gl = fa(Oln(E)l = [l ()] -
(iii) For each € &":
w(&)n = ')y —> ' ()€ = w(&)y.
Since &7’ is dense in H and sup|jn(&, )| < o we conclude that =(§,) - n(£)

strongly. The same argument gives n(&nﬁ) - ,,(,gﬂ) strongly.

Lemma 1.4. Put
Py= (g | festy), P ={e¥|sea), PP ={P] tcaty).
Then P (respectively P#,Pb) 18 the closure of P, (respectively Po#,Pob).
Proor. (i) It is enough to show that the closure of P, contains

{66* | £ e ). Let £ € o, and let {£,} <o/, be a sequence satisfying the
conditions of lemma 1.3. Then

Enén* = n(£p)Ep* > (E)E* = £-&*.

Math. Scand. 37 — 18



274 UFFE HAAGERUP

(ii) By the same arguments we get pP¥_ (PO#)—.
(iii) Ph— (Pob)_ follows from (ii) because Po—J (P#) and P0b=J (Poﬂ).

LeMMA 1.5. P s the closure of A*(P#) (respectively A‘*(Pb)).
In particular P is a closed convex come.

Proor. Since
P¥cD(S) = D(4Y) and PP D(F) = DA
the two sets are well defined. Since
4P = Js(P¥) = J(PH = pb
we get A¥(P¥)=A-#(PP). Therefore it is enough to prove P=(A*(Pﬁ))_.

Let £ € o:
aieeh) = (aipaieh) = (atpatp* .

Since A(aZ,)=sf, We conclude that AP F)=P,.
Let £ e P¥ and choose a sequence {En}gPo‘ﬁ so that &, — & Since
8¢,=¢£,, S¢=£ and At=J8 we have 4§, -~ A ¢, Hence

426, — AR = (A4(E,— &) £, —E) > 0.
Since A%, € P, we have A¥P¥)cP. On the other hand A}(P¥)2P,.
Hence (A*(P#)r =P.
Proor or THEOREM 1.1. (1) Let & € &/,. Then
J(56%) = (5&*%)* = &&*.
Hence by lemma 1.4 Jé=£ V&€ P.
(2) Let £ e &Z,. Then
A(EE¥) = (AME)(AYE*) = (A%E)(AE)* .
Hence A% P,)=P,, and 4% P)=P.
(3) Let & € A(P¥) and n € A~#(PP). Then
(Eln) = (4~¥|d¥) z 0
because P¥ and PP are dual cones. Hence

lm) 20 VéEneP
(by lemma 1.5).
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Let now & € H and assume that (£|7)=0 V5 e P. We shall prove that
£e P. Put

where f,(x)=exp(—22/2n?) as in lemma 1.3. Note that &, € D(4}) for
any » € N. Since

En = (Pugalt)dite de
where g,(t) =n(27)-t exp (—n??/2), we get using (2) that for any e P:

Enln) = (Z0gat)(&]A-Mn)dt 2 0.

Hence for any ¢ Pb:
0 = (614730 = (474,10) .

Therefore A‘ifé'"eP:l$ (dual cone of Pb). Hence &, eA*(Pﬁ')gP. Since
&, > & we get £ P.

(4) Let &,9 € &, and put #(£)'=Jn(&)J. Then

7(&)n(E)(mm*) = 7(&)J (&) (nn*)
= 7(&)J ((&)nm*)
= E(&mm*)* = (&n)(én)* .

Hence by lemma 1.4, n(&)m(£)! maps the cone P into itself. An easy ap-
plication of Kaplansky’s density theorem gives now that

ad(P) < P

for any a in the von Neumann algebra associated with the left Hilbert
algebra &7, i.e. for any a € M.

From theorem 1.1 and the basic results of the Tomita—Takesaki theory
we get:

THEOREM 1.6. Any von Neumann algebra is isomorphic to a von Neu-
mann algebra M on a Hilbert space H, such that there exists a conjugate
linear isometric tnvolution J: H -~ H, and a selfdual cone P in H with the
Jollowing properties:

(1) IMJ =M’

(2) JeJ =c* VceZ(M) (the center of M).
(8) JE=¢ VéeP

(4) ad*(P)sP VaeM where a*=JaJ.
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2. The standard form of von Neumann algebras.

DrFiniTION 2.1. A quadruple (M,H,J,P) satisfying the conditions of
Theorem 1.6 is called a standard form of the von Neumann algebra M.

Remark 2.2. Usually a von Neumann algebra on a Hilbert space H
is called standard if there exists a conjugate linear isometric involution
Jo of H, such that JoMJ,=M'. Such a von Neumann algebra is spatially
isomorphic to the von Neumann algebra associated with some left Hilbert
algebra. Hence if M is standard on H, we can choose J and P in H, such
that (M,H,J,P) is a standard form (Theorem 1.1). It can happen
that J = J, for any possible choice of (J,P) (cf. [5, proposition 5.3]).

