MATH. SCAND. 37 (1975), 223256

THE GLOBAL HOMOLOGICAL DIMENSION
OF SEMI-TRIVIAL EXTENSIONS OF RINGS
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1. Definition of the semi-trivial extension of a ring. Some ring theoretic
properties.

All rings in this paper will have unit element and all (left or right)
modules and all homomorphisms will be unitary. The term A-module
will always refer to a left module over the ring 4. lgldim 4 will denote
the left global homological dimension of the ring 4, Ihd , M will denote
the homological dimension of the 4-module M and whd M , will denote
the weak homological dimension of the right module M over 4.

Let 4 be a ring and let M be an (A4, A4)-bimodule. In [10] Roos and
the author studied the trivial extension of 4 by M, that is the Cartesian
product set A x M with addition componentwise and multiplication
given by (a,m)(a¢’,m')=(aa’,am’+ma’). We now generalize the multi-
plication by also multiplying the elements of M. That is, we give an
(4,4)-bimodule map ®:M Q,M - A and define multiplication on
4 x M by

(1) (a,m)(a’,m') = (aa’+DP(m,m"),am’ +ma') .
This multiplication is associative if and only if the diagram
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D RQaly

MMM AQuM
(2) Iy Qa D !=
i
M, 4 e M

is commutative.

Thus, given an (4, 4)-bimodule homomorphism @: M ® , M — A satis-
fying (2), we obtain a structure of ring with unit element on the Cartesian
product set 4 x M, where addition is componentwise and multiplication
is given by (1). This ring will be denoted by A x,M and called the
semi-trivial extension of 4 by M and ®. The ring 4 is a subring of
A x oM but in general not a quotient ring. The module M is not an
ideal of A x4, M ; the ideal generated by M is Im® x M.

Important special cases of semi-trivial extensions are the generalized

( )

(in the notation of Roos [13]), where R, S are rings and M, N bimodules
with the indicated structure, ¢p: M QgN — R and v: N @ g M — S bimo-
dule homorphisms. If we put 4 =R x 8 and consider M =M x N as an
(4,A4)-bimodule in the natural fashion, then

HQRQ,M=MgNxNQRQrM

and for
D= (<p,1p):ﬂ®AM—>A

we obtain a ring isomorphism

~ /(R M
A X¢M——>(N S)%w

Corresponding to (2) there are two commuting diagrams

M@y N M2 Re. M

2) MRy =
M ®g8 = Jl}

NopM @ NYX2W, 5N
IN@eo -

N®zR = N
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Any ring A with an idempotent e is a generalized matrix ring with
R =ede, 8 = (1—e)A(1—e), M = edA(1—e), N = (1—e)de

and @,y induced by the multiplication in A.

A left module over A x,M is a couple (U,f) where U is a left 4-mo-
dule and f is an A-homomorphism ¥ ® ,U - U.

The associativity condition

(0,m)((0,m')u) = ((0,m)(0,m'))u for m,m’e M,uec U
corresponds to the requirement that the diagram

M ®f f

(3) ¢®1U “r=
A4®,U

commutes. In particular, if the semi-trivial extension is a generalized
matrix ring as above, then a left module is a quadruple (U,V,f,9),
where U is a left R-module, V is a left S-module, f: M Q¢V - U an
R-homomorphism and g: N @ U - ¥V an S-homomorphism. Correspon-
ding to (3) there are again two commutative diagrams

M@y

MRsN U225 MuV
(3) @1y 1
R®RU U
N@pMesV 22 Ne U
Y Qsly g
SQsV - |4

From (3) it follows that for an 4 x,M-module (U,f) the 4-modules
Kerf and Cokerf are annihilated by Im@®. In particular, (U,0) is a left
A x4, M-module if and only if U is a left 4/Im®-module.

