THE STANDARD FORM OF VON NEUMANN ALGEBRAS

UFFE HAAGERUP

Introduction.

To any left Hilbert algebra \mathscr{A} we associate a selfdual cone P, which generalizes the cones $P^{\natural}_{\xi_0}$ in [3] and $V^{\natural}_{\xi_0}$ in [1]. P is defined as the closure of the set

$$\{\xi(J\xi) \mid \xi \in \mathscr{A}\}$$

in the completion H of \mathscr{A} . Using this cone we prove that any von Neumann algebra is isomorphic to a von Neumann algebra M on a Hilbert space H, such that there exists a conjugate linear, isometric involution J of H and a selfdual cone P in H with the properties:

- 1) JMJ = M',
- 2) $JcJ = c^* \quad \forall c \in Z(M)$ (center of M),
- 3) $J\xi = \xi \quad \forall \xi \in P$,
- 4) $aa^t(P) \subseteq P \quad \forall a \in M, a^t = JaJ.$

A quadruple (M,H,J,P) satisfying the conditions 1)-4) is called a standard form of the von Neumann algebra M. We prove that the standard form is unique in the sense, that if (M,H,J,P) and $(\tilde{M},\tilde{H},\tilde{J},\tilde{P})$ are two standard forms, and $\Phi\colon M\to \tilde{M}$ is a *isomorphism then there is a *unique* unitary $u\colon H\to \tilde{H}$ such that

- a) $\Phi(x) = uxu^* \quad \forall x \in M$,
- b) $\tilde{J} = uJu^*$,
- c) $\tilde{P} = u(P)$.

An easy application of this uniqueness theorem gives that the group of all *automorphisms of a von Neumann algebra on standard form has a canonical unitary implementation.

If the von Neumann algebra M admits a cyclic and separating vector, our results are more or less trivial consequences of the results of H. Araki and A. Connes in the papers [1] and [3]. Therefore the proofs are concentrated mainly on the special difficulties in the non σ -finite case.

This paper is a shortened version of my thesis [5] for the cand. scient. degree in Copenhagen 1973.

Received September 13, 1973; in revised form May 1, 1975.

1. Positive elements associated with an achieved left Hilbert algebra.

Let P be a cone in a Hilbert space H. The dual cone P° is defined by $P^{\circ} = \{\xi \in H \mid (\xi \mid \eta) \ge 0 \ \forall \eta \in P\}$. If $P = P^{\circ}$, P is called selfdual.

Let \mathscr{A} be an achieved left Hilbert algebra, and \mathscr{A}' the corresponding right Hilbert algebra. Since $\xi \in \mathscr{A}$ implies $\xi^* = J\xi \in \mathscr{A}'$ it makes sense to put

$$P = \{\xi \cdot \xi^* \mid \xi \in \mathscr{A}\}^-,$$

where the closure is in the completion H of \mathscr{A} .

The von Neumann algebra $\mathcal{L}(\mathcal{A})$ will be denoted by M.

THEOREM 1.1. P is a cone in H with the properties

- (1) $J\xi = \xi \quad \forall \xi \in P$.
- (2) $\Delta^{il}(P) = P \quad \forall t \in \mathbb{R}.$
- (3) P is selfdual.
- (4) $\forall a \in M : aa^t(P) \subseteq P$, where $a^t = JaJ$.

REMARK 1.2. Let M be a von Neumann algebra with a cyclic and separating vector ξ_0 . The set $M\xi_0$ is a left Hilbert algebra with product

$$(a\xi_0)(b\xi_0) = (ab)\xi_0$$

and involution

$$(a\xi_0)^{\sharp}=a^*\xi_0.$$

An easy computation gives $P = \{aa^t \xi_0 \mid a \in M\}^{-}$ where $a^t = JaJ$. Hence in this case P coincides with P_{ξ_0} in [3] and $V_{\xi_0}^{\frac{1}{2}}$ in [1].

For the proof of Theorem 1.1 we shall use a result from [8]. It is proved that the cones

$$P^{\sharp} = \{\xi \xi^{\sharp} \mid \xi \in \mathscr{A}\}^{-}, \quad P^{\flat} = \{\eta \eta^{\flat} \mid \eta \in \mathscr{A}'\}^{-}$$

are dual cones, i.e.

$$\xi \in P^{\sharp} \iff (\xi \mid \eta) \ge 0 \ \forall \eta \in P^{\flat} \quad \text{and} \quad \eta \in P^{\flat} \iff (\xi \mid \eta) \ge 0 \ \forall \xi \in P^{\sharp}.$$

Lemma 1.3. Let \mathscr{A}_0 be the maximal Tomita algebra equivalent to \mathscr{A} (cf. [2, lemma 2.7]). For $\xi \in \mathscr{A}$ there exists a sequence $\{\xi_n\} \subseteq \mathscr{A}_0$ such that

- (i) $\xi_n \to \xi$, $\xi_n^{\sharp} \to \xi^{\sharp}$,
- (ii) $||\pi(\xi_n)|| \le ||\pi(\xi)|| \ \forall n \in \mathbb{N}$,
- (iii) $\pi(\xi_n) \to \pi(\xi)$, $\pi(\xi_n^{\sharp}) \to \pi(\xi^{\sharp})$ strongly.

