THE GLOBAL HOMOLOGICAL DIMENSION OF SEMI-TRIVIAL EXTENSIONS OF RINGS

INGEGERD PALMÉR

Contents.

1.	Definition of the semi-trivial extensions of a ring. Some ring theoretic pro-	
	perties	223
2.	Some properties of projective $A \times_{\Phi} M$ -modules	230
3.	The global dimension of $A \times_{\varphi} M$ for Φ an epimorphism. A result for $\binom{R}{N} \binom{M}{S}_{\varphi,\psi}$	
	with one of φ, ψ epimorphic	232
4.	$\operatorname{Igldim} A \times_{\Phi} M \leq 2.$	237
	M_A and $(\operatorname{Ker} \Phi)_A$ flat	
6.	A spectral sequence	251
	Final remarks	
	bliography	

1. Definition of the semi-trivial extension of a ring. Some ring theoretic properties.

All rings in this paper will have unit element and all (left or right) modules and all homomorphisms will be unitary. The term A-module will always refer to a left module over the ring A. $\operatorname{lgldim} A$ will denote the left global homological dimension of the ring A, $\operatorname{lhd}_A M$ will denote the homological dimension of the A-module M and $\operatorname{whd} M_A$ will denote the weak homological dimension of the right module M over A.

Let A be a ring and let M be an (A,A)-bimodule. In [10] Roos and the author studied the trivial extension of A by M, that is the Cartesian product set $A \times M$ with addition componentwise and multiplication given by (a,m)(a',m')=(aa',am'+ma'). We now generalize the multiplication by also multiplying the elements of M. That is, we give an (A,A)-bimodule map $\Phi: M \otimes_A M \to A$ and define multiplication on $A \times M$ by

(1)
$$(a,m)(a',m') = (aa' + \Phi(m,m'),am' + ma') .$$

This multiplication is associative if and only if the diagram

$$(2) \qquad M \otimes_{A} M \otimes_{A} M \xrightarrow{\Phi \otimes_{A} 1_{M}} A \otimes_{A} M$$

$$\downarrow 1_{M} \otimes_{A} \Phi \qquad \downarrow = \qquad \downarrow M$$

is commutative.

Thus, given an (A,A)-bimodule homomorphism $\Phi: M \otimes_A M \to A$ satisfying (2), we obtain a structure of ring with unit element on the Cartesian product set $A \times M$, where addition is componentwise and multiplication is given by (1). This ring will be denoted by $A \times_{\varphi} M$ and called the semi-trivial extension of A by M and Φ . The ring A is a subring of $A \times_{\varphi} M$ but in general not a quotient ring. The module M is not an ideal of $A \times_{\varphi} M$; the ideal generated by M is $\operatorname{Im} \Phi \times M$.

Important special cases of semi-trivial extensions are the generalized matrix rings

$$\begin{pmatrix} R & {}_{R}M_{S} \\ {}_{S}N_{R} & S \end{pmatrix}_{m,w}$$

(in the notation of Roos [13]), where R,S are rings and M,N bimodules with the indicated structure, $\varphi: M \otimes_S N \to R$ and $\varphi: N \otimes_R M \to S$ bimodule homorphisms. If we put $A = R \times S$ and consider $\widetilde{M} = M \times N$ as an (A,A)-bimodule in the natural fashion, then

$$\tilde{M} \otimes_{\mathcal{A}} \tilde{M} = M \otimes_{\mathcal{S}} N \times N \otimes_{\mathcal{R}} M$$

and for

$$\Phi = (\varphi, \psi) \colon \tilde{M} \otimes_{A} \tilde{M} \to A$$

we obtain a ring isomorphism

$$A \times_{\varphi} \tilde{M} \stackrel{\cong}{\longrightarrow} \begin{pmatrix} R & M \\ N & S \end{pmatrix}_{\varphi, \psi}$$

Corresponding to (2) there are two commuting diagrams

$$(2)' \qquad M \otimes_{S} N \otimes_{R} M \xrightarrow{\varphi \otimes 1_{M}} R \otimes_{R} M$$

$$\downarrow^{1_{M} \otimes \psi} \qquad \downarrow^{=}$$

$$M \otimes_{S} S \xrightarrow{-} M$$

$$N \otimes_{R} M \otimes_{S} N \xrightarrow{\psi \otimes 1_{N}} S \otimes_{S} N$$

$$\downarrow^{1_{N} \otimes \psi} \qquad \downarrow^{=}$$

$$N \otimes_{R} R \xrightarrow{-} N$$

Any ring Λ with an idempotent e is a generalized matrix ring with

$$R = eAe, S = (1-e)A(1-e), M = eA(1-e), N = (1-e)Ae$$

and φ, ψ induced by the multiplication in Λ .

A left module over $A \times_{\sigma} M$ is a couple (U,f) where U is a left A-module and f is an A-homomorphism $M \otimes_{A} U \to U$.

The associativity condition

$$(0,m)((0,m')u) = ((0,m)(0,m'))u$$
 for $m,m' \in M, u \in U$

corresponds to the requirement that the diagram

$$\begin{array}{c|c}
M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \xrightarrow{1_{M} \otimes f} M \otimes_{\mathcal{A}} U \xrightarrow{f} U \\
\Phi \otimes 1_{U} & & & \downarrow \\
A \otimes_{\mathcal{A}} U & & & \downarrow
\end{array}$$

commutes. In particular, if the semi-trivial extension is a generalized matrix ring as above, then a left module is a quadruple (U,V,f,g), where U is a left R-module, V is a left S-module, $f:M\otimes_S V\to U$ an R-homomorphism and $g:N\otimes_R U\to V$ an S-homomorphism. Corresponding to (3) there are again two commutative diagrams

$$(3)' \qquad M \otimes_{S} N \otimes_{R} U \xrightarrow{1_{M} \otimes g} M \otimes_{S} V$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$R \otimes_{R} U \xrightarrow{=} U$$

$$N \otimes_{R} M \otimes_{S} V \xrightarrow{1_{N} \otimes f} N \otimes_{R} U$$

$$\downarrow g \qquad \qquad \downarrow g$$

$$S \otimes_{S} V \xrightarrow{=} V$$

From (3) it follows that for an $A \times_{\sigma} M$ -module (U,f) the A-modules Kerf and Cokerf are annihilated by $\operatorname{Im} \Phi$. In particular, (U,0) is a left $A \times_{\sigma} M$ -module if and only if U is a left $A/\operatorname{Im} \Phi$ -module.

In view of the well-known adjointness relation

$$\operatorname{Hom}_{\mathcal{A}}(M \otimes_{\mathcal{A}} U, U) \cong \operatorname{Hom}_{\mathcal{A}}(U, \operatorname{Hom}_{\mathcal{A}}(M, U))$$

we see that an $A \times_{\sigma} M$ -module (U,f) can also be interpreted as a pair (U,f_H) consisting of an A-module U and an A-linear map $f_H: U \to \operatorname{Hom}_A(M,U)$ such that the diagram

$$U \xrightarrow{f_H} \operatorname{Hom}_{A}(M, U) \xrightarrow{\operatorname{Hom}_{A}(1_M, f_H)} \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(M, U))$$

$$\cong \bigcup_{Hom_{A}(A, U)} \xrightarrow{\operatorname{Hom}_{A}(\Phi, 1_U)} \operatorname{Hom}_{A}(M \otimes_{A} M, U)$$

is commutative. Here the vertical maps are the natural isomorphisms.

For an A-module U we denote its extension to the category of $A \times_{\sigma} M$ -modules by T(U), that is, $T(U) = (A \times_{\sigma} M) \otimes_{A} U$. Its underlying A-module is $\widetilde{U} = U \coprod M \otimes_{A} U$ and the map $\tau_{\widetilde{U}} \colon M \otimes_{A} \widetilde{U} \to \widetilde{U}$ is the identity on $M \otimes_{A} U$ and the composition

$$M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \xrightarrow{\Phi \otimes 1_{U}} A \otimes_{\mathcal{A}} U \xrightarrow{=} U$$

on $M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U$.

Finally, an $A \times_{\phi} M$ -homomorphism from (U,f) to (V,g) is an A-homomorphism $\alpha \colon U \to V$ such that the diagram

$$(4) \qquad M \otimes_{\mathcal{A}} U \xrightarrow{1_{M} \otimes \alpha} M \otimes_{\mathcal{A}} V$$

$$\downarrow g \qquad \qquad \downarrow g$$

$$U \xrightarrow{\alpha} V$$

commutes.

An interesting case will occur when Φ is an epimorphism. Then Φ is an isomorphism and M is a finitely generated, projective A-module (both left and right). The proof is that of Bass [3, theorem (3.4), p. 62] for a set of preequivalence data (A,B,P,Q,f,g) with f epi. It is possible to obtain almost complete results on the global dimension of $A \times_{\Phi} M$ in this case and we will return to it in Section 3.

Before investigating the homological properties of $A \times_{\sigma} M$ we make a comparison of some ring theoretic properties of A and $A \times_{\sigma} M$. We denote the Jacobson radical of a ring R by J(R). The following lemma (cf. Roos [14]) will be needed.

LEMMA 1. Let A, M and Φ be as above. If $\operatorname{Im} \Phi \subseteq J(A)$, then $J(A \times_{\Phi} M) = J(A) \times M$. If J(A) is nilpotent, so is $J(A) \times M$.

PROOF. If m is a maximal left ideal of A, then $m \times M$ is a maximal left ideal of $A \times_{\alpha} M$, since

$$(0 \times M)^2 \subseteq \operatorname{Im} \Phi \subseteq J(A) \subseteq \mathfrak{m}.$$

Hence

$$J(A \times_{\sigma} M) \subseteq J(A) \times M$$
.

To see the opposite inclusion we directly calculate the (right) inverse in $A \times_{\sigma} M$ of 1 - (j, m) for $(j, m) \in J(A) \times M$.

To prove the second part, let $J(A)^k = 0$. Since

$$(J(A) \times M)^i \subseteq (J(A)^i + \operatorname{Im} \Phi) \times M$$

for every integer i, we have

$$(J(A) \times M)^k \subseteq \operatorname{Im} \Phi \times M$$
.

Now

$$(\operatorname{Im} \Phi \times M)^2 = \operatorname{Im} \Phi \times M \operatorname{Im} \Phi ,$$

whence

$$(\operatorname{Im} \Phi \times M)^{2j} = \operatorname{Im} \Phi^j \times M \operatorname{Im} \Phi^j$$
 for every j .

Thus $(\operatorname{Im} \Phi \times M)^{2k} = 0$ which implies $(J(A) \times M)^{2k^2} = 0$.

The supposition of $\operatorname{Im} \Phi \subseteq J(A)$ is necessary for the truth of the lemma as will be seen by the following example.

Example 1. Let A=M=K, a field, and let $\Phi\colon K\otimes_K K\to K$ be the natural multiplication. Then $A\times_{\sigma} M\cong K[X]/(X^2-1)$, so $J(A\times_{\sigma} M)=0$ if the characteristic of K is $\neq 2$ and $J(A\times_{\sigma} M)=$ the diagonal submodule K(1,1) of $K\times K$ if the characteristic of K is 2.

PROPOSITION 1. Let A, M and Φ be as above. The (Gabriel-Rentschler) Krull-dimension (for a definition, see [12]) of the A-module N is denoted by Kr-dim $_AN$. The (left) Krull-dimension of the ring A will be denoted by Kr-dimA.