In view of the well-known adjointness relation

Hom (M ® ,U,U) ~ Hom 4(U, Hom ,(M,U))

we see that an A4 x,M-module (U,f) can also be interpreted as a pair
(U,fy) consisting of an A-module U and an A-linear map fg: U —
Hom ,(M,U) such that the diagram

Math. Scand. 87 — 15
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U 2, Hom  (M,U) Z4M0IE) | yom (M, Hom (M, U))

Hom4(®D, 1y)

HomA(A, U) HomA(M®AM, U)

is commutative. Here the vertical maps are the natural isomorphisms.

For an 4-module U we denote its extension to the category of A x , M-
modules by T'(U), that is, T(U)=(4 x M) ® 4U. Its underlying A4-mo-
dule is U=UIIM ® ,U and the map 75: M ® ;U — U is the identity on
M ®,U and the composition

M Me,U

on M ® AM ® A U.
Finally, an 4 x4, M-homomorphism from (U,f) to (V,g) is an 4-homo-
morphism «: U — V such that the diagram

PO, g, U ——>T

Mo, U 8% ue,v
(4) s

U

[

v

commutes.

An interesting case will occur when @ is an epimorphism. Then @ is
an isomorphism and M is a finitely generated, projective 4-module
(both left and right). The proof is that of Bass [3, theorem (3.4), p. 62]
for a set of preequivalence data (4,B,P,Q,f,g) with f epi. It is possible
to obtain almost complete results on the global dimension of 4 x ;M in
this case and we will return to it in Section 3.

Before investigating the homological properties of 4 x,M we make
a comparison of some ring theoretic properties of 4 and 4 x, M. We
denote the Jacobson radical of a ring R by J(R). The following lemma
(cf. Roos [14]) will be needed.

LemmaA 1. Let A, M and D be as above. If In® c J(A), then J(A x , M)
=J(4)x M. If J(A) is nilpotent, so is J(A) x M.

Proor. If m is a maximal left ideal of 4, then m x M is a maximal
left ideal of A x,M, since

(O0xM)?2 c Imd g J(4) = m.
Hence
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J(AxM) < J(A)x M .

To see the opposite inclusion we directly calculate the (right) inverse
in A x4, M of 1—(j,m) for (j,m)eJ(4)x M.
To prove the second part, let J(A4)*=0. Since

(JA)x M) < (J(AY+ImP)x M
for every integer 4, we have

(JA)x M)k < ImndPx M .
Now
(Im@xM)? = ImPx MIm®P,
whence
(ImPx M)* = ImPiIx MImP?i for every j .

Thus (Im® x M)%* =0 which implies (J(4) x M)%**=0.
The supposition of Im® < J(4) is necessary for the truth of the lemma,
as will be seen by the following example.

ExampLE 1. Let A=M=K, a field, and let &: K @K -~ K be the
natural multiplication. Then 4 x, M~ K[X]/(X2—1), so J(4 x,M)=0
if the characteristic of K is + 2 and J(4 x, M)=the diagonal submo-
dule K(1,1) of K x K if the characteristic of K is 2.

ProrostTION 1. Let A, M and @ be as above. The (Gabriel-Rentschler)
Krull-dimension (for a definition, see [12]) of the A-module N is denoted
by Kr-dim (N. The (left) Krull-dimension of the ring A will be denoted by
Kr-dim 4.

(a) A xo M 1s (left) noetherian if and only if A is (left) noetherian and
M is (left) f.g. (finitely generated).

(b) Kr-dim4 x, M =max(Kr-dim 4, Kr-dim ,M) if either side is finite.
In particular, A x4, M is (left) Artinian if and only if A and M are
(left) Artintan.

(c) 4 x4 M 1is (right) perfect if and only if A is (right) perfect.

(d) 4 x4 M is semi-primary if and only if A is semi-primary.

(e) A Xy M 13 semi-simple tmplies A x4 M 1is a product of rings
Ay x (Agx 3M) where Ay, A, are semi-simple rings and Ay x 3M is
a semi-trivial extension with @ epi.