PROOF. \mathscr{A}_0 consists of the elements $\xi \in H$ for which

- (a) $\xi \in D(\Delta^{\alpha}) \quad \forall \alpha \in C$
- (b) $\Delta^{\alpha}\xi \in \mathscr{A} \quad \forall \alpha \in \mathsf{C}$.

Put

$$f_n(x) = \exp(-x^2/2n^2)$$
 and $\xi_n = f_n(\log \Delta)\xi$.

Obviously $\xi_n \in D(\Delta^{\alpha})$ for any $\alpha \in C$. Note that

$$\Delta^{\alpha}(f_n(\log \Delta)) = \varphi_{\alpha,n}(\log \Delta)$$

where $\varphi_{\alpha,n}(x) = \exp{(\alpha x - x^2/2n^2)}$. Since $\varphi_{\alpha,n}$ is a linear combination of positive definite functions, $\varphi_{\alpha,n}(\log \Delta)$ maps $\mathscr A$ into $\mathscr A$ (see [9, lemma 10.1]). Hence $\Delta^{\alpha}\xi_n \in \mathscr A \ \forall \alpha \in \mathsf C$.

(i) Since $f_n(\log \Delta)$ converges strongly to 1 we get

$$\xi_n = f_n(\log \Delta)\xi \to \xi$$

$$\xi_n^{\sharp} = f_n(\log \Delta)\xi^{\sharp} \to \xi^{\sharp}$$

(cf. [9, lemma 10.1])

(ii) Since

$$f_n(x) = \frac{n}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-n^2 t^2/2) e^{ixt} dt$$

 $f_n(x)$ are positive definite functions. By the proof of [9, lemma 10.1] we find that

$$\|\pi(\xi_n)\| \le f_n(0)\|\pi(\xi)\| = \|\pi(\xi)\|$$
.

(iii) For each $\eta \in \mathscr{A}'$:

$$\pi(\xi_n)\eta = \pi'(\eta)\xi_n \to \pi'(\eta)\xi = \pi(\xi)\eta$$
.

Since \mathscr{A}' is dense in H and $\sup \|\pi(\xi_n)\| < \infty$ we conclude that $\pi(\xi_n) \to \pi(\xi)$ strongly. The same argument gives $\pi(\xi_n^{\sharp}) \to \pi(\xi^{\sharp})$ strongly.

LEMMA 1.4. Put

$$P_0 \,=\, \{\xi\xi^{\textstyle *} \,\big|\,\, \xi\in\mathscr{A}_0\}, \quad P_0^{\,\sharp} \,=\, \{\xi\xi^{\sharp} \,\big|\,\, \xi\in\mathscr{A}_0\}, \quad P_0^{\,\flat} \,=\, \{\xi\xi^{\,\flat} \,\big|\,\, \xi\in\mathscr{A}_0\}\;.$$

Then P (respectively P^{\sharp}, P^{\flat}) is the closure of P_0 (respectively $P_0^{\sharp}, P_0^{\flat}$).

PROOF. (i) It is enough to show that the closure of P_0 contains $\{\xi\xi^* \mid \xi \in \mathscr{A}\}$. Let $\xi \in \mathscr{A}$, and let $\{\xi_n\} \subseteq \mathscr{A}_0$ be a sequence satisfying the conditions of lemma 1.3. Then

$$\xi_n \xi_n^* = \pi(\xi_n) \xi_n^* \rightarrow \pi(\xi) \xi^* = \xi \cdot \xi^*$$
.

(ii) By the same arguments we get $P^{\sharp} = (P_0^{\sharp})^-$.

(iii)
$$P^{\flat} = (P_0^{\flat})^-$$
 follows from (ii) because $P^{\flat} = J(P^{\sharp})$ and $P_0^{\flat} = J(P_0^{\sharp})$.

Lemma 1.5. P is the closure of $\Delta^{\frac{1}{4}}(P^{\sharp})$ (respectively $\Delta^{-\frac{1}{4}}(P^{\flat})$). In particular P is a closed convex cone.