The main result of this section asserts that the standard form is unique
in the following strict sense:

TueoreM 2.3. Let (M,H,J,P) and (M, H,J,P) be two standard forms,
and let @: M — I be a *isomorphism. There exists one and only one unit-
ary w: H ~ H such that

(1) D(z)=uzul Vzel,
(2) J=uJul,
(8) P=uP).

LemMA 2.4. Let M be a von Neumann algebra on a Hilbert space H,
and let q be a projection of the form q=pp’ where pe M and p’' € M' are
two projections. Put gMq={qaq | a € M} regarded as a set of operators on
q(H). Then:

(i) ¢Mq is a von Neumann algebra
(ii) (¢Mq)'=qM'q.
(ili) Z(qMq)=qZ(M)q, where Z(-) denotes the center.
(iv) If c(p) S c(p’) the map prp — qxq is a *isomorphism of pMp onto
qMq. (c(-) denotes the central support).

Proor. In [4] Chapter 1, § 2 the lemma is proved if ¢ € M (reduction)
or g € M’ (induction). The general case ¢=pp’ can easily be reduced to
these cases, because the map x — gqxq is composed of a reduction z — pxp
of M onto pMp followed by an induction prp — gxg of pMp onto gMg,
‘where ¢ is regarded as an element of (pMp)'.

CoroLLARY 2.5. Let (M,H,J,P) be a standard form, and let p be a
projection in M. Put q=pp' (p'=JpJ). Then the induction pxp — qxq 18
an isomorphism of pMp onto ¢Mq. In particular p+0 iff g+0.
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Proor. Since J commutes with central projections in M we have
c(ph)=Jc(p)J =2 Jp'J =p. Hence c(p') = ¢(p).

Lemma 2.6. Let (M,H,J,P) be a standard form, p a projection in M
and q=pp'. Then (¢Mq,q(H),qJq,9(P)) is a standard form.

Proor. Since Jg=gqJ, J leaves ¢q(H) invariant. Hence ¢Jq is an iso-
metric involution in ¢(H). Obviously (£|)=20 V&7 €q(P) because
qg(P)cP.

Assume that & e ¢(H) and (£]|5)=0 Vy € q(P). Then V¢ e P:

0 = (§190) = (¢¢12) = (£10) .

Hence ¢ € P and &=¢¢& € q(P). Therefore ¢(P) is a selfdual cone in ¢(H).
We now verify the conditions 1)-4) in Theorem 1.6.

(1) (@J9)(gMq)(gJq) =q(J MJT)g=qM'q=(qMg)'.

(2) If ceZ(gMq)=qZ(M)q then c=qxq for some x e Z(M). Hence
(@) (9%9)(gIq) = q(JaT)q = qx*q = (qxg)*

(3) and (4) are trivial because ¢(P)< P.

REeMARK 2.7. Any selfdual cone P in a Hilbert space H is total. For if
(£|n)=0YV¥Yn € P, then both £ and — ¢ belong to P°=P. Hence (£] — &)= 0.

Let M be a von Neumann algebra on a Hilbert space H, and let &
be a vector in H. Then

a) e(£) (respectively e’(£)) denotes the projection on the closure of
M'E (respectively ME).

b) w, (respectively w’;) denotes the restriction of the vector functional
x — (2&| &) to M (respectively M’).

Note that e(&)=s(w,) and e'(£) =s'(w,) where s(+) is the support of the
functional.

Lemma 2.8. Let (M,H,J,P) be a standard form, and M o-finite, then
there exists a cyclic and separating vector & € P.

Proor. Take a maxinal family (£;);.; of vectors in P\ {0} such that
(€(&:))sc; are mutually orthogonal. Assume that

p=1-2;7e&)+0.
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By corollary 2.5, ¢g=p-p*+0 and since ¢(P) is a selfdual cone in ¢(H),
there exists & € g(P)\ {0}. However, ¢(£) < p, which contradicts the max-
imality of (&;);c;. Hence X, ;e(&,)=1.

Since M is o-finite the index set I is at most countable. Thus we may

assume that
Dier 2 < oo
NOW put 5=2‘i615’i EP.
Using that M'§; 1 M'&; if i4j and that M'=JMJ we get
Mé, 1L ME; if i),
Hence w;=3,; ;0 and
e(§) = s(wy) = Eid 8(6054) = ziez e(§;) =1.

Therefore & is separating. Using that e’(§) =e/(J&) =Je(£)J we find that
£ is also cyclic.

Lemma 2.9. Let (M,H,J,P) be a standard form and & a cyclic and
separating vector in P. Then J.=J and P,=P, where J, and P, is the
involution and the selfdual cone associated with the left Hilbert algebra M&
(cf. Remark 1.2).