- (a) $A \times_{\mathbf{o}} M$ is (left) noetherian if and only if A is (left) noetherian and M is (left) f.g. (finitely generated).
- (b) Kr-dim $A \times_{\phi} M = \max(\text{Kr-dim } A, \text{Kr-dim }_A M)$ if either side is finite. In particular, $A \times_{\phi} M$ is (left) Artinian if and only if A and M are (left) Artinian.
- (c) $A \times_{\Phi} M$ is (right) perfect if and only if A is (right) perfect.
- (d) $A \times_{\phi} M$ is semi-primary if and only if A is semi-primary.
- (e) $A \times_{\Phi} M$ is semi-simple implies $A \times_{\Phi} M$ is a product of rings $A_1 \times (A_2 \times_{\Phi} \widetilde{M})$ where A_1, A_2 are semi-simple rings and $A_2 \times_{\Phi} \widetilde{M}$ is a semi-trivial extension with Φ epi.

PROOF. (a) If $A \times_{\sigma} M$ is left noetherian, let $\alpha_1 \subseteq \alpha_2 \subseteq ...$ be an ascending chain of left ideals of A. The ideal α_i generates a left ideal of $A \times_{\sigma} M$, viz. $\alpha_i \times M\alpha_i$, and the ascending chain $\alpha_1 \times M\alpha_1 \subseteq \alpha_2 \times M\alpha_2 \subseteq ...$

of ideals of $A \times_{\phi} M$ is stationary. Thus A is left noetherian. In the same way we see that M is a left noetherian A-module.

If, on the other hand, A is left noetherian and M is f.g. as a left A-module, then $A \perp\!\!\!\perp M$ is a noetherian left A-module. Since a left ideal of $A \times_{\varphi} M$ is a left A-submodule of $A \perp\!\!\!\perp M$, it follows that $A \times_{\varphi} M$ is left noetherian.

(b) The proof of the equivalence $A \times_{\sigma} M$ is (left) Artinian if and only if A and M are (left) Artinian is similar to the proof of (a). Thus (b) is true if one of the members is zero.

Now suppose that $\operatorname{Kr-dim} A \times_{\sigma} M = n > 0$. Let $a_1 \supseteq a_2 \supseteq \ldots$ be a strictly descending chain of left ideals of A such that $\operatorname{Kr-dim}_A a_i / a_{i+1} \le n-1$ for every i. If n=1, then a_i / a_{i+1} is not Artinian, so there is an infinite strictly descending chain of lefts ideals between a_i and a_{i+1} . This chain gives rise to an infinite strictly descending chain of left ideals of $A \times_{\sigma} M$ between the left ideals $a_i \times M a_i$ and $a_{i+1} \times M a_{i+1}$. Hence the chain $\{a_i \times M a_i\}_{i \ge 1}$ is finite, and it follows that $\operatorname{Kr-dim} A \le 1 = n$. The same way of reasoning goes through for n > 1 (n finite). Similarly it is proved that $\operatorname{Kr-dim}_A M \le n$.

Suppose, on the other hand, that $\max(\operatorname{Kr-dim}_A K \operatorname{r-dim}_A M) = m$. Then $\operatorname{Kr-dim}_A A \coprod M = m$, and since every chain of left ideals of $A \times_{\mathfrak{o}} M$ is a chain of left A-submodules of $A \coprod M$, it follows that $\operatorname{Kr-dim}_A A \times_{\mathfrak{o}} M \leq m$.

(c) To see that $A \times_{\sigma} M$ is right perfect implies A is right perfect we use the characterization by Bass [2] of a ring being right perfect if and only if it satisfies the DCC on principal left ideals. Since a principal left ideal of A generates a principal left ideal of $A \times_{\sigma} M$, the implication is obvious.

For the opposite implication we first note that since A is right perfect, $1=e_1+\ldots+e_k$, where $\{e_i\}_1{}^k$ is an orthogonal family of minimal idempotens (Björk [4]). This is also a partition of the unity of $A\times_{\sigma}M$ into a sum of orthogonal idempotents. According to Björk [5], $A\times_{\sigma}M$ is right perfect if all the rings

$$(e_i,0)A\times_{\Phi}M(e_i,0) \quad i=1,\ldots,k\;,$$

are so. Now $(e_i, 0)A \times_{\varphi} M(e_i, 0)$ is a semi-trivial extension itself, namely the ring $e_iAe_i \times_{\varphi e_i}e_iMe_i$ where Φ_{e_i} is induced by Φ . e_iAe_i is a local ring since e_i is a minimal idempotent, and it is right perfect according to the first part of the proof of (c). Thus it suffices to show the implication A right perfect implies $A \times_{\varphi} M$ right perfect for a local ring A. But then only two cases can occur: Φ is an epimorphism or $\operatorname{Im} \Phi \subseteq J(A)$.

If Φ is epi, then M is f.g. as an A-module, so $A \times_{\Phi} M$ is f.g. over A. The conclusion now follows from [7].

If on the other hand $\operatorname{Im} \Phi \subseteq J(A)$, then according to lemma 1

$$J(A \times_{\mathbf{\Phi}} M) = J(A) \times M.$$

We now use another characterization by Bass [2] of right perfect rings: R is right perfect if and only if R/J(R) is semi-simple and J(R) is left T-nilpotent. Now

$$A \times_{\mathbf{\Phi}} M/J(A \times_{\mathbf{\Phi}} M) = A/J(A) ,$$

thus semi-simple.

To see that $J(A \times_{\sigma} M)$ is left T-nilpotent, suppose the converse. Then there are elements $\beta_i \in J(A \times_{\sigma} M)$, $i \in \mathbb{N}$, such that $\beta_n \dots \beta_1 \beta_0 \neq 0$ for every n (we say that β_0 has an infinite left chain in $J(A \times_{\sigma} M)$). $\beta_0 = (j_0,0) + (0,m_0)$ with $j_0 \in J(A)$ and $m_0 \in M$, and we must have either $\beta_n \dots \beta_1 (j_0,0) \neq 0$ for every n or $\beta_n \dots \beta_1 (0,m_0) \neq 0$ for every n. If $\beta_n \dots \beta_1 (0,m_0) = 0$ for some n, let $\beta_1 = (j_1,m_1) \in J(A) \times M$. Then either $(j_1j_0,0)$ or $(0,m_1j_0)$ has an infinite left chain in $J(A \times_{\sigma} M)$. If it is not $(0,m_1j_0)$ we continue with β_2 . If there does not occur an element (0,m) with an infinite left chain in $J(A \times_{\sigma} M)$, we eventually reach an element

$$(j_s \ldots j_0, m_s j_{s-1} \ldots j_0)$$

with an infinite left chain in $J(A \times_{\sigma} M)$ and $j_s \dots j_0 = 0$, since J(A) is left T-nilpotent. Hence the set

$$\Sigma = \{m \in M \mid (0, m) \text{ has an infinite left chain in } J(A \times_{\mathbf{p}} M)\}$$

is not empty. We consider the set $\{Am \mid m \in \Sigma\}$. M is right perfect, so this set has a minimal member, say Ax. Nakayamas lemma implies that $jx \notin \Sigma$ for $j \in J(A)$. Take $\{\gamma_i\}_{i\geq 1}$ in $J(A\times_{\sigma}M)$ such that $\gamma_n \dots \gamma_1(0,x) \neq 0$ for every n.

$$\gamma_i = (j_i', m_i') \in J(A) \times M$$
 for $i \ge 1$

and

$$\gamma_1(0,x) = (\Phi(m_1',x), j_1'x).$$

Since $j_i'x \notin \Sigma$, we have $\gamma_n \dots \gamma_2(\Phi(m_1',x),0) \neq 0$ for every $n \geq 2$. Now

$$\gamma_2(\Phi(m_1',x),0) = (j_2'\Phi(m_1',x),m_2'\Phi(m_1',x))$$

and here

$$m_2'\Phi(m_1',x) = \Phi(m_2',m_1')x \notin \Sigma$$

so we have

$$\gamma_n \dots \gamma_3 (j_2' \Phi(m_1', x), 0) \neq 0$$
 for every $n \geq 3$.

By iteration we see that $\Phi(m_1, x)$ has an infinite left chain in J(A). But

this is a contradiction to the left T-nilpotency of J(A). Hence, $A \times_{\sigma} M$ is right perfect.

- (d) The proof of (d) is similar to that of (c) after we have made the following observations:
- 1° A (right) perfect ring R is semi-primary if and only if there is an integer N such that R does not contain any strictly descending sequence of N principal left ideals [6].
- 2° An unpublished result by Björk says that if 1=e+f where e,f are idempotents in R and if eRe and fRf are semi-primary, then R is semi-primary.

We also need the second part of lemma 1.

(e) $A/\operatorname{Im}\Phi$ is a factor ring of $A\times_{\Phi}M$, hence semi-simple. The natural epimorphism $A\times_{\Phi}M\to A/\operatorname{Im}\Phi$ splits. From this we see that

$$A = A/\mathrm{Im}\Phi \times \mathrm{Im}\Phi ,$$

a product of rings. Let $A_1 = A/\operatorname{Im}\Phi, A_2 = \operatorname{Im}\Phi$. We also get an element $s \in A$ such that $s \equiv 1 \pmod{\operatorname{Im}\Phi}$ and Ms = 0. Thus $MA_1 = 0$ and $MA_2 = M$. Since $A_2M = MA_2$ we also have $A_1M = 0$. Let $A_2\tilde{M}_{A_2} = A_2MA_2 = M$;

$$\tilde{\Phi} \colon \tilde{M} \otimes_{A_2} \tilde{M} \to A_2$$

induced by Φ is epi and

$$A \times_{\boldsymbol{\sigma}} M \cong A_1 \times (A_2 \times_{\boldsymbol{\sigma}} \tilde{M})$$
.

 $A_2 \times_{\tilde{\phi}} \tilde{M}$ is semi-simple and since \tilde{M} is A_2 -projective we must have A_2 semi-simple (cf. Section 3, Remark 2).

2. Some properties of projective $A \times_{\phi} M$ -modules.

In order to determine the homological dimensions of a ring and of modules over it we need information about the projective modules over the ring.

For trivial extensions, that is for $\Phi = 0$, we know that the projective $A \times M$ -modules are precisely the $A \times M$ -modules T(P) with P a projective A-module ([10], [11]).

For $\Phi \neq 0$, the modules T(P) with P A-projective are $A \times_{\Phi} M$ -projective as follows by a "change-of-rings"-theorem. However, not all projective $A \times_{\Phi} M$ -modules are of this form. Reiten [11, p. 9] shows that in the ring of Example 1 with the characteristic of $K \neq 2$ the idempotent $(\frac{1}{2}, \frac{1}{2})$ generates a projective $A \times_{\Phi} M$ -module which is not of this form (it is of dimension 1 as a vector space over K).

What can then be said of projective $A \times_{\sigma} M$ -modules?

Let (U,f) be a projective $A \times_{\sigma} M$ -module and write it as a quotient of a free $A \times_{\sigma} M$ -module,

$$\coprod_{I} A \times_{\varphi} M = T(\coprod_{I} A).$$

We obtain commutative diagrams (either all the arrows going to the right or all going to the left) with exact columns:

$$\begin{array}{cccc}
M \otimes_{A}(\coprod_{I}(A \coprod M)) & \xrightarrow{1_{M} \otimes p} & M \otimes_{A} U \\
& & \downarrow & & \downarrow f \\
& & \downarrow & \downarrow & \downarrow f \\
& & \downarrow & \downarrow & \downarrow f \\
& & \downarrow & \downarrow & \downarrow f \\
& & \downarrow & \downarrow & \downarrow & \downarrow f \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow & \downarrow \\$$

Here q is induced by p, s by t and $p \circ t = 1_U$. It follows that Coker is a projective $A/\text{Im }\Phi$ -module.