PROOF. Since

$$P^{\sharp} \subseteq D(S) = D(\Delta^{\frac{1}{2}})$$
 and $P^{\flat} \subseteq D(F) = D(\Delta^{-\frac{1}{2}})$

the two sets are well defined. Since

$$\Delta^{\frac{1}{2}}(P^{\sharp}) = JS(P^{\sharp}) = J(P^{\sharp}) = P^{\flat}$$

we get $\Delta^{\frac{1}{4}}(P^{\sharp}) = \Delta^{-\frac{1}{4}}(P^{\flat})$. Therefore it is enough to prove $P = (\Delta^{\frac{1}{4}}(P^{\sharp}))^{-1}$. Let $\xi \in \mathscr{A}_0$:

$$\Delta^{\frac{1}{4}}(\xi\xi^{\sharp}) = (\Delta^{\frac{1}{4}}\xi)(\Delta^{\frac{1}{4}}\xi^{\sharp}) = (\Delta^{\frac{1}{4}}\xi)(\Delta^{\frac{1}{4}}\xi)^*.$$

Since $\Delta^{\frac{1}{4}}(\mathscr{A}_0) = \mathscr{A}_0$ we conclude that $\Delta^{\frac{1}{4}}(P_0^{\sharp}) = P_0$.

Let $\xi \in P^{\sharp}$, and choose a sequence $\{\xi_n\} \subseteq P_0^{\sharp}$ so that $\xi_n \to \xi$. Since $S\xi_n = \xi_n$, $S\xi = \xi$ and $\Delta^{\frac{1}{2}} = JS$ we have $\Delta^{\frac{1}{2}}\xi_n \to \Delta^{\frac{1}{2}}\xi$. Hence

$$||\varDelta^{\frac{1}{4}}\xi_n-\varDelta^{\frac{1}{4}}\xi||^2 \,=\, \left(\varDelta^{\frac{1}{2}}(\xi_n-\xi)\,|\,\xi_n-\xi\right)\to 0\ .$$

Since $\Delta^{\frac{1}{4}}\xi_n \in P_0$ we have $\Delta^{\frac{1}{4}}(P^{\sharp}) \subseteq P$. On the other hand $\Delta^{\frac{1}{4}}(P^{\sharp}) \supseteq P_0$. Hence $(\Delta^{\frac{1}{4}}(P^{\sharp}))^- = P$.

Proof of Theorem 1.1. (1) Let $\xi \in \mathscr{A}_0$. Then

$$J(\xi \xi^*) = (\xi \xi^*)^* = \xi \xi^*.$$

Hence by lemma 1.4 $J\xi = \xi \ \forall \xi \in P$.

(2) Let $\xi \in \mathscr{A}_0$. Then

$$\Delta^{it}(\xi\xi^*) = (\Delta^{it}\xi)(\Delta^{it}\xi^*) = (\Delta^{it}\xi)(\Delta^{it}\xi)^*.$$

Hence $\Delta^{ii}(P_0) = P_0$, and $\Delta^{ii}(P) = P$.

(3) Let $\xi \in \Delta^{\frac{1}{4}}(P^{\sharp})$ and $\eta \in \Delta^{-\frac{1}{4}}(P^{\flat})$. Then

$$(\xi|\eta) = (\Delta^{-\frac{1}{4}}\xi|\Delta^{\frac{1}{4}}\eta) \ge 0$$

because P^{\sharp} and P^{\flat} are dual cones. Hence

$$(\xi | \eta) \ge 0 \quad \forall \xi, \eta \in P$$

(by lemma 1.5).

Let now $\xi \in H$ and assume that $(\xi \mid \eta) \ge 0 \ \forall \eta \in P$. We shall prove that $\xi \in P$. Put

$$\xi_n = f_n(\log \Delta)\xi$$

where $f_n(x) = \exp(-x^2/2n^2)$ as in lemma 1.3. Note that $\xi_n \in D(\Delta^{\frac{1}{4}})$ for any $n \in \mathbb{N}$. Since

$$\xi_n = \int_{-\infty}^{\infty} g_n(t) \Delta^{it} \xi \, dt$$

where $g_n(t) = n(2\pi)^{-\frac{1}{2}} \exp(-n^2t^2/2)$, we get using (2) that for any $\eta \in P$:

$$(\xi_n|\eta) = \int_{-\infty}^{\infty} g_n(t) (\xi |\Delta^{-it}\eta) dt \ge 0$$
.

Hence for any $\zeta \in P^{\flat}$:

$$0 \le (\xi_n | \Delta^{-\frac{1}{4}} \zeta) = (\Delta^{-\frac{1}{4}} \xi_n | \zeta)$$
.

Therefore $\Delta^{-\frac{1}{4}}\xi_n \in P^{\sharp}$ (dual cone of P^{\flat}). Hence $\xi_n \in \Delta^{\frac{1}{4}}(P^{\sharp}) \subseteq P$. Since $\xi_n \to \xi$ we get $\xi \in P$.