Proor. (a) If 4 x, M is left noetherian, let a,<a,< ... be an ascen~
ding chain of left ideals of 4. The ideal a; generates a left ideal of
A x4 M, viz. a; x Ma,, and the ascending chain a, x Ma, ca, x Ma,< . ..
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of ideals of 4 x, M is stationary. Thus 4 is left noetherian. In the same
way we see that M is a left noetherian 4-module.

If, on the other hand, 4 is left noetherian and M is f.g. as a left 4A-mo-
dule, then AuM is a noetherian left 4-module. Since a left ideal of
A xzM is a left A-submodule of 4uM, it follows that 4 x4 M is left
noetherian.

(b) The proof of the equivalence 4 x, M is (left) Artinian if and
only if 4 and M are (left) Artinian is similar to the proof of (a). Thus
(b) is true if one of the members is zero.

Now suppose that Kr-dimA x4, M =n>0. Let a;2a,> ... be a
strictly descending chain of left ideals of 4 such that Kr-dim 4a;/a;.,
£n—1 for every 2. If n=1, then a,/a;,; is not Artinian, so there is an
infinite strictly descending chain of lefts ideals between a; and q;.,,.
This chain gives rise to an infinite strictly descending chain of left
ideals of A x, M between the left ideals a,x Ma; and a;.,x Ma;,,.
Hence the chain {a; x Ma,};, is finite, and it follows that Kr-dim4 <1
=n. The same way of reasoning goes through for n>1 (n finite). Simi-
larly it is proved that Kr-dim ,M <n.

Suppose, on the other hand, that max(Kr-dim4,Kr-dim ,M)=m.
Then Kr-dim ,41.M =m, and since every chain of left ideals of 4 x, M
is a chain of left A-submodules of AuM, it follows that Kr-dimA4 x4, M
=m.

(¢) To see that A x4 M is right perfect implies A is right perfect we
use the characterization by Bass [2] of a ring being right perfect if and
only if it satisfies the DCC on principal left ideals. Since a principal
left ideal of A generates a principal left ideal of A x4 M, the implication
is obvious.

For the opposite implication we first note that since 4 is right perfect,
l=e;+...+e,, where {e;};* is an orthogonal family of minimal idem-
potens (Bjork [4]). This is also a partition of the unity of 4 x, M into
a sum of orthogonal idempotents. According to Bjork [5], 4 x4 M is
right perfect if all the rings

(e;,0)A xg4 M(e;,0) @ =1,...,k,

are so. Now (e;,0)A4 x4 M(e;,0) is a semi-trivial extension itself, namely
the ring e;de; x 4,6, Me; where @, is induced by ®. e;de; is a local ring
since e; is a minimal idempotent, and it is right perfect according to the
first part of the proof of (c). Thus it suffices to show the implication 4
right perfect implies A4 x, M right perfect for a local ring A. But then
only two cases can occur: @ is an epimorphism or Im®@cJ(4).
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If @ is epi, then M is f.g. as an 4-module, so 4 x4, M is f.g. over A.
The conclusion now follows from [7].
If on the other hand Im®c J(4), then according to lemma 1

J(A xo M) = J(A)x M .

We now use another characterization by Bass [2] of right perfect rings:
R is right perfect if and only if R/J(R) is semi-simple and J(R) is left
T-nilpotent. Now

A xg M[J(A xo M) = AlJ(4),
thus semi-simple.