For $\Phi = 0$ we observed ([10], [11]) that if (U, f) is projective then the complex

$$(6) M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \xrightarrow{1_{M} \otimes f} M \otimes_{\mathcal{A}} U \xrightarrow{f} U$$

is exact. But for $\Phi \neq 0$, because of (3), (6) is generally not a complex. An obvious way of getting a complex out of (3) is to start with $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} U$ in the upper row:

(7)
$$\operatorname{Ker} \Phi \otimes_{A} U \xrightarrow{\tilde{f}} M \otimes_{A} U \xrightarrow{f} U,$$

where \tilde{f} is the composition

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} U \to M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \xrightarrow{1_{M} \otimes f} M \otimes_{\mathcal{A}} U$$

((7) is the complex (6) for $\Phi = 0!$).

In our case we get commutative diagrams (either all the arrows going to the right or all going to the left):

The left column is exact and easy diagram chasing shows that the right column, too, is exact.

Thus we have proved the following

LEMMA 2. A left $A \times_{\phi} M$ -module (U,f) is projective only if

- (1) Coker f is left $A/\text{Im}\Phi$ -projective and
 - (2) the complex of left A-modules $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} U \xrightarrow{\tilde{f}} M \otimes_{\mathcal{A}} U \xrightarrow{f} U$ is exact $(\tilde{f} \text{ as above}).$

The necessary conditions given by Lemma 2 are, except for $\operatorname{Im} \Phi$ nilpotent (see Section 4), not sufficient to make (U,f) projective. There is even a whole class of rings, viz. the semi-trivial extensions with Φ epi, for which those conditions are empty (cf. Section 1). We devote the next section to a study of those rings.

3. The global dimension of $A \times_{\varphi} M$ for Φ an epimorphism. A result for $\begin{pmatrix} R & M \\ N & S \end{pmatrix}_{\varphi, \psi}$ with one of φ, ψ epimorphic.

Except for the last paragraph, Φ will in this section be an epimorphism.

From Section 1 we know that if Φ is an epimorphism, then Φ is an isomorphism and M is a finitely generated, projective left and right A-module. What can be said of the $A \times_{\Phi} M$ -modules (U,f)? Considering the commutative diagram (3) we get that f, and hence $1_M \otimes f$, is an epimorphism. Moreover, $1_M \otimes f$ is a monomorphism, thus an isomorphism. From this it follows that f is an isomorphism.

We now describe the projective $A \times_{\phi} M$ -modules (with certain conditions on A). Since ${}_{A}M$ is projective, it follows from (5) that a projective $A \times_{\phi} M$ -module is A-projective. On the other hand, let (U,f) be a $A \times_{\phi} M$ -module with U A-projective. Every A-homomorphism $p \colon \coprod_{I} A \to U$ determines uniquely an $A \times_{\phi} M$ -homomorphism

$$q:\coprod_I A\times_{\varphi} M\to (U,f)$$
,

for we must have

$$q \mid \coprod_I M = f \circ (1_M \otimes p) ,$$

since the diagram

$$M \otimes_{A} (\coprod_{I} A \coprod M) \xrightarrow{1_{M} \otimes q} M \otimes_{A} U$$

$$\downarrow_{I} f$$

$$\coprod_{I} (A \coprod M) \xrightarrow{q} U$$

is to be commutative (cf. diagram (4)).

Now let q be surjective. (U,f) is $A \times_{\sigma} M$ -projective if and only if there is an $A \times_{\sigma} M$ -homomorphism $t \colon (U,f) \to \coprod_{I} (A \times_{\sigma} M)$ such that $q \circ t = 1_{U}$. If such a t exists, it must be of the form $t = (t_{1},t_{2})$, where $t_{1} \colon U \to \coprod_{I} A$ and $t_{2} \colon U \to \coprod_{I} M$ are A-homomorphisms such that the diagrams

$$\begin{array}{c|c}
M \otimes_{A} \coprod_{I} A \stackrel{\mathbf{1}_{M} \otimes t_{1}}{\longleftarrow} M \otimes_{A} U \\
\downarrow^{f} \\
\coprod_{I} M \stackrel{t_{2}}{\longleftarrow} U \\
M \otimes_{A} \coprod_{I} M \stackrel{\mathbf{1}_{M} \otimes t_{2}}{\longleftarrow} M \otimes_{A} U \\
\downarrow^{f} \\
\coprod_{I} \Phi \downarrow \qquad \downarrow^{f} \\
\downarrow^{f} \\
\coprod_{I} A \stackrel{t_{1}}{\longleftarrow} U$$

are commutative. If t_2 is chosen to make the upper diagram commute, i.e. $t_2 = (1_M \otimes t_1) \circ f^{-1}$, then also the lower diagram will commute. Thus t is completely determined by choice of t_1 and

$$(8) q \circ t = p \circ t_1 + f \circ (1_M \otimes p) \circ t_2 = p \circ t_1 + f \circ (1_M \otimes p \circ t_1) \circ f^{-1}.$$

There are two cases to be considered.

CASE 1. p is surjective (e.g. if A=K a field and $\dim_K U=1$). Then there is a right inverse σ of $p,\sigma\colon U\to\coprod_I A$ and $p\circ\sigma=1_U$. But we cannot take $t_1=\sigma$ for that would, by (8), make $q\circ t=1_U+1_U$. If 2 is invertible in A, however, the problem can be solved. Let ξ be the inverse of 2 in A. Then ξ belongs to the center of A, so $l_\xi=$ multiplication to the left by ξ is an A-homomorphism. Now let $t_1=l_\xi\circ\sigma$. By (8) $q\circ t=l_\xi\circ(1_U+1_U)=1_U$.

CASE 2. $U = V \coprod f(M \otimes_A V)$ for an A-submodule V of U (e.g. if $A \times_{\sigma} M$ is a generalized matrix ring, cf. Section 1). Take $p: \coprod_I A \to V$ surjective V is A-projective, so there is a right inverse $\varrho: V \to \coprod_I A$ of p. Let $t_1 = (\varrho, 0)$, i.e. $t_1 | V = \varrho$ and $t_1 | f(M \otimes_A V) = 0$. By (8) $q \circ t = 1_V + 1_{f(M \otimes_A V)} = 1_U$.

The generalized matrix rings are the only rings we know of, for which every $A \times_{\sigma} M$ -module is of the form considered in case 2. Another way of expressing that the ring $A \times_{\sigma} M$ is a generalized matrix ring with A on the main diagonal is to say that A has a central idempotent e such that eMe = (1-e)M(1-e) = 0.

We have proved the following lemma.

LEMMA 3. Let A, M and Φ be as in Section 1 with Φ epi. If 2 is invertible in A or if A has a central idempotent e such that eMe = (1-e)M(1-e) = 0 then (U,f) is a projective $A \times_{\Phi} M$ -module if and only if U is a projective A-module.

Remark. The characteristic of $A \neq 2$ is not a sufficient condition for the Lemma 3 to be true, as shows the following example.

EXAMPLE 2. Let A = M = Z (the integers) and $\Phi: Z \otimes_{\mathbb{Z}} Z \to Z$ the natural multiplication. $A \times_{\sigma} M = Z[X]/(X^2 - 1)$ and the ideal $(X - 1)/(X^2 - 1)$, which is free as a Z-module, is not a projective $A \times_{\sigma} M$ -module. In fact, $1 \operatorname{hd}_{A \times_{\sigma} M}(X - 1)/(X^2 - 1) = \infty$.

We can now obtain the global dimension of $A \times_{\sigma} M$ under the restrictions on A of Lemma 3.

THEOREM 1. Let A be a ring, M an (A,A)-bimodule and $\Phi: M \otimes_A M \to A$ a bimodule-homomorphism such that $\Phi(m_1,m_2)m_3 = m_1\Phi(m_2,m_3)$ for

every $m_i \in M$. Let $A \times_{\Phi} M$ be the semi-trivial extension of A by M and Φ . Suppose Φ is an epimorphism. If 2 is invertible in A or if A has a central idempotent e such that eMe = (1 - e)M(1 - e) = 0, then

$$\operatorname{lgldim} A \times_{\sigma} M = \operatorname{lgldim} A$$
.

In fact we have a more precise result:

$$\operatorname{lhd}_{A \times_{\Phi} M}(U, f) = \operatorname{lhd}_{A} U$$

for every left $A \times_{\mathbf{\Phi}} M$ -module (U,f).

PROOF. Take a free resolution of (U,f):

Here $\tau_i = \coprod_{I_i} \tau_A$ and $\hat{\tau}_n$ is induced by τ_{n-1} . The right column is the beginning of a projective resolution of the A-module U. By Lemma 3,

$$\begin{split} \operatorname{lhd}_{A \times_{\varPhi} M}(U,f) & \leq n \Leftrightarrow (K_n, \widehat{\tau}_n) \text{ is } A \times_{\varPhi} M\text{-projective} \\ & \Leftrightarrow K_n \text{ is } A\text{-projective} \Leftrightarrow \operatorname{lhd}_A U \leq n \text{ .} \end{split}$$

For every A-module V there is an $A \times_{\phi} M$ -module (U, f) with $hd_A U = hd_A V$, viz. (U, f) = T(V).

The theorem now follows.

Remark 1. Theorem 1 generalizes the well-known fact that a ring R and its matrix ring $M_n(R)$ have the same global dimension.

REMARK 2. From the proofs of Lemma 3 and Theorem 1 it follows that if Φ is epi, then $\operatorname{lgldim} A \leq \operatorname{lgldim} A \times_{\Phi} M$. It was shown in [8, p. 73] that if $\Phi = 0$, then also $\operatorname{lgldim} A \leq \operatorname{lgldim} A \times M$. But we shall see presently that in cases between those two (i.e. Φ neither zero nor an epimorphism it may well happen that $\operatorname{lgldim} A \times_{\Phi} M < \operatorname{lgldim} A$.

We conclude this section by studying the generalized matrix rings $\binom{R}{N}\binom{M}{S}_{\varphi,\psi}$ with only one of φ,ψ epi (cf. [11, p. 70]).

Let φ be an epimorphism. As in Section 1 for Φ epi we see that φ is an isomorphism, ${}_SN$ and M_S are finitely generated, projective.

Let (U, V, f, g) be a $\binom{R}{N} M_{\varphi, \psi}$ -module. By the upper diagram of (3)' we see that f is an epimorphism. Ker f is annihilated by $\operatorname{Im} \varphi = R$. Thus $\operatorname{Ker} f = 0$ and $U \cong M \otimes_S V$. But this means that (U, V, f, g) = T(V). In particular, (U, V, f, g) is $\binom{R}{N} M_{\varphi, \psi}$ -projective if and only if V is S-projective.

Since M_S is projective

$$\operatorname{lhd}_{\binom{R}{N}} {}_{S})_{\varphi, \psi} T(V) \leq \operatorname{lhd}_{S} V ,$$

and since SN is projective

$$\mathrm{lhd}_S V \, \leq \, \mathrm{lhd}_{\binom{R}{N} \stackrel{M}{S}_{\varphi,\,\psi}} T(V) \; .$$

Thus we have proved the following theorem.

Theorem 2. Let R,S be rings, ${}_RM_{S,S}N_R$ bimodules, $\varphi\colon M\otimes_S N\to R$ and $\psi\colon N\otimes_R M\to S$ bimodule-homomorphisms such that $\varphi(m,n)m'=m\psi(n,m')$ and $\psi(n,m)n'=n\varphi(m,n')$ for $m,m'\in M,n,n'\in N$. Let $\begin{pmatrix} R&M\\N&S \end{pmatrix}_{\varphi,\psi}$ be the corresponding generalized matrix ring. Suppose that φ is an epimorphism. Then

$$\operatorname{lgldim} \begin{pmatrix} R & M \\ N & S \end{pmatrix}_{x \in \mathcal{Y}} = \operatorname{lgldim} S.$$

There even is a more precise result:

$$\operatorname{lhd}_{\left(\substack{N \ S} \right)_{\varphi,\,\psi}}(U,V,f,g) \,=\, \operatorname{lhd}_S V$$

for every
$$\binom{R}{N} \binom{M}{S}_{\varphi,\psi}$$
-module (U,V,f,g) .