(4) Let $\xi, \eta \in \mathcal{A}_0$ and put $\pi(\xi)^t = J\pi(\xi)J$. Then

$$\pi(\xi)\pi(\xi)^{t}(\eta\eta^{*}) = \pi(\xi)J\pi(\xi)J(\eta\eta^{*})$$

$$= \pi(\xi)J(\pi(\xi)\eta\eta^{*})$$

$$= \xi(\xi\eta\eta^{*})^{*} = (\xi\eta)(\xi\eta)^{*}.$$

Hence by lemma 1.4, $\pi(\xi)\pi(\xi)^t$ maps the cone P into itself. An easy application of Kaplansky's density theorem gives now that

$$aa^t(P) \subseteq P$$

for any a in the von Neumann algebra associated with the left Hilbert algebra \mathscr{A}_0 , i.e. for any $a \in M$.

From theorem 1.1 and the basic results of the Tomita-Takesaki theory we get:

THEOREM 1.6. Any von Neumann algebra is isomorphic to a von Neumann algebra M on a Hilbert space H, such that there exists a conjugate linear isometric involution $J: H \to H$, and a selfdual cone P in H with the following properties:

- (1) JMJ = M'
- (2) $JcJ = c^* \quad \forall c \in Z(M)$ (the center of M).
- (3) $J\xi = \xi \quad \forall \xi \in P$
- (4) $aa^{t}(P) \subseteq P \quad \forall a \in M \text{ where } a^{t} = JaJ.$

2. The standard form of von Neumann algebras.

DEFINITION 2.1. A quadruple (M,H,J,P) satisfying the conditions of Theorem 1.6 is called a standard form of the von Neumann algebra M.

REMARK 2.2. Usually a von Neumann algebra on a Hilbert space H is called standard if there exists a conjugate linear isometric involution J_0 of H, such that $J_0MJ_0=M'$. Such a von Neumann algebra is spatially isomorphic to the von Neumann algebra associated with some left Hilbert algebra. Hence if M is standard on H, we can choose J and P in H, such that (M,H,J,P) is a standard form (Theorem 1.1). It can happen that $J \neq J_0$ for any possible choice of (J,P) (cf. [5, proposition 5.3]).

The main result of this section asserts that the standard form is unique in the following strict sense:

THEOREM 2.3. Let (M,H,J,P) and $(\tilde{M},\tilde{H},\tilde{J},\tilde{P})$ be two standard forms, and let $\Phi \colon M \to \tilde{M}$ be a *isomorphism. There exists one and only one unitary $u \colon H \to \tilde{H}$ such that

- (1) $\Phi(x) = uxu^{-1} \quad \forall x \in M$,
- $(2) \tilde{J} = uJu^{-1},$
- (3) $\tilde{P} = u(P)$.

LEMMA 2.4. Let M be a von Neumann algebra on a Hilbert space H, and let q be a projection of the form q=pp' where $p\in M$ and $p'\in M'$ are two projections. Put $qMq=\{qaq\mid a\in M\}$ regarded as a set of operators on q(H). Then:

- (i) qMq is a von Neumann algebra
- (ii) (qMq)' = qM'q.
- (iii) Z(qMq) = qZ(M)q, where $Z(\cdot)$ denotes the center.
- (iv) If $c(p) \le c(p')$ the map $pxp \to qxq$ is a *isomorphism of pMp onto qMq. (c(·) denotes the central support).

PROOF. In [4] Chapter 1, § 2 the lemma is proved if $q \in M$ (reduction) or $q \in M'$ (induction). The general case q = pp' can easily be reduced to these cases, because the map $x \to qxq$ is composed of a reduction $x \to pxp$ of M onto pMp followed by an induction $pxp \to qxq$ of pMp onto qMq, where q is regarded as an element of (pMp)'.

COROLLARY 2.5. Let (M,H,J,P) be a standard form, and let p be a projection in M. Put $q = pp^t$ $(p^t = JpJ)$. Then the induction $pxp \to qxq$ is an isomorphism of pMp onto qMq. In particular $p \neq 0$ iff $q \neq 0$.

PROOF. Since J commutes with central projections in M we have $c(p^t) = Jc(p^t)J \ge Jp^tJ = p$. Hence $c(p^t) \ge c(p)$.

LEMMA 2.6. Let (M,H,J,P) be a standard form, p a projection in M and $q = pp^t$. Then (qMq,q(H),qJq,q(P)) is a standard form.

PROOF. Since Jq = qJ, J leaves q(H) invariant. Hence qJq is an isometric involution in q(H). Obviously $(\xi | \eta) \ge 0 \quad \forall \xi, \eta \in q(P)$ because $q(P) \subseteq P$.

Assume that $\xi \in q(H)$ and $(\xi \mid \eta) \ge 0 \ \forall \eta \in q(P)$. Then $\forall \zeta \in P$:

$$0 \le (\xi | q\zeta) = (q\xi | \zeta) = (\xi | \zeta).$$

Hence $\xi \in P$ and $\xi = q\xi \in q(P)$. Therefore q(P) is a selfdual cone in q(H). We now verify the conditions 1)-4) in Theorem 1.6.