Proor. That J,=J follows from [10, lemma 4.2] (see also [1, theorem

1)).

Since aa'=a(JaJ) maps P into P for any a € M we get
P, = {a(JaJ )| ac M} < P.
Hence P,=P, because both P, and P are selfdual.

Lemma 2.10. Let (M,H,J,P) be a standard form.

(1) Any @ € M3 has the form ¢ =w, for a unique vector & € P.
(2) For é,meP:

I —nl? = llwog—a,| = [|E—7ll[I§+2] .
In particular & - w; is a homeomorphism of P onto M.

Proor. Note that the inequality |lw,—w,||<||E—7lll§+7| is trivial
because
Wg— @y = HWy_p, g49F Ogypg—g) +
If M is o-finite the lemma follows from [1, Theorem 4 and Theorem. 6],
because P=P, and J=J, for some cyclic and separating vector & € P
(see also [3, Theorem 2.7]).
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Let now M be arbitrary:

(1): Take ¢ € M %, let p be the support of p and ¢ = ppt, where pt=JpJ.
Since the induction pMp - ¢Mgq is an isomorphism, there exists a func-
tional y € (9 Mq), such that

o(x) = plgzg) Vzel.

Since gMgq is o-finite and (¢Mq,qH,qJq,qP) is a standard form, there
exists £ € ¢(P)< P so that yp(y)=(y&|&) Yy € ¢Mq. Hence

p(x) = (#£]§), =xeM.

The uniqueness of £ follows when the inequality (2) is proved.
(2): The inequality follows from the ¢-finite case by regarding the
reduced standard form (9Mgq,qH,qJq,qP) corresponding to g=pp’ where

p=e(§)ve(n).

Proor or THEOREM 2.3. Assume that u; and u, satisfy the conditions
1)-3).
Let &€ P. By 3), u,& € P and w,¢ € P. Moreover:
(D(a)usé|uié) = (a€|é) = (P(a)uqf |usf) .

Since the map 5 - w, is a bijection of P on I, we get u,&=muyt. Con-
sequently %, =wu,, because a selfdual cone is total (by Remark 2.7). To
prove the existence we assume first that M is ¢-finite. Then M has a
cyclic and separating vector & € P. By Lemma 2.9 there exists € P so

that 0, (D) = ofz) Vael.
7 is separating for M and therefore Jn=1 is cyclic for /1. The equation
[Paml? = w,(P(a*a)) = wla*a) = [af]? Vae M.

shows that the map a& — @(a)n, a € M can be extended to a unitary
w: H > H. We claim that u satisfies the conditions 1)-3):
(1) Let ¢ € Mn, {=®(a)y for some a € M. Then

D). = D(ba)y = u(baé) = ubu~Y D(a)n) = wbu-1f VbelM.

Hence ®(b)=ubu-! because My is dense in H.
(2) Let S, (respectively S,) be the closure of the operator af —a*§,
a € M (respectively by — b*n, b € I). Then it is easy to check that

Sﬂ = uSeu—l .
By polar decomposition

SG=J8A }, Sﬂ=JﬂAﬂ*.
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Thus J,=uJut. But J=J, and J=J, (by Lemma 2.9). Hence J=
uJu-1,
(3) Clearly
P =P, = {aJan| ac M}~
{(wan)(wJu ) (wau)y | a e M}~
ufaJal | a e M} = u(P).

In the general case let p be a o-finite projection in M. Put ¢=pp’ and
r=@(p)D(p). Since the inductions

pMp - gMq and D(p)MD(p) — rMr

]

are isomorphisms, there is a unique isomorphism @,: ¢Mq rMr so that
D, (qrq) = rD(x)r, xeM.
Using the first part of the proof on the reduced standard forms we find
that there is a unique isometry w, of ¢(H) on r(H) satisfying
(a) rP(x)r=u,(qrq)u, VzeM,
(b) rJr=2uy(gJq)u,,
(c) (P)=ug(P).

This construction can be carried out for any o-finite projection. If
PSP, then ¢; <q, and r; <r,. The uniqueness of u,, shows that in this
case u, Su,. Choose a net (p;);; of o-finite prOJectlons in M so that

1. Then
ps ¢ q; = ppi /1 and 1, 1.

Since wug,Su,, when p;<p;, there exists an isometry w of H onto a
which extend every u,,, 1 € I. Using

H = (UieI q,(H)) H = (Uiel r(H))
P = (UieI Qi(P))~ P = (UieI Ti(P))_ ’

we find that » has the required properties.

REMARK 2.11. Condition 2) in Theorem 2.3 is not essential. Since P
and P are total, we have 3) = 2).