Remark 3. If both φ and ψ are epimorphisms then by Theorem 1

$$\operatorname{lgldim} \begin{pmatrix} R & M \\ N & S \end{pmatrix}_{\varphi, \psi} = \max(\operatorname{lgldim} R, \operatorname{lgldim} S).$$

But in this case R and S are Morita-equivalent, so $\operatorname{lgldim} R = \operatorname{lgldim} S$. Thus, as it should be, we obtain the same result by Theorems 1 and 2 when they are both applicable.

4. Igldim $A \times_{\phi} M \leq 2$.

In order to get a better insight in the homological properties of $A \times_{\sigma} M$ we now make a study of such rings with a small left global dimension.

If $\Phi = 0$ we know (cf. Reiten [11, prop. 2.3.3]) that $\operatorname{lgldim} A \times M \leq 1$ if and only if the following conditions are satisfied:

(i)'
$$\operatorname{lgldim} A \leq 1$$

(ii)' _AM is projective

(iii)'
$$M_A$$
 is flat

$$(iv)'\ M \otimes_A M = 0$$

(v)' $M \otimes_A U$ is A-projective for every A-module U.

Now suppose that $\operatorname{lgldim} A \times_{\sigma} M \leq 1$.

(i) If \mathfrak{a} is a left ideal of A, then $\mathfrak{a} \times M\mathfrak{a}$ is the left ideal of $A \times_{\mathfrak{o}} M$ generated by \mathfrak{a} . There is an $A \times_{\mathfrak{o}} M$ -epimorphism

$$p: \prod_I A \times_{\boldsymbol{\sigma}} M \to \mathfrak{a} \times M\mathfrak{a}$$
,

such that

$$p_1 = p \mid \coprod_I A : \coprod_I A \to \mathfrak{a}$$

is an A-epimorphism and $p|\coprod_I M=1_M\otimes p_1$. A right $A\times_{\varphi} M$ -inverse of p induces a right A-inverse of p_1 , hence a is A-projective. We have proved that $\lg \dim A \leq 1$. Analogously we prove that $\lg \dim A/\operatorname{Im} \Phi \leq 1$.

- (ii) By considering, for every left A-submodule M_1 of M, the left ideal of $A \times_{\phi} M$ generated by M_1 , that is $\Phi(M, M_1) \times M_1$ it is shown, similarly to (i), that every submodule of M is projective. In particular, AM is projective.
- (iv) The left ideal $\operatorname{Im} \Phi \times M$ of $A \times_{\Phi} M$ is projective. According to Lemma 2 there is an exact sequence
- $(9) \qquad \operatorname{Ker} \Phi \otimes_{A} (\operatorname{Im} \Phi \amalg M) \to M \otimes_{A} (\operatorname{Im} \Phi \amalg M) \to \operatorname{Im} \Phi \amalg M ,$

where the maps are induced by $\tau_A : M \otimes_A (A \perp M) \to A \perp M$. The sequence (9) is split in two exact sequences, one of which is

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} \operatorname{Im} \Phi \to M \otimes_{\mathcal{A}} M \to \operatorname{Im} \Phi$$

Thus $\operatorname{Ker} \Phi = \operatorname{Im} (\operatorname{Ker} \Phi \otimes_A \operatorname{Im} \Phi \to M \otimes_A M)$ and the map of the right hand member is factorized over $M \otimes_A M \otimes_A \operatorname{Im} \Phi$:

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} \operatorname{Im} \Phi \longrightarrow M \otimes_{\mathcal{A}} M$$

$$\cdot \Big|_{\longrightarrow} M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} \operatorname{Im} \Phi \longrightarrow^{1}_{M} \otimes \operatorname{multiplication}$$

Because of (2) the composition of the two non-horizontal maps is zero. Hence $Ker \Phi = 0$.

(iii) Now it is easily seen that M_A is flat. For let a be a left ideal of A. By Lemma 2 and (iv) above the sequence

$$0 \to M \otimes_{\mathcal{A}} (\mathfrak{a} \coprod M \mathfrak{a}) \to \mathfrak{a} \coprod M \mathfrak{a}$$

is exact. Especially we get an exact sequence $0 \to M \otimes_{\mathcal{A}} \mathfrak{a} \to M\mathfrak{a}$ where the right hand map is the natural multiplication.

(v) Let (U,f) be an arbitrary $A \times_{\sigma} M$ -module. We write it as a quotient of a free $A \times_{\sigma} M$ -module and obtain a commutative diagram with exact rows:

$$0 \to M \otimes_{A} K \to M \otimes_{A} \coprod_{I} (A \coprod_{I} M) \to M \otimes_{A} U \to 0$$

$$\downarrow^{t} \qquad \qquad \downarrow^{\Pi_{I} \tau_{A}} \qquad \qquad \downarrow^{f}$$

$$0 \longrightarrow K \longrightarrow \coprod_{I} (A \coprod_{M} M) \longrightarrow U \longrightarrow 0$$

where t is induced by $\coprod_I \tau_A$. The "snake lemma" gives us a long exact sequence (note that $\operatorname{Ker} \coprod_I \tau_A = \coprod_I \operatorname{Ker} \Phi = 0$)

$$0 o \mathrm{Ker} f o \mathrm{Coker} t o \coprod_I A/\mathrm{Im} \Phi o \mathrm{Coker} f o 0$$
 ,

which implies that $\operatorname{Ker} f$ is $A/\operatorname{Im} \Phi$ -projective.

Condition (v) does not at all look like condition (v)' above. But for $\Phi = 0$ (and under the conditions (i)' and (iii)') they are equivalent because of the following exact sequence of $A \times M$ -modules (see Reiten [11])

$$(10) \qquad \begin{array}{c} 0 \to M \otimes_{\mathcal{A}} \mathrm{Im} f \to M \otimes_{\mathcal{A}} U \to M \otimes_{\mathcal{A}} \mathrm{Coker} f \to 0 \\ \downarrow 0 \qquad \qquad \downarrow f \qquad \qquad \downarrow 0 \\ 0 \to \mathrm{Im} f \longrightarrow U \longrightarrow \mathrm{Coker} f \to 0 \end{array}$$

What becomes of the diagram (10) when $\Phi \neq 0$? Let (U,f) be an $A \times_{\Phi} M$ -module. We obtain a commutative diagram with exact rows

$$(10)' \qquad \begin{array}{c} M \otimes_{\mathcal{A}} \operatorname{Im} f \to M \otimes_{\mathcal{A}} U \to M \otimes_{\mathcal{A}} \operatorname{Coker} f \to 0 \\ \downarrow^{f_1} & \downarrow^{f} & \downarrow^{0} \\ 0 \to \operatorname{Im} f \longrightarrow U \longrightarrow \operatorname{Coker} f \longrightarrow 0 \end{array}$$

where f_1 is induced by f and $\mathrm{Im} f_1 \subseteq \mathrm{Im} \Phi U$. We can form this diagram again with (U,f) replaced by $(\mathrm{Im} f,f_1)$ and get an $A \times_{\Phi} M$ -module $(\mathrm{Im} f_1,f_2)$ with $\mathrm{Im} f_2 \subseteq \mathrm{Im} \Phi \mathrm{Im} f$. The next step gives us a module $(\mathrm{Im} f_2,f_3)$ with $\mathrm{Im} f_3 \subseteq (\mathrm{Im} \Phi)^2 U$.

If $\operatorname{Im}\Phi$ is nilpotent we will by this process eventually reach a commutative diagram (10)' with the two extreme homomorphisms equal to zero. Thus, in this case (and with $\operatorname{lgldim} A/\operatorname{Im}\Phi \leq 1, M_A$ flat) condition (v) is equivalent to the condition

 $(v)'' M \otimes_A V$ is $A/\operatorname{Im} \Phi$ -projective for every left $A/\operatorname{Im} \Phi$ -module V.

(Of course, (v)" is always contained in (v)).

The fact that for $\operatorname{Im}\Phi$ nilpotent every $A\times_{\varphi}M$ -module (U,f) is a finite extension of modules (V,0), where V is an $A/\operatorname{Im}\Phi$ -module provides a good tool for the determination of the homological dimension of (U,f). The following lemma is easily proved.

LEMMA 4. Let $A \times_{\Phi} M$ be a semi-trivial extension with $\operatorname{Im} \Phi$ nilpotent and (U,f) an $A \times_{\Phi} M$ -module. Then

$$\begin{split} \operatorname{lhd}_{A \times_{\mathbf{\Phi}} M}(U, f) &= \\ \sup \left\{ n \mid \operatorname{Ext}_{A \times_{\mathbf{\Phi}} M}^{n} \big((U, f), (V, 0) \big) \, \neq \, 0 \; \text{for an } A / \operatorname{Im} \mathbf{\Phi}\text{-module V} \right\} \\ \text{and} \end{split}$$

$$\operatorname{lgldim} A \times_{{\bf \Phi}} M = \sup \left\{ \operatorname{lhd}_{A \times_{{\bf \Phi}} M}(V, 0) \mid V \text{ is an } A / \operatorname{Im} \Phi \text{-module} \right\}.$$

We return to the conditions (i) – (v). The example 1 of Section 1 shows that these conditions are not sufficient to make $\operatorname{lgldim} A \times_{\varphi} M \leq 1$. The condition of $\operatorname{Im} \Phi$ being nilpotent will, however, make them suffice. To prove this we need the following lemma.

Lemma 5. For every $A \times_{\Phi} M$ -module (W,g) and every $A/\mathrm{Im}\,\Phi$ -module V we have

$$\operatorname{Hom}_{A\times_{\Phi}M}\bigl((W,g),(V,0)\bigr)\cong\operatorname{Hom}_{A/\operatorname{Im}\Phi}(\operatorname{Coker} g,V)\;.$$

If $\alpha: (W,g) \to (W',g')$ is an $A \times_{\phi} M$ -homomorphism then the morphism $\operatorname{Hom}_{A/\operatorname{Im} \phi}(\operatorname{Coker} g',V) \to \operatorname{Hom}_{A/\operatorname{Im} \phi}(\operatorname{Coker} g,V)$

induced by α and the isomorphism above is the morphism $\operatorname{Hom}_{A/\operatorname{Im} \mathfrak{o}}(\bar{\alpha}, 1_{V})$, where $\bar{\alpha}: \operatorname{Coker} g \to \operatorname{Coker} g'$ is induced by α .

PROOF. The isomorphism follows directly from the commutative diagram (4). The second part is just a consequence of the definitions of $\bar{\alpha}$ and of $\operatorname{Hom}_{A/\operatorname{Im}\Phi}(\bar{\alpha}, 1_{\overline{\nu}})$.

With Lemmata 4 and 5 at hand we may strengthen the result on projective $A \times_{\sigma} M$ -modules for $\operatorname{Im} \Phi$ nilpotent. \tilde{f} below was defined in Section 2.

PROPOSITION 2. Let $A \times_{\Phi} M$ be a semi-trivial extension with $\operatorname{Im} \Phi$ nilpotent. An $A \times_{\Phi} M$ -module (U,f) is projective if and only if the following conditions hold:

- (a) Coker f is $A/\text{Im }\Phi$ -projective
- (b) the sequence $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} U \stackrel{\tilde{f}}{\longrightarrow} M \otimes_{\mathcal{A}} U \stackrel{f}{\longrightarrow} U$ is exact.