- (1) (qJq)(qMq)(qJq) = q(JMJ)q = qM'q = (qMq)'.
- (2) If $c \in Z(qMq) = qZ(M)q$ then c = qxq for some $x \in Z(M)$. Hence $(qJq)(qxq)(qJq) = q(JxJ)q = qx^*q = (qxq)^*$
- (3) and (4) are trivial because $q(P) \subseteq P$.

REMARK 2.7. Any selfdual cone P in a Hilbert space H is total. For if $(\xi | \eta) = 0 \ \forall \eta \in P$, then both ξ and $-\xi$ belong to $P^{\circ} = P$. Hence $(\xi | -\xi) \ge 0$.

Let M be a von Neumann algebra on a Hilbert space H, and let ξ be a vector in H. Then

- a) $e(\xi)$ (respectively $e'(\xi)$) denotes the projection on the closure of $M'\xi$ (respectively $M\xi$).
- b) ω_{ξ} (respectively ω'_{ξ}) denotes the restriction of the vector functional $x \to (x\xi \mid \xi)$ to M (respectively M').

Note that $e(\xi) = s(\omega_{\xi})$ and $e'(\xi) = s'(\omega_{\xi})$ where $s(\cdot)$ is the support of the functional.

LEMMA 2.8. Let (M,H,J,P) be a standard form, and M σ -finite, then there exists a cyclic and separating vector $\xi \in P$.

PROOF. Take a maximal family $(\xi_i)_{i\in I}$ of vectors in $P \setminus \{0\}$ such that $(e(\xi_i))_{i\in I}$ are mutually orthogonal. Assume that

$$p = 1 - \sum_{i \in I} e(\xi_i) \neq 0.$$

By corollary 2.5, $q = p \cdot p^t \neq 0$ and since q(P) is a selfdual cone in q(H), there exists $\xi \in q(P) \setminus \{0\}$. However, $e(\xi) \leq p$, which contradicts the maximality of $(\xi_i)_{i \in I}$. Hence $\sum_{i \in I} e(\xi_i) = 1$.

Since M is σ -finite the index set I is at most countable. Thus we may assume that $\sum_{i\in I}\|\xi_i\|^2<\infty.$

Now put $\xi = \sum_{i \in I} \xi_i \in P$.

Using that $M'\xi_i \perp M'\xi_i$ if $i \neq j$ and that M' = JMJ we get

$$M\xi_i \perp M\xi_i$$
 if $i \neq j$.

Hence $\omega_{\xi} = \sum_{i \in I} \omega_{\xi_i}$ and

$$e(\xi) = s(\omega_\xi) = \sum_{i \in I} s(\omega_{\xi_i}) = \sum_{i \in I} e(\xi_i) = 1$$
 .

Therefore ξ is separating. Using that $e'(\xi) = e'(J\xi) = Je(\xi)J$ we find that ξ is also cyclic.

LEMMA 2.9. Let (M,H,J,P) be a standard form and ξ a cyclic and separating vector in P. Then $J_{\xi}=J$ and $P_{\xi}=P$, where J_{ξ} and P_{ξ} is the involution and the selfdual cone associated with the left Hilbert algebra $M\xi$ (cf. Remark 1.2).

PROOF. That $J_{\xi} = J$ follows from [10, lemma 4.2] (see also [1, theorem 1]).

Since $aa^t = a(JaJ)$ maps P into P for any $a \in M$ we get

$$P_{\xi} = \{a(J_{\xi}aJ_{\xi})\xi \mid a \in M\}^{-} \subseteq P.$$

Hence $P_{\varepsilon} = P$, because both P_{ε} and P are selfdual.

LEMMA 2.10. Let (M,H,J,P) be a standard form.

- (1) Any $\varphi \in M_*^+$ has the form $\varphi = \omega_{\xi}$ for a unique vector $\xi \in P$.
- (2) For $\xi, \eta \in P$:

$$||\xi - \eta||^2 \le ||\omega_{\xi} - \omega_{\eta}|| \le ||\xi - \eta|| ||\xi + \eta||.$$

In particular $\xi \to \omega_{\xi}$ is a homeomorphism of P onto M_{*}^+ .

Proof. Note that the inequality $\|\omega_{\xi} - \omega_{\eta}\| \le \|\xi - \eta\| \|\xi + \eta\|$ is trivial because $\omega_{\xi} - \omega_{\eta} = \frac{1}{2}(\omega_{\xi - \eta, \, \xi + \eta} + \omega_{\xi + \eta, \, \xi - \eta}).$

If M is σ -finite the lemma follows from [1, Theorem 4 and Theorem 6], because $P = P_{\xi}$ and $J = J_{\xi}$ for some cyclic and separating vector $\xi \in P$ (see also [3, Theorem 2.7]).