3. Unitary implementation of automorphism groups.

DerintTION 3.1. Let M be a von Neumann algebra on a Hilbert
space H, and G a group of *automorphisms of M. A unitary implementa-
tion of G is a unitary representation g — u, of G on H, such that

g(a) = wau,* Vge@, Yaec M.
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As an easy application of Theorem 2.3 we get

THEOREM 3.2 (cf. [1, theorem 11] and [3]). Let (M,H,J,P) be a stand-
ard form. The group aut (M) of *automorphisms of M has a unique unitary
vmplementation g — w,, such that

(*) J =uJu,t and uy(P) =P foranygeaut(M).

Proor. By Theorem 2.3 we get that for each g € aut(@), there is a

unique unitary on H which satisfies (). It follows from the uniqueness

that
& Uy = Uy, Yg,heG.

Derinrrion 3.3. The map g — u, in Theorem 3.2 will be called the
canonical implementation of aut(M).

DEriniTION 3.4. Let M be a von Neumann algebra. On the set of
bounded, o-weak continuous operators on M we define the p-fopology by
the semi-norms

T—>{Tx,py ze€M, peM,
and the u-topology by the semi-norms
T~ |Tyxol, ¢eMy

where T, : ¢ — o T is the transposed action on the predual.

Prorosrrion 3.5. Let (M,H,J,P) be a standard form. The canonical
vmplementation g - wu, of aut(M) is a homeomorphism of aut(M) onto
a closed subgroup of the unitary group on H, when the first is equipped with
u-topology and the latter with strong (=weak) operator topology.

Proor. Since the map & - w, is a homeomorphism of P onto M we
find by repeating the arguments of [1, Remark following Theorem 11]
that the map g —>wu, is a homeomorphism on its range. Since
{u, | g €aut(M)} is equal to the set of unitaries for which

uMu* = M, wJu*=J, uP)=2P,

the set is strongly closed relative to the unitary group.
COROLLARY 3.6. Let (M,H,J,P) be a standard form, G a locally com-
pact group and «: G - aut(M) a o-weakly continuous representation of G

on M. Then the canonical unitary implementation g — u, of G is strongly
continuous.
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Proor. Since g - (x(g9)z,¢) is continuous for x € M, ¢ € M, the ac-
tion of G on the predual g — x(g)y is o(M,,M)-continuous. Hence by
[6, p. 23] the action is also strongly continuous, i.e.

lc(g:) s — (@) pll > O for any ¢ e M, .

REMARK. Theorem 3.2 and Corollary 3.6 are generalizations of theorem
6.10 and proposition 6.11 of [7].

ProrositioN 3.7. Let ¢ be a normal, faithful, semifinite weight on a
von Neumann algebra M. The p-topology and the u-topology coincide on
the group aut, (M) of *automorphisms on M, which leaves ¢ invariant.

Proor. Let (z,H,) be the representation of M induced by ¢. H, is
obtained as completion of the pre-Hilbert-space

n, = {x e M | p(a*z)<oo}.

We let A, denote the injection of n, in H,. The set &/ =4 (n,nn*) is
an achieved left Hilbert algebra (cf. [2]). Let (M, H,J,P) be the standard
form associated with this left Hilbert algebra as in section 1. (We identify
M and z(M).) For any g € aut, (M) the map A,(x) - 4,(g(x)) can be ex-
tended to a unitary », on H. It is easily seen that %, implements the au-
tomorphism u,. We will prove that g —u, is the canonical implemen-
tation. For z € n,nn* we have

uy 8A(x) = u, A (x*) = A (g(x*)) = S84, (9(x)) = Su,A,(x)

Since S is the closure of the map A, (x) - A (z*), x € n,Nn,* we get
8 =u,Su,*, and by polar decomposition

J =uJu* and At = wdbu* .
Since P¥ in this setting is the closure of
{A,(x*x) | ®€n,nn,*}

it is easily seen that ua(P#) e Using P= (A*(P#))_ we get u,(P)=P.
Hence g — u, is the canonical implementation of g. Obviously the p-topo-
logy is weaker than the u-topology on aut,(M). To prove the converse
let £ € of and 7 € (&7’)%. Now 7 has the form

N =i ”h‘Ctb el .
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Thus Vg € aut, (M):

(U lm) = 30y (uln D) = S, (' (Chuyélms)
= 2ia1 (m(u,€)Csm;) = 2’21( (( )Cilm)

Since o/ and (&/')? are dense in H we conclude that if g; -~ g in the
p-topology on aut, (M) then u, — u, weakly. Hence by Proposition 3.5,
g; — ¢ in the u-topology.

CoroLLARY 3.8. If M is a factor of type I or of type I1,, the u-topology
and the p-topology coincide on aut(M).

Proor. Every automorphism of these factors leaves the trace inva-
riant.

REMARK 3.9. In general the p-topology on aut(M) is strictly weaker
than the u-topology. An example is given in [5, corollary 3.15].
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