PROOF. Lemma 2 gives the necessity of (a) and (b). To see that they are sufficient let (U,f) be an $A\times_{\sigma}M$ -module satisfying them and let $\alpha\colon P\to U$ be an A-epimorphism with P projective. There is a corresponding short exact sequence of $A\times_{\sigma}M$ -modules

(11)
$$M \otimes_{A} K \to M \otimes_{A} P \amalg M \otimes_{A} M \otimes_{A} P \to M \otimes_{A} U \to 0$$

$$\downarrow^{g} \qquad \qquad \downarrow^{\tau_{P}} \qquad \downarrow^{f}$$

$$0 \to K \longrightarrow P \amalg M \otimes_{A} P \xrightarrow{(\alpha, f \circ 1_{M} \otimes \alpha)} U \longrightarrow 0$$

The module in the middle is T(P) and g is induced by τ_P . By Lemma 4 (U,f) is projective if and only if the sequence

(12)
$$0 \to \operatorname{Hom}_{A \times_{\mathbf{\Phi}M}} ((U,f),(V,0)) \to \operatorname{Hom}_{A \times_{\mathbf{\Phi}M}} (T(P),(V,0)) \to \operatorname{Hom}_{A \times_{\mathbf{\Phi}M}} ((K,g),(V,0)) \to 0$$

is exact for every $A/\text{Im}\Phi$ -module V. By Lemma 5 this is equivalent to the sequence

(13)
$$0 \to \operatorname{Hom}_{A/\operatorname{Im} \Phi}(\operatorname{Coker} f, V) \to \operatorname{Hom}_{A/\operatorname{Im} \Phi}(A/\operatorname{Im} \Phi \otimes_{A} P, V) \to \operatorname{Hom}_{A/\operatorname{Im} \Phi}(\operatorname{Coker} g, V) \to 0$$

being exact.

Now the "snake lemma" on diagram (11) gives the exact sequence of $A/\text{Im}\Phi$ -modules

$$\operatorname{Ker} \tau_P \to \operatorname{Ker} f \xrightarrow{\delta} \operatorname{Coker} g \to A/\operatorname{Im} \Phi \otimes_A P \to \operatorname{Coker} f \to 0$$
.

The commutative diagram with exact rows

$$\ker \Phi \otimes_{A} P \coprod \operatorname{Ker} \Phi \otimes_{A} M \otimes_{A} P \to \operatorname{Ker} \Phi \otimes_{A} U \to 0$$

$$\downarrow \tilde{\iota}_{p} \qquad \qquad \downarrow \tilde{f}$$

$$M \otimes_{A} P \coprod M \otimes_{A} M \otimes_{A} P \longrightarrow M \otimes_{A} U \to 0$$

and (b) (we know that $\operatorname{Ker} \tau_P = \operatorname{Im} \tilde{\tau}_P$) shows that δ is zero. Thus there is the following short exact sequence of $A/\operatorname{Im} \Phi$ -modules

$$(14) 0 \to \operatorname{Coker} g \to A/\operatorname{Im} \Phi \otimes_A P \to \operatorname{Coker} f \to 0$$

The maps of (13) are those induced by (14) according to Lemma 5. By (a) (13) is exact, and the proposition follows.

REMARK. The following propositions can be proved in a similar way (cf. [8, 10, 11]).

- I. The $A \times_{\sigma} M$ -module (U, f) is injective only if
- (a_I) $\operatorname{Ker} f_H$ is an injective $A/\operatorname{Im} \Phi$ -module and
 - (b_I) the sequence

$$U \xrightarrow{f_H} \operatorname{Hom}_{\mathcal{A}}(M, U) \xrightarrow{\hat{f}_H} \operatorname{Hom}_{\mathcal{A}}(\operatorname{Ker} \Phi, U)$$

is exact.

 f_H was defined in Section 1 and \hat{f}_H is the composition

$$\operatorname{Hom}_{A}(M,U) \xrightarrow{\operatorname{Hom}_{A}(1_{M},f_{H})} \operatorname{Hom}_{A}(M,\operatorname{Hom}_{A}(M,U)) \to \\ \to \operatorname{Hom}_{A}(M \otimes_{A} M,U) \to \operatorname{Hom}_{A}(\operatorname{Ker} \Phi,U),$$

where the last map is the one induced by the natural injection $\operatorname{Ker} \Phi \to M \otimes_{\mathcal{A}} M$.

II. The $A \times_{\phi} M$ -module (U,f) is flat only if

 (a_{II}) Coker f is a flat $A/\text{Im }\Phi$ -module and

(b_{II}) the sequence

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} U \stackrel{\tilde{f}}{\longrightarrow} M \otimes_{\mathcal{A}} U \stackrel{f}{\longrightarrow} U$$

is exact (\tilde{f} as in Proposition 2).

III. If $\operatorname{Im} \Phi$ is nilpotent then the conditions $(a_{\mathbf{I}})$ and $(b_{\mathbf{I}})$ imply that (U,f) is an injective $A \times_{\Phi} M$ -module, and the conditions $(a_{\mathbf{II}})$ and $(b_{\mathbf{II}})$ imply that (U,f) is a flat $A \times_{\Phi} M$ -module.

We can now summarize the results on $\operatorname{lgldim} A \times_{\varphi} M \leq 1$.

THEOREM 3. Let A be a ring, M an (A,A)-bimodule and $\Phi \colon M \otimes_A M \to A$ a bimodule-homomorphism such that $\Phi(m_1,m_2)m_3 = m_1\Phi(m_2,m_3), m_i \in M$. Let $A \times_{\Phi} M$ be the corresponding semi-trivial extension. If $\operatorname{lgldim} A \times_{\Phi} M \leq 1$, then the following conditions hold:

- (i) $\operatorname{lgldim} A \leq 1$, $\operatorname{lgldim} A / \operatorname{Im} \Phi \leq 1$.
- (ii) _AM is projective.
- (iii) MA is flat.
- (iv.) $\operatorname{Ker} \Phi = 0$.
- (v) Kerf is $A/\text{Im}\Phi$ -projective for every $A\times_{\Phi}M$ -module (U,f).

If $\operatorname{Im} \Phi$ is a nilpotent ideal of A, then the conditions (i) – (iv) and the following subcondition of (v):

 $(\nabla)''$ $M \otimes_A U$ is $A/\operatorname{Im} \Phi$ -projective for every $A/\operatorname{Im} \Phi$ -module U imply that $\operatorname{Igldim} A \times_{\Phi} M \leq 1$.

PROOF. It only remains to prove that for $\operatorname{Im} \Phi$ nilpotent, (i) – (iv), (v)" imply $\operatorname{lgldim} A \times_{\Phi} M \leq 1$. By Lemma 4 we need only consider the homological dimension of modules (U,0), where U is an $A/\operatorname{Im} \Phi$ -module.

Thus, let U be an $A/\mathrm{Im}\Phi$ -module. By (i) there is an A-projective resolution of U

$$0 \to P_1 \to P_0 \xrightarrow{\alpha} U \to 0$$
.

We get an exact sequence of $A \times_{\phi} M$ -modules

The module in the middle is $T(P_0)$, thus $A \times_{\sigma} M$ -projective. f_0 is induced

by τ_{P_0} ; more precisely, $f_0|M \otimes_A P_1$ is the natural inclusion $M \otimes_A P_1 \to M \otimes_A P_0$ and $f_0|M \otimes_A M \otimes_A P_0$ is the map

$$M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} P_0 \xrightarrow{\Phi \otimes 1_{P_0}} \operatorname{Im} \Phi \otimes_{\mathcal{A}} P_0 \xrightarrow{\cong} \operatorname{Im} \Phi P_0 \subseteq P_1.$$

It follows that $\operatorname{Ker} f_0 = 0$ and $\operatorname{Coker} f_0 = P_1 / \operatorname{Im} \Phi P_0 \coprod M \otimes_A U$.

$$P_1/\mathrm{Im}\Phi P_0 \subseteq P_0/\mathrm{Im}\Phi P_0 = A/\mathrm{Im}\Phi \otimes_A P_0$$
,

which is $A/\text{Im}\Phi$ -projective. Since $\text{Igldim}A/\text{Im}\Phi \leq 1$, also $P_1/\text{Im}\Phi P_0$ is $A/\text{Im}\Phi$ -projective. This together with (v)" give that $\text{Coker}f_0$ is $A/\text{Im}\Phi$ -projective. The theorem now follows by Proposition 2.

Let us now turn to the case of $\operatorname{lgldim} A \times_{\sigma} M \leq 2$. Again we make a comparison with the trivial extensions. For them there is the following complete result.

THEOREM 4. Let $A \times M$ be a trivial extension. Then $\operatorname{lgldim} A \times M \leq 2$ if and only if all the following is satisfied.

- (a) $\operatorname{Igldim} A \leq 2$
- (b) whd $M_A \leq 1$
- (c) $M \otimes_A M \otimes_A M = 0$
- (d) $(M \otimes_A M)_A$ is flat
- (e) $\text{Tor}_{\mathbf{1}}^{A}(M, M) = 0$
- (f) $M \otimes_A M \otimes_A U$ is A-projective for every A-module U
- (g) $\operatorname{Tor}_{\mathbf{1}^A}(M, U)$ is A-projective for every A-module U
- (h) $\operatorname{Hom}_{A}(\operatorname{Tor}_{1}^{A}(M,U),V) \to \operatorname{Ext}_{A}^{2}(M \otimes_{A} U,V)$ induced by an exact sequence $0 \to \operatorname{Tor}_{1}^{A}(M,U) \to X \to Y \to M \otimes_{A} U \to 0$ of A-modules is epi for every A-module V.

PROOF. Let U be an A-module and take an A-resolution of U

$$0 \to K \to P \to U \to 0$$

with P projective. It gives rise to a short exact sequence of $A \times M$ -modules

$$0 \to (K \amalg M \otimes_{\mathcal{A}} P, f) \to T(P) \to (U, 0) \to 0 \ ,$$

where f is induced by τ_P : $f|M\otimes_A K$ is the natural map $M\otimes_A K\to M\otimes_A P$ and $f|M\otimes_A M\otimes_A P$ is zero. Let $Q_1\to K$ and $Q_2\to M\otimes_A P$ be A-epimorphisms with Q_1,Q_2 projective. We get a short exact sequence of $A\times M$ -modules

$$(15) \quad 0 \rightarrow (L \amalg H \amalg M \otimes_{\mathcal{A}} Q_2, g) \rightarrow T(Q_1 \amalg Q_2) \rightarrow (K \amalg M \otimes_{\mathcal{A}} P, f) \rightarrow 0 \ .$$

Here $L = \operatorname{Ker}(Q_1 \to K)$ and $H = \operatorname{Ker}(Q_2 \amalg M \otimes_A Q_1 \to M \otimes_A P)$ where the map on the second summand is $M \otimes_A Q_1 \to M \otimes_A K \to M \otimes_A P$. g is induced by $\tau_{Q_1 \amalg Q_2}$ which makes $g(M \otimes_A L) \subseteq H, g(M \otimes_A H) \subseteq M \otimes_A Q_2$ and $g|M \otimes_A M \otimes_A Q_2 = 0$.

If $\operatorname{Igldim} A \times M \leq 2$, then $(L \sqcup H \sqcup M \otimes_A Q_2, g)$ is projective. Then (a) follows since L is A-projective and (b) follows since $M \otimes_A L \to M \otimes_A Q_1$ is mono. Diagram chasing shows that $\operatorname{Ker} g = \operatorname{Im} 1_M \otimes g$ implies $\operatorname{Ker} 1_M \otimes f = \operatorname{Im} 1_M \otimes_A M \otimes_A P$ epi, whence (c) and $M \otimes_A M \otimes_A K \to M \otimes_A M \otimes_A P$ mono, whence (d).

 $\operatorname{Ker} g = \operatorname{Im} \mathbf{1}_{M} \otimes g$ and (d) shows that the sequence

$$(16) \quad 0 \to M \otimes_A H \to M \otimes_A Q_2 \amalg M \otimes_A M \otimes_A Q_1 \to M \otimes_A M \otimes_A P \to 0$$

is exact so $\operatorname{Tor}_{1}^{A}(M, M \otimes_{A} Q_{1}) \to \operatorname{Tor}_{1}^{A}(M, M \otimes_{A} P)$ is epi. Hence (e).