Let now M be arbitrary:

(1): Take $\varphi \in M_*^+$, let p be the support of φ and $q = pp^t$, where $p^t = JpJ$. Since the induction $pMp \to qMq$ is an isomorphism, there exists a functional $\psi \in (qMq)_*$ such that

$$\varphi(x) = \psi(qxq) \quad \forall x \in M.$$

Since qMq is σ -finite and (qMq, qH, qJq, qP) is a standard form, there exists $\xi \in q(P) \subseteq P$ so that $\psi(y) = (y\xi \mid \xi) \ \forall y \in qMq$. Hence

$$\varphi(x) = (x\xi \mid \xi), \quad x \in M$$
.

The uniqueness of ξ follows when the inequality (2) is proved.

(2): The inequality follows from the σ -finite case by regarding the reduced standard form (qMq, qH, qJq, qP) corresponding to $q = pp^t$ where $p = e(\xi) \vee e(\eta)$.

PROOF OF THEOREM 2.3. Assume that u_1 and u_2 satisfy the conditions 1)-3).

Let $\xi \in P$. By 3), $u_1 \xi \in \tilde{P}$ and $u_2 \xi \in \tilde{P}$. Moreover:

$$(\Phi(a)u_1\xi \,|\, u_1\xi) = (a\xi \,|\, \xi) = (\Phi(a)u_2\xi \,|\, u_2\xi)$$
.

Since the map $\eta \to \omega_{\eta}$ is a bijection of \tilde{P} on \tilde{M}_{*} we get $u_{1}\xi = u_{2}\xi$. Consequently $u_{1} = u_{2}$, because a selfdual cone is total (by Remark 2.7). To prove the existence we assume first that M is σ -finite. Then M has a cyclic and separating vector $\xi \in P$. By Lemma 2.9 there exists $\eta \in \tilde{P}$ so that

$$\omega_{\eta}(\Phi(x)) = \omega_{\xi}(x) \quad \forall x \in M.$$

 η is separating for \tilde{M} and therefore $J\eta = \eta$ is cyclic for \tilde{M} . The equation

$$\|\Phi(a)\eta\|^2 = \omega_n(\Phi(a^*a)) = \omega_\xi(a^*a) = \|a\xi\|^2 \quad \forall a \in M$$
.

shows that the map $a\xi \to \Phi(a)\eta$, $a \in M$ can be extended to a unitary $u: H \to \tilde{H}$. We claim that u satisfies the conditions 1)-3):

(1) Let $\zeta \in \tilde{M}\eta$, $\zeta = \Phi(a)\eta$ for some $a \in M$. Then

$$\Phi(b)\zeta = \Phi(ba)\eta = u(ba\xi) = ubu^{-1}(\Phi(a)\eta) = ubu^{-1}\zeta \quad \forall b \in M.$$

Hence $\Phi(b) = ubu^{-1}$ because $\tilde{M}\eta$ is dense in \tilde{H} .

(2) Let S_{ξ} (respectively S_{η}) be the closure of the operator $a\xi \to a^*\xi$, $a \in M$ (respectively $b\eta \to b^*\eta$, $b \in \tilde{M}$). Then it is easy to check that

$$S_n = uS_{\varepsilon}u^{-1}$$
.

By polar decomposition

$$S_{\varepsilon} = J_{\varepsilon} \Delta_{\varepsilon}^{\frac{1}{2}}, \quad S_{n} = J_{n} \Delta_{n}^{\frac{1}{2}}.$$

Thus $J_{\eta} = uJ_{\xi}u^{-1}$. But $J = J_{\xi}$ and $\tilde{J} = J_{\eta}$ (by Lemma 2.9). Hence $\tilde{J} =$ uJu^{-1} .

(3) Clearly

$$\begin{array}{ll} P \,=\, P_{\eta} \,=\, \{a \tilde{J} a \eta \mid \, a \in \tilde{M}\}^{-} \\ &=\, \{(u a u^{-1})(u J u^{-1})(u a u^{-1}) \eta \mid \, a \in M\}^{-} \\ &=\, u \{a J a \xi \mid \, a \in M\}^{-} \,=\, u(P) \;. \end{array}$$

In the general case let p be a σ -finite projection in M. Put $q = pp^t$ and $r = \Phi(p)\Phi(p)^t$. Since the inductions

$$pMp \rightarrow qMq$$
 and $\Phi(p)\tilde{M}\Phi(p) \rightarrow r\tilde{M}r$

are isomorphisms, there is a unique isomorphism $\Phi_q: qMq \to r\tilde{M}r$ so that

$$\Phi_a(qxq) = r\Phi(x)r, \quad x \in M.$$

Using the first part of the proof on the reduced standard forms we find that there is a unique isometry u_q of q(H) on r(H) satisfying

- (a) $r\Phi(x)r = u_o(qxq)u_o \quad \forall x \in M$,
- (b) $r\tilde{J}r = u_{\sigma}(q\bar{J}q)u_{\sigma}$,
- (c) $r(\tilde{P}) = u_{\sigma}q(\tilde{P})$.