To see that J(A4 x4 M) is left T-nilpotent, suppose the converse. Then
there are elements g;€J(4 x4 M), 1 € N, such that g8,...8,8,+0 for
every n (we say that f, has an infinite left chain in J(4 x4 M)). fy=
(Jo,0) + (0,m,) with j,eJ(A4) and mye M, and we must have either
Bu- - B1(Jo,0) £ 0 for every n or B,...5,(0,mg)==0 for every n. If 8,,...
p1(0,my) =0 for some n, let f;=(j;,m,) € J(A) x M. Then either (j,j,,0)
or (0,m,7,) has an infinite left chain in J(A4 x4 M). If it is not (0,m,7j,)
we continue with §,. If there does not occur an element (0,m) with an
infinite left chain in J(4 x4, M), we eventually reach an element

(Jg+ + -JorMefe-1- + -Jo)
with an infinite left chain in J(4 x4 M) and j,...j,=0, since J(4) is
left T-nilpotent. Hence the set
2 = {me M| (0,m) has an infinite left chain in J(4 xqo M)}

is not empty. We consider the set {Am | m € X}. M is right perfect, so
this set has a minimal member, say 4x. Nakayamas lemma implies that
jx ¢ X for j e J(A). Take {y;};», in J(4 X M) such that y,...y,(0,2) +0
for every n.
v = (Ji’m')eJ(A)xM foriz1
and
71(0,2) = (P(m,y’,2),j,') .
Since j,'z ¢ Z, we have y,,...yy(P(m,’,x),0)+ 0 for every n = 2. Now
y,(@(ml’,x),O) = (j2,¢(m1l’x)’m2,¢(m1"x))
and here
my'P(my’,x) = D(my',my" ) ¢ X

80 we have
V- - - V3(Ja’DP(my,x),0) = 0 foreveryn = 3.

By iteration we see that @(m,’,z) has an infinite left chain in J(4). But
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this is a contradiction to the left 7-nilpotency of J(4). Hence, 4 xo, M
is right perfect.

(d) The proof of (d) is similar to that of (c) after we have made the
following observations:

1° A (right) perfect ring R is semi-primary if and only if there is an
integer N such that R does not contain any strictly descending se-
quence of N principal left ideals [6].

2° An unpublished result by Bjoérk says that if 1=e+f where e,f are
idempotents in R and if eRe and fRf are semi-primary, then R is
semi-primary.

We also need the second part of lemma 1.

(e) A/Im® is a factor ring of 4 x, M, hence semi-simple. The natural
epimorphism 4 x4 M — A/Im® splits. From this we see that

A=AIm®xImd,

a product of rings. Let 4,=4/Im®,4,=Im®. We also get an element
s € A such that s=1 (modIm®) and Ms=0. Thus M4,=0and MA,=M.
Since A,M =M A, we also have 4, M =0. Let AzﬂAs=A2MA2=M;

é: M®Ag M - .A2
induced by @ is epi and

A xegM ~ Ay x (A, x3 ) .

A, x3 M is semi-simple and since M is A,-projective we must have 4,
semi-simple (cf. Section 3, Remark 2).

2. Some properties of projective 4 x, M-modules.

In order to determine the homological dimensions of a ring and of
modules over it we need information about the projective modules over
the ring.

For trivial extensions, that is for @®=0, we know that the projective
A x M-modules are precisely the 4 x M-modules 7'(P) with P a projec-
tive 4-module ([10], [11]).

For @ +0, the modules 7'(P) with P 4-projective are A X ¢ M-projec-
tive as follows by a ‘‘change-of-rings’’-theorem. However, not all pro-
jective 4 x, M-modules are of this form. Reiten [11, p. 9] shows that
in the ring of Example 1 with the characteristic of K &2 the idempotent
(3,3) generates a projective A x, M-module which is not of this form
(it is of dimension 1 as a vector space over K).
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What can then be said of projective 4 x, M-modules?
Let (U,f) be a projective 4 x, M-module and write it as a quotient
of a free A x, M-module,

114 xo M = T(IL4) .

We obtain commutative diagrams (either all the arrows going to the
right or all going to the left) with exact columns:

1 ®
M®p Mo, U
®¢t

M, (114 n D))

1y
1527 f

]__[I(A'u M) — U
(5) '

I AJ/ImQ ——— Cokerf
1 o

0 0

Here ¢ is induced by p, s by ¢ and pot=1. It follows that Cokerf is a
projective 4/Im @-module.