For (f)-(h) take the "snake lemma" on the sequence (15); we get the exact sequence

$$M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} Q_1 \amalg M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} Q_2 \to \operatorname{Ker} f \to \operatorname{Coker} g \to Q_1 \amalg Q_2 \to \operatorname{Coker} f \to 0.$$

It splits in several exact sequences:

$$M\otimes_A M\otimes_A Q_1 o M\otimes_A M\otimes_A P o M\otimes_A Q_2/g(M\otimes_A H) o 0$$
 ,

which gives (f), and

$$0 \to \operatorname{Tor}_1{}^A(M,U) \to H/g(M \otimes_A L) \to Q_2 \to M \otimes_A U \to 0 \ ,$$

from which (g) follows directly. But we also get (h). Put $Q_3 = H/g(M \otimes_A L)$ If

$$0 \to \operatorname{Tor}_{\mathbf{1}^A}(M,U) \to X \to Y \to M \otimes_A U \to 0$$

is exact, let $Z = \operatorname{Ker}(Y \to M \otimes_A U)$ and $W = \operatorname{Ker}(Q_2 \to M \otimes_A U)$. Since Q_2, Q_3 are projective there are maps $Q_2 \to Y$, $Q_3 \to X$ which give commutative diagrams with exact rows

$$0 \to W \to Q_2 \to M \otimes_A U \to 0$$

$$\downarrow \qquad \qquad \downarrow =$$

$$0 \to Z \to Y \to M \otimes_A U \to 0$$

$$0 \to \operatorname{Tor}_{1}^A(M, U) \to Q_3 \to W \to 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \to \operatorname{Tor}_{1}^A(M, U) \to X \to Z \to 0$$

resp.

where the maps $W \to Z$ are the same. These diagrams give the commutative diagram

The upper left hand map is epi, since Q_3 is projective and the composite bottom map is the map of (h). Thus the conditions (a)—(h) are necessary.

The argument may now be reversed to prove that if (a) -(h) hold, then $(L \amalg H \amalg M \otimes_A Q_2, g)$ is $A \times M$ -projective. The only difficulties arise in proving

$$\operatorname{Ker} g | M \otimes_{\mathcal{A}} H = \operatorname{Im} 1_{M} \otimes g | M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} L$$

and $H/g(M \otimes_A L)$ projective. The first follows from (16) being exact and

$$\operatorname{Ker} \operatorname{l}_{M} \otimes f = \operatorname{Im} \operatorname{l}_{M \otimes_{A} M} \otimes f.$$

For the second we know that $\operatorname{lhd}_A H/g(M \otimes_A L) \leq 1$. From the exact sequence

$$\operatorname{Hom}_{\mathcal{A}}\big(\operatorname{Tor}_{1}{}^{\mathcal{A}}(M,U),V\big) \to \operatorname{Ext}_{\mathcal{A}}{}^{1}(W,V) \to \operatorname{Ext}_{\mathcal{A}}{}^{1}\big(H/g(M\otimes_{\mathcal{A}}L),\,V\big) \to 0$$

it is seen that it suffices to prove that the first of these maps is epi. But we also have

$$\operatorname{Hom}_{A}(\operatorname{Tor}_{1}^{A}(M,U),V) \to \operatorname{Ext}_{A}^{1}(W,V) \stackrel{\cong}{\longrightarrow} \operatorname{Ext}_{A}^{2}(M \otimes_{A} U,V)$$
 and the composition is epi by (h).

REMARK. Recently Clas Löfwall has completely solved the problem of determining lgldim $A \times M$. His method is a development of that used in [10] and uses iterated homology.

Now to $A \times_{\varphi} M$ with $\Phi \neq 0$. The following example shows that lgldim $A \times_{\varphi} M \leq 2$ does not necessarily impose finiteness conditions on A and ${}_{A}M_{A}$.

EXAMPLE 3. Let K be a field and put $R = K[X]/(X^2)$, S = M = N = K. Let x be the image of X in R. The R-module structure on K is given thus:

$$f(x)k = f(0)k$$
 for $f(X) \in K[X], k \in K$.

 $\varphi: K \otimes_K K = K \to R$ takes k to kx and $\psi: K \otimes_R K \to S$ is zero. φ, ψ satisfy the commuting diagrams (2)'. Let Λ be the corresponding generalized matrix ring. Λ is semi-primary by Proposition 1, so $\operatorname{Igldim} \Lambda = 1 + \operatorname{Ihd}_{\Lambda} J(\Lambda)$ (see [1]). By Lemma 1

$$J(\Lambda) = \begin{pmatrix} Rx & K \\ K & 0 \end{pmatrix}$$

and by direct calculation it is seen that $\operatorname{Ihd}_A J(\Lambda) = 1$. Thus $\operatorname{Igldim} A \times_{\sigma} M = 2$ for $A \times_{\sigma} M = \Lambda$, although $\operatorname{Igldim} A = \operatorname{Ihd}_A M = \operatorname{whd} M_A = \infty$. Here $A/\operatorname{Im} \Phi$ is semi-simple and $\operatorname{Im} \Phi$ is nilpotent.

REMARK. The example above shows that for $\Phi \neq 0$ we may have $\operatorname{lgldim} A \times_{\sigma} M < \operatorname{lgldim} A$ (cf. remark 2 of Section 3). In this case even $\operatorname{lgldim} A$ is infinite while $\operatorname{lgldim} A \times_{\sigma} M$ is finite. It is easily seen that $\operatorname{lgldim} A \leq \operatorname{lgldim} A \times_{\sigma} M + \operatorname{lhd}_A M$, so that $\operatorname{lhd}_A M$ infinite is necessary for this to occur.

Now consider the following example where we as M,N instead of K take a two-dimensional vector space over K.

Example 4. Let R,S be as in Example 3 and let R act on K as above. M=N=V is a twodimensional vector space over K with an inner product $[\cdot,]$. $\varphi \colon M \otimes_S N \to R$ is given by $(v,v') \to [v,v']x$ and $\psi \colon N \otimes_R M \to S$ is zero. Again φ, ψ satisfy the diagrams (2)'. Let Λ' be the corresponding generalized matrix ring. It is semiprimary with

$$J(\Lambda') = \begin{pmatrix} Rx & V \\ V & 0 \end{pmatrix}$$

and direct calculation shows that $\operatorname{lhd}_{\Lambda}, J(\Lambda') = \infty$. Thus $\operatorname{lgldim} A \times_{\sigma} M = \infty$ for $A \times_{\sigma} M = \Lambda'$. We mention that the left finitistic global dimension of Λ' is 1.

What is then the difference between the rings Λ, Λ' of Examples 3 and 4? Let us consider necessary conditions for $\operatorname{lgldim} A \times_{\sigma} M \leq 2$. We are led to the following observations.

LEMMA 6. If $\operatorname{lgldim} A \times_{\sigma} M \leq 2$ then the composed map

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} M \to M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} M \xrightarrow{1_{M} \otimes \Phi} M \otimes_{\mathcal{A}} \operatorname{Im} \Phi$$

is a monomorphism and $\operatorname{Ker} \Phi$ is $A/\operatorname{Im} \Phi$ -projective.

PROOF. We study the ideal $\operatorname{Im}\Phi\times M$ of $A\times_{\sigma}M$. The map of the lemma is just $\widetilde{t}|\operatorname{Ker}\Phi\otimes_{A}M$ where $t\colon M\otimes_{A}(\operatorname{Im}\Phi\amalg M)\to\operatorname{Im}\Phi\amalg M$ is induced by τ_{A} . $\operatorname{Ker}\Phi=\operatorname{Ker}t|M\otimes_{A}M$. If $P\to M$ is an A-epimorphism with P projective, we get as usual a short exact sequence of $A\times_{\sigma}M$ -modules

$$0 \to (K,f) \to T(P) \to \operatorname{Im} \Phi \times M \to 0$$

where f is induced by τ_P and (K,f) is projective. Diagram chase like that of the proof of (d) of Theorem 4 shows the first statement of the lemma (note that $\operatorname{Ker} \Phi \otimes_A P \to M \otimes_A M \otimes_A P$ is mono); the second statement is a consequence of the "snake lemma".

Actually, this lemma gives the difference between the rings Λ, Λ' above. For Λ' the map of Lemma 6 is not a monomorphism. But then there is the following example.

EXAMPLE 5. Let K be a field and put $R = K[X]/(X^3)$, M = J = J(R) and $S = N = R/J^2$. Let φ be the map

$$J \otimes_{S} S \xrightarrow{\cong} J \subseteq R$$

and ψ the map

$$R/J^2 \otimes_R J \xrightarrow{\cong} J \to J/J^2 \subseteq S$$
.

The corresponding generalized matrix ring satisfies the conditions of Lemma 6 but its Jacobson-radical is easily shown to be of infinite homological dimension. Its left finitistic global dimension is 2.

For $\Phi = 0$ the results on $\operatorname{lgldim} A \times M$ were most satisfactory for M_A flat. In the next section we study $\operatorname{lgldim} A \times_{\Phi} M$ under the corresponding conditions. In particular, we shall obtain a result on $\operatorname{lgldim} A \times_{\Phi} M \le 2$.

5. M_A and $(\text{Ker}\Phi)_A$ flat.

For $\Phi = 0$ there is the following precise result if M_A is flat (cf. [10, Corollary 3 of Theorem 2]):

$$\operatorname{lgldim} A \times M \leq n \Leftrightarrow \operatorname{Ext}_A{}^q(M^{\otimes^p} \otimes_A U, V) = 0 \text{ for } p+q = n+1$$
 and all A -modules U, V .

For $\Phi \neq 0$ we can prove an analogous result for

$$\operatorname{lgldim} A \times_{\varphi} M \leq 2$$
.

PROPOSITION 3. Let $A \times_{\Phi} M$ be a semi-trivial extension with M_A flat, $\operatorname{Tor}_{\mathbf{1}^A}(\operatorname{Ker}\Phi, U) = 0$ for every $A/\operatorname{Im}\Phi$ -module U and $\operatorname{lgldim} A/\operatorname{Im}\Phi \leq 2$. If $\operatorname{lgldim} A \times_{\Phi} M \leq 2$ then

- (i) $\operatorname{Ihd}_{A/\operatorname{Im}\Phi} M \otimes_A U \leq 1$ for every $A/\operatorname{Im}\Phi$ -module U,
- (ii) $\operatorname{Ker} \Phi \otimes_A U$ is $A/\operatorname{Im} \Phi$ -projective for every $A/\operatorname{Im} \Phi$ -module U,
- (iii) $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} M = 0$.

If Im Φ is nilpotent then (i)-(iii) implies $\operatorname{lgldim} A \times_{\Phi} M \leq 2$.

PROOF. Let U be an $A/\mathrm{Im}\Phi$ -module and let $0\to K\to P\to U\to 0$ be an exact sequence of A-modules with P projective. It gives rise to an exact sequence of $A\times_{\Phi}M$ -modules

$$0 o (K \amalg M \otimes_{\mathcal{A}} P, f) o T(P) o (U, 0) o 0$$
 ,

where f is induced by τ_p . Let $\varrho_1\colon Q_1\to K$ and $\varrho_2\colon Q_2\to M\otimes_A P$ be A-epimorphisms with Q_1,Q_2 projective. Again we get an exact sequence of $A\times_{\varphi} M$ -modules

$$0 \to (L \amalg H, g) \to T(Q_1 \amalg Q_2) \to (K \amalg M \otimes_A P, f) \to 0 ,$$

where $L = \operatorname{Ker}(Q_1 \sqcup M \otimes_A Q_2 \to K)$ and $H = \operatorname{Ker}(Q_2 \sqcup M \otimes_A Q_1 \to M \otimes_A P)$,

the maps on the second summands being $f \circ 1_M \otimes \varrho_i$ (i=2,1), g induced by $\tau_{Q_1 \sqcup Q_2}$.