This construction can be carried out for any σ -finite projection. If $p_1 \leq p_2$ then $q_1 \leq q_2$ and $r_1 \leq r_2$. The uniqueness of u_q , shows that in this case $u_{q_1} \subseteq u_{q_2}$. Choose a net $(p_i)_{i \in I}$ of σ -finite projections in M so that $p_i \nearrow 1$. Then

 $q_i = p_i p_i^t / 1$ and $r_i / 1$.

Since $u_{q_i} \subseteq u_{q_j}$ when $p_i \subseteq p_j$, there exists an isometry u of H onto \tilde{H} which extend every u_{q_i} , $i \in I$. Using

$$\begin{array}{ll} H = \left(\bigcup_{i \in I} q_i(H)\right)^{-} & \tilde{H} = \left(\bigcup_{i \in I} r_i(H)\right)^{-}, \\ P = \left(\bigcup_{i \in I} q_i(P)\right)^{-} & \tilde{P} = \left(\bigcup_{i \in I} r_i(\tilde{P})\right)^{-}, \end{array}$$

we find that u has the required properties.

Remark 2.11. Condition 2) in Theorem 2.3 is not essential. Since P and \tilde{P} are total, we have $3) \Rightarrow 2$).

3. Unitary implementation of automorphism groups.

Definition 3.1. Let M be a von Neumann algebra on a Hilbert space H, and G a group of *automorphisms of M. A unitary implementation of G is a unitary representation $g \to u_g$ of G on H, such that

$$g(a) = u_g a u_g^* \quad \forall g \in G, \ \forall a \in M$$
.

As an easy application of Theorem 2.3 we get

THEOREM 3.2 (cf. [1, theorem 11] and [3]). Let (M,H,J,P) be a standard form. The group aut (M) of *automorphisms of M has a unique unitary implementation $g \to u_g$, such that

(*)
$$J = u_g J u_g^{-1}$$
 and $u_g(P) = P$ for any $g \in \text{aut}(M)$.

PROOF. By Theorem 2.3 we get that for each $g \in \text{aut}(G)$, there is a unique unitary on H which satisfies (*). It follows from the uniqueness that

$$u_{g \cdot h} = u_g \cdot u_h \quad \forall g, h \in G$$
.

DEFINITION 3.3. The map $g \to u_g$ in Theorem 3.2 will be called the canonical implementation of aut(M).

DEFINITION 3.4. Let M be a von Neumann algebra. On the set of bounded, σ -weak continuous operators on M we define the p-topology by the semi-norms

$$T \to \langle Tx, \varphi \rangle$$
 $x \in M, \varphi \in M_*$

and the *u-topology* by the semi-norms

$$T \to ||T_*\varphi||, \quad \varphi \in M_*$$

where $T_*: \varphi \to \varphi \circ T$ is the transposed action on the predual.

PROPOSITION 3.5. Let (M,H,J,P) be a standard form. The canonical implementation $g \to u_g$ of aut(M) is a homeomorphism of aut(M) onto a closed subgroup of the unitary group on H, when the first is equipped with u-topology and the latter with strong (=weak) operator topology.

PROOF. Since the map $\xi \to \omega_{\xi}$ is a homeomorphism of P onto M_{*}^{+} we find by repeating the arguments of [1, Remark following Theorem 11] that the map $g \to u_{g}$ is a homeomorphism on its range. Since $\{u_{g} \mid g \in \operatorname{aut}(M)\}$ is equal to the set of unitaries for which

$$uMu^* = M, \quad uJu^* = J, \quad u(P) = P,$$

the set is strongly closed relative to the unitary group.

COROLLARY 3.6. Let (M,H,J,P) be a standard form, G a locally compact group and $\alpha: G \to \operatorname{aut}(M)$ a σ -weakly continuous representation of G on M. Then the canonical unitary implementation $g \to u_{\alpha(g)}$ of G is strongly continuous.

PROOF. Since $g \to \langle \alpha(g)x, \varphi \rangle$ is continuous for $x \in M$, $\varphi \in M_*$ the action of G on the predual $g \to \alpha(g)_*$ is $\sigma(M_*, M)$ -continuous. Hence by [6, p. 23] the action is also strongly continuous, i.e.

$$\|\alpha(g_i)_* \varphi - \alpha(g)_* \varphi\| \to 0$$
 for any $\varphi \in M_*$.

REMARK. Theorem 3.2 and Corollary 3.6 are generalizations of theorem 6.10 and proposition 6.11 of [7].