For @ =0 we observed ([10], [11]) that if (U,f) is projective then the
complex

1M ®fF

(6) MR MR, U ! U

M®,U

is exact. But for @0, because of (3), (6) is generally not a complex.
An obvious way of getting a complex out of (3) is to start with Ker® ® ,U
in the upper row:

() Kerd @, U—! > Me,U—L U,

where f is the composition

1y ®fF

Kerd UM MRS,U Me,U
((7) is the complex (6) for ®=0!).

In our case we get commutative diagrams (either all the arrows
going to the right or all going to the left):
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1Kerp @ p
— )

Kero®,[1; (A1 M) Kero®,U
1Kerp ® ¢
bige F
¥ 1 ®
M, Il (AuM) ——— MU
MRt
T4 f
¢ p Y
11 (Anar) ":_t‘—_:: U
11; 4/Im® :_:'q:——’_ Cokerf
0 0

The left column is exact and easy diagram chasing shows that the right
column, too, is exact.
Thus we have proved the following

LeMMA 2. A4 left A x5 M-module (U,f) is projective only if

(1) Cokerf is left A[Im®D-projective
and
(2) the complex of left A-modules

Kerd®, U—! - Mo UL U

i8 exact (f as above).

The necessary conditions given by Lemma 2 are, except for Im @ nilpo-
tent (see Section 4), not sufficient to make (U,f) projective. There is
even a whole class of rings, viz. the semi-trivial extensions with @ epi,
for which those conditions are empty (cf. Section 1). We devote the
next section to a study of those rings.

3. The global dimension of A x, M for @ an epimorphism. A result for

R M
( NS )w"pwith one of ¢, Y epimorphic.

Except for the last paragraph, @ will in this section be an epimor-
phism,



THE GLOBAL HOMOLOGICAL DIMENSION ... 233

From Section 1 we know that if @ is an epimorphism, then @ is an
isomorphism and M is a finitely generated, projective left and right
A-module. What can be said of the 4 x,M-modules (U,f)? Considering
the commutative diagram (3) we get that f, and hence 1,, ®f, is an
epimorphism. Moreover, 1;, ® fis & monomorphism, thus an isomorphism.
From this it follows that f is an isomorphism.

We now describe the projective A x, M-modules (with certain condi-
tions on A4). Since ,M is projective, it follows from (5) that a projective
A xg M-module is A-projective. On the other hand, let (U,f) be a
A x4 M-module with U A-projective. Every 4-homomorphism p: J1,;4 -
U determines uniquely an A4 x, M-homomorphism

q: HIA Xp M — (U’f) ’

gL M = fo(1y ®p),

for we must have

since the diagram

M, (L AnM) 28, ye,U

1§17 f
+
[1(Anm)—2 U

is to be commutative (cf. diagram (4)).

Now let ¢ be surjective. (U,f) is 4 x4 M-projective if and only if there
is an 4 x, M-homomorphism ¢: (U,f) - I1;(4 xp M) such that got=1.
If such a ¢ exists, it must be of the form ¢=(t,,t,), where ¢,: U - I1;4
and ¢,: U - II;M are 4-homomorphisms such that the diagrams

Mo, 4% Me,U
LM —2 U
1M @t
MR I M Me,U

f

u;d S

4 — U

are commutative. If #, is chosen to make the upper diagram commute,
i.e. t3=(1,,®t,)of -1, then also the lower diagram will commute. Thus ¢
is completely determined by choice of ¢, and
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(8) got = pot;+fo(ly @p)oty = poty+fo(ly @poty)oft.

There are two cases to be considered.