The "snake lemma" gives (i), (ii). (iii) follows by diagram chase: there is a commutative diagram with exact rows

where Ker $\Phi \otimes_A M \otimes_A P \to M \otimes_A K$ and Ker $\Phi \otimes_A M \otimes_A Q_1 \to M \otimes_A Q_1$ are zero, Ker $\Phi \otimes_A Q_2 \to M \otimes_A M \otimes_A Q_2$ is mono and the left hand column is exact.

If $\operatorname{Im} \Phi$ is nilpotent then (i)–(iii) are easily seen to make $(L \sqcup H, g)$ projective by Proposition 2. Hence $\operatorname{lhd}_{A \times_{\Phi} M}(U, 0) \leq 2$, so lgldim $A \times_{\Phi} M \leq 2$ by Lemma 4.

For $\Phi = 0$, if M_A is flat then by the first paragraph of this section $\operatorname{lgldim} A \times M < \infty$ only if $\operatorname{lgldim} A < \infty$ and $M^{\bigotimes^n} = 0$ for some integer n. Reiten [11] proves the converse of this statement. Actually this is true also if $\Phi \neq 0$.

THEOREM 5. Let $A \times_{\sigma} M$ be a semi-trivial extension. Suppose that M_A is flat and $M^{\otimes^{n+1}} = 0$. Then $\operatorname{lgldim} A \times_{\sigma} M \leq \operatorname{lgldim} A + n$.

PROOF. The proof goes as that of Reiten for $\Phi = 0$. $M^{\otimes^{n+1}} = 0$ implies that $\operatorname{Im}\Phi$ is nilpotent, so by Lemma 4 we just have to consider modules (U,0) with U an $A/\operatorname{Im}\Phi$ -module. For such a module we have the following exact sequence of $A \times_{\Phi} M$ -modules

$$0 \to (M \otimes_{\mathcal{A}} U, 0) \to T(U) \to (U, 0) \to 0$$

and $\mathrm{lhd}_{\mathcal{A} \times_{\sigma} M} T(U) \leq \mathrm{lhd}_{\mathcal{A}} U$, since $M_{\mathcal{A}}$ is flat. Thus

$$\operatorname{lhd}_{A \times_{\Phi} M}(U, 0) \leq \max(\operatorname{lgldim} A, \operatorname{lhd}_{A \times_{\Phi} M}(M \otimes_{A} U, 0) + 1).$$

Repeating the process we get

$$\operatorname{lhd}_{A \times_{\boldsymbol{\sigma}} M}(U, 0) \leq \max(\operatorname{lgldim} A + n - 1, \operatorname{lhd}_{A \times_{\boldsymbol{\sigma}} M}(M^{\bigotimes^{n}} \otimes_{A} U, 0) + n).$$

But $(M^{\otimes^n} \otimes_A U, 0) = T(M^{\otimes^n} \otimes_A U)$ and the theorem follows.

As we have seen is $M^{\bigotimes^n} = 0$ for some integer n not at all a necessary condition for $\operatorname{lgldim} A \times_{\sigma} M < \infty$, if M_A is flat. There is however a necessary condition for $\operatorname{lgldim} A \times_{\sigma} M < \infty$ which for $\Phi = 0$ is just $M^{\bigotimes^n} = 0$ for some n.

In order to obtain this condition we must extend the complex

$$\operatorname{Ker} \Phi \otimes_{A} U \stackrel{\tilde{f}}{\longrightarrow} M \otimes_{A} U \stackrel{f}{\longrightarrow} U$$

of Section 2. At first we consider the module $(U,f)=A\times_{\varphi}M$. What is $\operatorname{Ker}\hat{f}$ for this module? Since $\tilde{f}|\operatorname{Ker}\Phi\otimes_{\mathcal{A}}A$ is the inclusion $\operatorname{Ker}\Phi\to M\otimes_{\mathcal{A}}M$ and $\tilde{f}|\operatorname{Ker}\Phi\otimes_{\mathcal{A}}M=0$, we have $\operatorname{Ker}\hat{f}=\operatorname{Ker}\Phi\otimes_{\mathcal{A}}M$. Consider the homomorphism

$$1_{\operatorname{Ker}\Phi} \otimes f : \operatorname{Ker} \Phi \otimes_A M \otimes_A (A \coprod M) \to \operatorname{Ker} \Phi \otimes_A (A \coprod M)$$
.

It is the identity on $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} M$ and zero on $\operatorname{Ker} \Phi \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} M$. Thus we have an exact sequence of A-modules

and it is easy to see how to extend it further: take

 $1_{\operatorname{Ker}\Phi \otimes_A M} \otimes_P \otimes f \colon \operatorname{Ker}\Phi \otimes_A M^{\otimes^{p+1}} \otimes_A (A \sqcup M) \to \operatorname{Ker}\Phi \otimes_A M^{\otimes^p} \otimes_A (A \sqcup M)$ for $p \geq 0$. This map is the identity on $\operatorname{Ker}\Phi \otimes_A M^{\otimes^{p+1}}$ and zero on $\operatorname{Ker}\Phi \otimes_A M^{\otimes^{p+2}}$.

For an arbitrary $A \times_{\sigma} M$ -module (U,f) we get a corresponding complex $(\Phi; MfU)_*$:

$$(\Phi; M f U)_n = egin{cases} \operatorname{Ker} \Phi \otimes_{\mathcal{A}} M^{\otimes^{n-2}} \otimes_{\mathcal{A}} U & ext{for } n \geq 2 \\ M^{\otimes^n} \otimes_{\mathcal{A}} U & ext{for } n = 0, 1 \\ 0 & ext{for } n < 0 \ , \end{cases}$$

with the differentials

$$d_n = \left\{ egin{array}{ll} 1_{\mathbb{K} ext{er}} oldsymbol{\phi} \otimes_A M \otimes^{n-3} \otimes f & ext{for } n \geq 3 \\ & ilde{f} & ext{for } n = 2 \\ & f & ext{for } n = 1 \end{array}
ight.$$

An $A \times_{\varphi} M$ -homomorphism $(U,f) \to (V,g)$ induces in the natural way a map of complexes $(\Phi; Mfu)_* \to (\Phi; MgV)_*$. By an argument analogous to that of the proof af Lemma 2 we see that $(\Phi; MfU)_*$ is acyclic if (U,f) is projective.

Let us now assume that M_A and $(\operatorname{Ker} \Phi)_A$ are flat. Then the following condition holds:

(17) If
$$\operatorname{lhd}_{A \times_{\Phi} M}(U, f) \leq r$$
, then $H_i((\Phi; M f U)_*) = 0$ for $i \geq r+1$.

This is proved by induction on r. It is true for r=0 as was seen above. If $\operatorname{lhd}_{A\times_{\Phi}M}(U,f)=r>0$, we write (U,f) as a quotient of a projective $A\times_{\Phi}M$ -module (P,p):

$$0 \rightarrow (K,g) \rightarrow (P,p) \rightarrow (U,f) \rightarrow 0$$
 ,

which gives $\operatorname{lhd}_{A \times_{\Phi} M}(K,g) = r - 1$. A diagram chase on the following diagram with exact rows and the middle column exact

$$0 \to (\Phi; MgK)_{i+1} \to (\Phi; MpP)_{i+1} \to (\Phi; MfU)_{i+1} \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \to (\Phi; MgK)_{i} \to (\Phi; MpP)_{i} \to (\Phi; MfU)_{i} \to 0$$

shows that exactness of $(\Phi; MgK)_*$ at *i* implies exactness of $(\Phi: MfU)_*$ at i+1.

From this we will deduce the following necessary condition for the finiteness of $\operatorname{Igldim} A \times_{\sigma} M$.

PROPOSITION 4. Let $A \times_{\Phi} M$ be a semi-trivial extension and suppose that M_A and $(\operatorname{Ker} \Phi)_A$ are flat. Then $\operatorname{lgldim} A \times_{\Phi} M \leq n \ (n \geq 1)$ only if $\operatorname{Ker} \Phi \otimes_A M \otimes^{n-1} = 0$.

PROOF. The proposition has been proved for $n \le 2$ in Theorem 3 and Proposition 3.

We use (17) for (U,f) = the ideal $\operatorname{Im} \Phi \times M$. If $\operatorname{Igldim} A \times_{\Phi} M \leq n$ and $n \geq 3$ we obtain the following exact sequence:

$$\operatorname{Ker} \Phi \otimes_{\mathcal{A}} M^{\otimes^{n-1}} \otimes_{\mathcal{A}} (\operatorname{Im} \Phi \amalg M) \to \operatorname{Ker} \Phi \otimes_{\mathcal{A}} M^{\otimes^{n-2}} \otimes_{\mathcal{A}} (\operatorname{Im} \Phi \amalg M) \to \operatorname{Ker} \Phi \otimes_{\mathcal{A}} M^{\otimes^{n-3}} \otimes_{\mathcal{A}} (\operatorname{Im} \Phi \amalg M)$$

But $\operatorname{Ker} \Phi \otimes_A M^{\otimes r} \otimes_A \operatorname{Im} \Phi = 0$ for every r, and the proposition now follows.

The complex $(\Phi; MfU)_*$ provides one way of generalizing the complex $(MfU)_*$ of [10, § 3]. Another will be given in the following section.

6. A spectral sequence.

The results for $\Phi = 0$ in [10] were derived from a spectral sequence converging to $\operatorname{Ext}_{A \times M}^{n}((U,f),(V,0))$ with the first terms

$$E_1^{pq} = H^q(\operatorname{Hom}_A(Q_*(M)^{\otimes p} \otimes_A U, I^*(V)))$$

where $Q_*(M)$ is a resolution of M by (A,A)-bimodules and $I^*(V)$ is an injective resolution of the A-module V.

There is a similar spectral sequence for $\Phi \neq 0$, converging to $\operatorname{Ext}_{A \times_{\Phi} M}^{n}$ ((U,f),(V,0)) but we did not succeed in obtaining any results from it. Let us, however, derive this sequence.

粉戲

For an $A \times_{\sigma} M$ -module (U,f) we shall define a complex $TM(U,f)_*$ of $A \times_{\sigma} M$ -modules. Let

$$TM(U,f)_n = \left\{ egin{array}{ll} (A imes_{m{\phi}}M) \otimes_{m{A}} M^{igotimes^n} \otimes_{m{A}} U & ext{for } n \geq 0 \ & U & ext{for } n = -1 \ & 0 & ext{for } n \leq -2 \ . \end{array}
ight.$$

The differential $d_n: TM(U,f)_n \to TM(U,f)_{n-1}$ is for $n \ge 1$ given by

$$d_n((a,m)\otimes m_1\otimes\ldots\otimes m_n\otimes u) = (\Phi(m,m_1),am_1)\otimes m_2\otimes\ldots\otimes m_n\otimes u + (-1)^n(a,m)\otimes m_1\otimes\ldots\otimes m_{n-1}\otimes f(m_n,u)$$

(cf. [9, p. 306]). d_0 is given by

$$d_0((a,m)\otimes u) = au + f(m,u).$$

If $(U,f) = A \times_{\phi} M$, the complex $TM(U,f)_*$ is acyclic and splits, i.e. every short exact sequence

$$0 \to \operatorname{Im} d_{n+1} \to (A \times_{\sigma} M) \otimes_{A} M^{\bigotimes^{n}} \otimes_{A} U \to \operatorname{Im} d_{n} \to 0$$

Now let L_* :

splits.

$$\ldots \to (L_n, f_n) \to (L_{n-1}, f_{n-1}) \to \ldots \to (L_0, f_0) \to (U, f) \to 0$$

be a free resolution of (U,f). We form a double complex L_{**} of $A \times_{\sigma} M$ -modules:

$$L_{qp} = TM(L_q, f_q)_p, \quad p, q \ge 0.$$

The maps $L_{q*} \to L_{q-1*}$ are induced by the differentials of L_* . Apply the functor $\operatorname{Hom}_{A \times_{\Phi} M}(-,(V,g))$ to the complex L_{**} ; we get the double complex

(18)
$$\operatorname{Hom}_{A\times_{\mathbf{A}}M}(L_{**},(V,g)).$$

Since the rows L_{q*} are split exact, the *n*th homology group of the associated single complex of (18) is isomorphic to $\operatorname{Ext}_{A \times_{\Phi} M}^{n}((U,f),(V,g))$.