PROPOSITION 3.7. Let φ be a normal, faithful, semifinite weight on a von Neumann algebra M. The p-topology and the u-topology coincide on the group $\operatorname{aut}_{\varphi}(M)$ of *automorphisms on M, which leaves φ invariant.

PROOF. Let $(\pi_{\varphi}, H_{\varphi})$ be the representation of M induced by φ . H_{φ} is obtained as completion of the pre-Hilbert-space

$$n_{w} = \{x \in M \mid \varphi(x^*x) < \infty\}.$$

We let Λ_{φ} denote the injection of n_{φ} in H_{φ} . The set $\mathscr{A} = \Lambda_{\varphi}(n_{\varphi} \cap n_{\varphi}^*)$ is an achieved left Hilbert algebra (cf. [2]). Let (M,H,J,P) be the standard form associated with this left Hilbert algebra as in section 1. (We identify M and $\pi_{\varphi}(M)$.) For any $g \in \operatorname{aut}_{\varphi}(M)$ the map $\Lambda_{\varphi}(x) \to \Lambda_{\varphi}(g(x))$ can be extended to a unitary u_g on H. It is easily seen that u_g implements the automorphism u_g . We will prove that $g \to u_g$ is the canonical implementation. For $x \in n_{\varphi} \cap n_{\varphi}^*$ we have

$$u_{g}S\Lambda_{\varphi}(x) = u_{g}\Lambda_{\varphi}(x^{*}) = \Lambda_{\varphi}(g(x^{*})) = S\Lambda_{\varphi}(g(x)) = Su_{g}\Lambda_{\varphi}(x)$$

Since S is the closure of the map $\Lambda_{\varphi}(x) \to \Lambda_{\varphi}(x^*)$, $x \in n_{\varphi} \cap n_{\varphi}^*$ we get $S = u_g S u_g^*$, and by polar decomposition

$$J = u_{\sigma} J u_{\sigma}^*$$
 and $\Delta^{\frac{1}{2}} = u_{\sigma} \Delta^{\frac{1}{2}} u_{\sigma}^*$.

Since P^{\sharp} in this setting is the closure of

$$\{ \varLambda_{\varphi}(x^*x) \mid x \in n_{\varphi} \cap n_{\varphi}^* \}$$

it is easily seen that $u_g(P^{\sharp}) = P^{\sharp}$. Using $P = (\Delta^{\sharp}(P^{\sharp}))^{-}$ we get $u_g(P) = P$. Hence $g \to u_g$ is the canonical implementation of g. Obviously the p-topology is weaker than the u-topology on $\operatorname{aut}_{\varphi}(M)$. To prove the converse let $\xi \in \mathscr{A}$ and $\eta \in (\mathscr{A}')^2$. Now η has the form

$$\eta = \sum_{i=1}^{n} \eta_i \zeta_i^{\flat} \quad \eta_i, \zeta_i \in \mathscr{A}'.$$

Thus $\forall g \in \operatorname{aut}_{\omega}(M)$:

$$(u_g \xi | \eta) = \sum_{i=1}^n (u_g \xi | \eta_i \zeta_i^{\flat}) = \sum_{i=1}^n (\pi'(\zeta_i) u_g \xi | \eta_i)$$

= $\sum_{i=1}^n (\pi(u_g \xi) \zeta_i | \eta_i) = \sum_{i=1}^n (g(\pi(\xi)) \zeta_i | \eta_i)$

Since $\mathscr A$ and $(\mathscr A')^2$ are dense in H we conclude that if $g_i\to g$ in the p-topology on $\operatorname{aut}_\varphi(M)$ then $u_{g_i}\to u_g$ weakly. Hence by Proposition 3.5, $g_i\to g$ in the u-topology.

COROLLARY 3.8. If M is a factor of type I or of type II_1 , the u-topology and the p-topology coincide on aut(M).

PROOF. Every automorphism of these factors leaves the trace invariant.

Remark 3.9. In general the p-topology on aut(M) is strictly weaker than the u-topology. An example is given in [5, corollary 3.15].

REFERENCES

- H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309-354.
- F. Combes, Poids associé a une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 49-77.
- 3. A. Connes, Caractérisation des algèbres de von Neumann comme espaces vectoriels ordonnés, Ann. Inst. Fourier (Grenoble), 24 (1974), 121-155.
- J. Diximier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
- U. Haagerup, The standard form of von Neumann algebras, preprint, University of Copenhagen, 1973.
- 6. B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127 (1972).
- G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53-87.
- F. Perdrizet, Elements positifs relatifs a une algèbre Hilbertienne à gauche, Compositio Math. 23 (1971), 25-47.
- M. Takesaki, Tomitas theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics 128, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- S. L. Woronowitz, On the purification of factor states, Comm. Math. Phys. 28 (1972), 221-235.