CasE 1. p is surjective (e.g. if A=K a field and dimzU=1). Then
there is a right inverse o of p,o: U —[1;4 and pog= 1. But we cannot
take ¢, =0 for that would, by (8), make got=1+ 1. If 2 is invertible
in 4, however, the problem can be solved. Let & be the inverse of 2 in
A. Then ¢ belongs to the center of A4, so l,=multiplication to the left
by & is an A-homomorphism. Now let ¢, =l.00. By (8) got=1l.0(1y+ 1)
=1g.

Case 2. U=Vuf(M Q,V) for an A-submodule V of U (e.g. if 4 x, M
is a generalized matrix ring, cf. Section 1). Take p: J1; 4 — V surjective
V is A-projective, so there is a right inverse p: V — I1; 4 of p. Let ¢, =
(0,0), ie. t;|V=p and ;| f(M ® 4 V)=0. By (8) qot=1p+ L@ ,m=1yp-

The generalized matrix rings are the only rings we know of, for which
every A x4 M-module is of the form considered in case 2. Another way
of expressing that the ring A x, M is a generalized matrix ring with 4
on the main diagonal is to say that 4 has a central idempotent e such
that eMe=(1—e)M(1—e)=0.

We have proved the following lemma.

Lemma 3. Let A, M and @ be as in Section 1 with @ epi. If 2 is inver-
tible in A or if A has a central idempotent e such that eMe= (1 —e)M (1 —e)
=0 then (U,f) is a projective A x5 M-module if and only if U is a projec-
tive A-module.

Remarg. The characteristic of 442 is not a sufficient condition for
the Lemma 3 to be true, as shows the following example.

ExaAmMPLE 2. Let A=M=7 (the integers) and @:Z®,Z —~ Z the
natural multiplication. 4 x4, M =Z[X]/(X2~1) and the ideal (X —1)/
(X2—1), which is free as a Z-module, is not a projective A x, M-module.
In fact, 1hd 4 ,  3¢(X —1)/(X2—1)=o0.

We can now obtain the global dimension of A x4 M under the restric-
tions on A4 of Lemma 3.

THEOREM 1. Let A be a ring, M an (A, A)-bimodule and @: M Q 4 M —
A a bimodule-homomorphism such that D(my,my)ms=m,P(my,ms) for
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every m;€ M. Let A x4 M be the semi-trivial extension of A by M and D.
Suppose D is an epimorphism. If 2 is invertible in A or if A has a central
idempotent e such that eMe=(1—e)M(1—e)=0, then

IgldimA4 x, M = lgldim4 .
In fact we have a more precise result:
Thd 4 xg3(U.f) = Ihd ;U
Jor every left A x4, M-module (U,f).

Proor. Take a free resolution of (U,f):

0 0
! |
Me,K, — K,
Tn l
M®, I_[in_l(Au.M ) — 11, &AnM )
i i
MR, Hz.,(A-“-M) - HIO(TJLM)
Mx,U —F U
} J
0 0

Here 7;,=11;,7, and 7, is induced by 7,,_,. The right column is the begin-
ning of a projective resolution of the A-module U. By Lemma 3,

Ihd 4 wpp(U.f) £ n<=>(K,,7,) is A x M-projective
<> K, is A-projective <>lhd ,U < n.

For every A-module V there is an A x4 M-module (U, f) with Ihd ,U =
Ihd ,V, viz. (U,f)=T(V).
The theorem now follows.

REMARK 1. Theorem 1 generalizes the well-known fact that a ring R
and its matrix ring M, (R) have the same global dimension.
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REMARK 2. From the proofs of Lemma 3 and Theorem 1 it follows that
if @ is epi, then Igldim A4 <Igldim4 x, M. It was shown in [8, p. 73]
that if @ =0, then also Igldim 4 <Igldim A x M. But we shall see present-
ly that in cases between those two (i.e. @ neither zero nor an epimorphism
it may well happen that Igldim 4 x, M <Igldim 4.

We conclude this section by studying the generalized matrix rings

R M

(s

Let ¢ be an epimorphism. As in Section 1 for @ epi we see that ¢ is
an isomorphism, gN and My are finitely generated, projective.