Thus, let us consider the double complex (18). It is easily seen that

$$\operatorname{Hom}_{A \times_{\Phi} M}(T(W), (V,g)) \cong \operatorname{Hom}_{A}(W,V)$$
,

so we have

$$\operatorname{Hom}_{A \times_{\mathbf{a}} M}(L_{qp}, (V, g)) \cong \operatorname{Hom}_{A}(M^{\otimes^{p}} \otimes_{A} L_{q}, V)$$
.

What becomes of the differentials of (18) under this isomorphism? The map

$$\operatorname{Hom}_{A}(M^{\otimes p} \otimes_{A} L_{q}, V) \to \operatorname{Hom}_{A}(M^{\otimes p} \otimes_{A} L_{q+1}, V)$$

is the natural one induced by $L_{q+1} \to L_q$. The map

$$\operatorname{Hom}_{\mathcal{A}}(M^{\bigotimes^{p}} \otimes_{\mathcal{A}} L_{q}, V) \to \operatorname{Hom}_{\mathcal{A}}(M^{\bigotimes^{p+1}} \otimes_{\mathcal{A}} L_{q}, V)$$

is more troublesome. It is the sum of two maps, one of which is the natural map given by

$$1_{M\otimes^{p}}\otimes f_{q}:\ M^{\bigotimes^{p+1}}\otimes_{A}L_{q}\to M^{\bigotimes^{p}}\otimes_{A}L_{q};$$

the other is $\alpha \to g \circ (1_M \otimes \alpha)$ for $\alpha \in \operatorname{Hom}_A(M \otimes^p \otimes_A L_q, V)$.

If g=0, then the double complex (18) is isomorphic to the double complex K^{**} , where

$$K^{pq} = \operatorname{Hom}_{A}(M^{\otimes p} \otimes_{A} L_{q}. V)$$
,

and the maps are induced by the differentials of L_* and the maps $1_{M\otimes P}\otimes f_q$. The *n*th homology group of the associated single complex of K^{**} is isomorphic to $\operatorname{Ext}^n_{A\times_{\Phi}M}((U,f),(V,0))$. The modules $M^{\otimes P}\otimes_{\mathcal{A}}L_q$ and the maps $1_{M\otimes P^{-1}}\otimes f_q$ for q fixed do not make up a complex, however, so we have to proceed further.

Since V is an $A/\text{Im}\Phi$ -module, there is an isomorphism

$$\operatorname{Hom}_{A}(W,V) \cong \operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_{A}W,V)$$

which makes K^{**} isomorphic to the double complex \tilde{K}^{**} , where

$$\tilde{K}^{pq} = \operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_A M \otimes^p \otimes_A L_q, V)$$

and the differentials are the natural ones. Here we have complexes (one for each q)

$$(19) \ldots \to A/\operatorname{Im} \Phi \otimes_A M^{\otimes^{p+1}} \otimes_A L_q \to A/\operatorname{Im} \Phi \otimes_A M^{\otimes^p} \otimes_A L_q \to \ldots$$

and they are all split exact. (Of course, we could have gone to \tilde{K}^{**} directly from (18) by Lemma 5, but the above motivates the choice of g=0.)

Let $I^*(V)$ be a resolution of V by injective $A/\text{Im }\Phi$ -modules. Consider the triple complex K^{***} where

$$K^{pqr} = \operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_A M \otimes^p \otimes_A L_q, I^r)$$
.

The *n*th homology group of its associated single complex is isomorphic to $\operatorname{Ext}_{A\times_{\Phi}M}^n((U,f),(V,0))$. Now proceed as in [10]. We obtain the following counterpart of Theorem 3 therein.

THEOREM 6. There is a spectral sequence converging to

$$\operatorname{Ext}_{A \times_{\Phi} M}^{n}((U,f),(V,0))$$
,

whose first terms are

$$E_1^{pq} = H^q(\operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_A M^{\otimes^p} \otimes_A L_*, I^*(V))).$$

The problem now is to interpret at least E_1^{pq} and (at least some of) the differentials d_1^{pq} . Since we may only consider modules (V,0) in the second variable we would have to restrict the investigations to cases where $\text{Im}\Phi$ is nilpotent (see Lemma 4). It would then also suffice to consider modules (U,0) in the first variable. There is a commutative diagram

$$\begin{array}{ccc} H^q(\operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_A M^{\bigotimes^p} \otimes_A U, I^*(V))) & \to & H^q(K^{p**}) \\ & & & & \downarrow^{d_1pq} \\ H^q\big(\operatorname{Hom}_{A/\operatorname{Im}\Phi}(A/\operatorname{Im}\Phi \otimes_A M^{\bigotimes^{p+1}} \otimes_A U, I^*(V))\big) & \to & H^q(K^{p+1**}) \ . \end{array}$$

In case $\Phi = 0$ then for p = 0 the upper horizontal map is an isomorphism and we get a relation between f and d_1^{0q} .

For $\Phi \neq 0$ we could conclude $d_1^{0q} = 0$ from f = 0 if the upper horizontal map were an epimorphism. We would like this to hold for every pair of $A/\operatorname{Im}\Phi$ -modules U,V. In particular, the complex $A/\operatorname{Im}\Phi \otimes_A L_*$ would have to be acyclic for the resolution L_* of every $A/\operatorname{Im}\Phi$ -module U. This would however require $\operatorname{Tor}_1^A(A/\operatorname{Im}\Phi,A/\operatorname{Im}\Phi) = 0$, a condition which together with $\operatorname{Im}\Phi$ nilpotent would imply $\Phi = 0$.

Since we do not know of any other way of ascertaining

$$f=0 \Rightarrow d_1^{0q}=0 ,$$

we did not pursue further in this direction.

Finally we remark that (19) indicates another way of generalizing the complex $(MfU)_*$ of [10] (cf. the end of Section 5). For an $A \times_{\sigma} M$ -module (U,f) the composite map

$$\begin{array}{c} A/\mathrm{Im} \varPhi \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \\ & \downarrow^{1_{A/\mathrm{Im} \varPhi} \otimes 1_{M} \otimes f} \\ A/\mathrm{Im} \varPhi \otimes_{\mathcal{A}} M \otimes_{\mathcal{A}} U \\ & \downarrow^{1_{A/\mathrm{Im} \varPhi} \otimes f} \\ A/\mathrm{Im} \varPhi \otimes_{\mathcal{A}} U \end{array}$$

is easily seen to be zero. Thus there is a complex

$$\big(A/\mathrm{Im}\,\Phi\otimes_{\mathcal{A}}M^{\bigotimes^{p}}\otimes_{\mathcal{A}}U,1_{\mathcal{A}'\mathrm{Im}\Phi}\otimes(1_{M})^{\bigotimes^{p-1}}\otimes f)_{p\;\geq\;0}$$

(we let $1_M^{\otimes^{-1}} = 0$), which for $\Phi = 0$ is the complex $(MfU)_*$.

7. Final remarks.

There remains of course a vast amount of work to be done on the semi-trivial extensions of a ring. We list some problems.

PROBLEM 1. Does $\operatorname{lgldim} A \times_{\sigma} M \leq n$ impose any restrictions on $\operatorname{lgldim} A/\operatorname{Im} \Phi$?

PROBLEM 2. Is it possible to get results similar to Corollary 3 of Theorem 2 in [10], cited at the beginning of Section 5 above, for M_A (and perhaps also $(\text{Ker }\Phi)_A$) flat? Would conditions on $\operatorname{Igldim} A/\operatorname{Im} \Phi$ be necessary? Proposition 3 is related to these questions.

PROBLEM 3. If Problem 2 were shown to have a positive answer, it would be natural to ask whether that result could be generalized to the case of M (and perhaps also $\text{Ker }\Phi$) having a resolution by (A,A)-bimodules which are flat as right modules over A. (cf. [10, § 6]).

In Section 3 where we assumed Φ epi we found $\operatorname{Igldim} A \times_{\Phi} M$ for $A \times_{\Phi} M$ being a generalized matrix ring, while certain conditions on A were necessary to determine $\operatorname{Igldim} A \times_{\Phi} M$ for a general semi-trivial extension. Now every ring $A \times_{\Phi} M$ is related to a generalized matrix ring, namely the ring $\begin{pmatrix} A & M \\ M & A \end{pmatrix}_{\Phi,\Phi}$. There is a ring automorphism of $\begin{pmatrix} A & M \\ M & A \end{pmatrix}_{\Phi,\Phi}$ taking $\begin{pmatrix} a & m \\ m' & a' \end{pmatrix}$ to $\begin{pmatrix} a' & m' \\ m & a \end{pmatrix}$. It generates a group of order 2 acting on $\begin{pmatrix} A & M \\ M & A \end{pmatrix}_{\Phi,\Phi}$. The subring of invariants for this group is isomorphic to $A \times_{\Phi} M$.

PROBLEM 4. Does the above explain why 2 being invertible in A is crucial in getting Theorem 1 for $A \times_{\varphi} M$ not a generalized matrix ring?

ACKNOWLEDGEMENT. The author wishes to express her deep gratitude to professor Jan-Erik Roos for his great interest and invaluable advice during her work on this topic.

BIBLIOGRAPHY

 M. Auslander, On the dimension of modules and algebras III. Global dimension, Nagoya Math. J. 9 (1955), 67-77.

- 2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- 3. H. Bass, Algebraic K-theory, W.A. Benjamin, New York, 1968.
- J.-E. Björk, Rings satisfying a minimum condition on principal ideals, J. Reine Angew. Math. 236 (1969), 112–119.
- J.-E. Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 63-73.
- J.-E. Björk, Conditions which imply that subrings of semi-primary rings are semi-primary, J. Algebra 19 (1971), 384–395.
- J.-E. Björk, Noetherian and Artinian chain conditions of associative rings, Arch. Math. (Basel), 24 (1973), 366-378.
- 8. R. Fossum, P. Griffith and I. Reiten, The homological algebra of trivial extensions of Abelian categories with application to ring theory, Preprint series 1972/73, Math. Institute, University of Aarhus, No. 3, Århus, 1972.
- S. Maclane, Homology (Grundlehren Math. Wissensch. 114), Springer-Verlag, Berlin, Göttingen, New York (1963).
- I. Palmer and J.-E. Roos, Explicit formulae for the global homological dimensions of trivial extensions of rings, J. Algebra 27 (1973), 380-413.
- I. Reiten, Trivial extensions and Gorenstein rings, Thesis, University of Illinois, Urbana, 1971.
- R. Rentschler and P. Gabriel, Sur la dimension des anneaux et ensembles ordonnés,
 C. R. Acad. Sci. Paris Sér. A 265 (1967), 712-715.
- J.-E. Roos, Locally noetherian categories and generalized strictly linearly compact rings. Applications, Proceedings of the Battelle Conference II (Lecture Notes in Mathematics 92), Springer-Verlag, Berlin, Heidelberg, New York, (1969), 197-277.
- J.-E. Roos, On the structure of Abelian categories with generators and exact direct limits, (to appear).

INSTITUTE OF MATHEMATICS UNIVERSITY OF STOCKHOLM SWEDEN