Let (U,V,f,g) be a (113 g") -module. By the upper diagram of (3)’

Py

we see that f is an epimorphism. Kerf is annihilated by Imp=R. Thus
Kerf=0 and U~ M ®gV. But this means that (U,V,f,g)=T(V). In

. i R M
pa.rtlculal‘, (U, V’f »9) is (N S )97,!/'

) with only one of ¢,y epi (cf. [11, p. 70]).
(224

-projective if and only if V is S-pro-
jective.
Since Mg is projective
<
lhd(ff, gl)%wT( V) < IhdgV,
and since gV is projective

IhdgV < Ind( ary T(V) .

Py

Thus we have proved the following theorem.

THEOREM 2. Let R,S be rings, pMg, <Ny bimodules, ¢: M QgN — R
and y:NQgpM — S bimodule-homomorphisms such that @(m,nym’=
my (n,m') and p (n,m)n’ =ne(m,n’) form,m’ € M,n,n’ € N. Let (2 f;[)

L 22 4
be the corresponding generalized matriz ring. Suppose that ¢ 18 an epimor-
phism. Then

Igldim (R u

NS) — Igldim S .

(224

There even 18 a more precise result:

lhdeg 2y (U, V.f,9) = IndsV

R M
for every (N e )%v-module (U, V.1.9) .
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REMARK 3. If both ¢ and y are epimorphisms then by Theorem 1

R M

lgldim ( il

) = max (Igldim R, lgldim ).
Py

But in this case R and S are Morita-equivalent, so lgldim R =Igldim S.
Thus, as it should be, we obtain the same result by Theorems 1 and 2
when they are both applicable.

4.1gldim A x, M < 2.
In order to get a better insight in the homological properties of 4 x, M
we now make a study of such rings with a small left global dimension.
If &=0 we know (cf. Reiten [11, prop. 2.3.3]) that lgldimA4 x M <1 if
and only if the following conditions are satisfied:
(i)’ lgldim4 =<1 (ii)" 4M is projective
(iii)” M, is flat (iv) MQuM =0
(v) M ® U is A-projective for every A-module U.

Now suppose that IgldimA4 x, M <1.

(i) If a is a left ideal of 4, then ax Ma is the left ideal of A x, M
generated by a. There is an 4 x, M-epimorphism

p: 114 xo M - axMa,

p=p|1:4: 114 ~a

is an A-epimorphism and p|I1;M =1,, ® p,. A right 4 x,M-inverse of p
induces a right 4-inverse of p,, hence a is 4A-projective. We have proved
that Igldim 4 < 1. Analogously we prove that Igldim4/Im®<1.

such that

(ii) By considering, for every left A-submodule M, of M, the left
ideal of A x4, M generated by M,, that is &(M,M,)x M, it is shown,
similarly to (i), that every submodule of M is projective. In particular,
4M is projective.

(iv) The left ideal Im® x M of A x4 M is projective. According to
Lemma 2 there is an exact sequence

(9) Kero @ , (Im@PuM) > MQ,(ImPuM)>ImPulM,

where the maps are induced by 7: M Q ,(AuM) -~ AuM. The sequence
(9) is split in two exact sequences, one of which is

Ker® @, Im® > M QM - Imd



238 INGEGERD PALMER

Thus Ker®=Im (Ker® ® ,Im® -~ M @ ,M) and the map of the right
hand member is factorized over ¥ @ ;M Q ,ImP:
Ker® ® ,[Im® MM

. IIM & multiplication

Because of (2) the composition of the two non-horizontal maps is zero.
Hence Ker®=0.

(iii) Now it is easily seen that M , is flat. For let a be a left ideal of
A. By Lemma 2 and (iv) above the sequence

0>MQ(anMa)—>anMa

is exact. Especially we get an exact sequence 0 - M ® 4a -~ Ma where
the right hand map is the natural multiplication.

(v) Let (U,f) be an arbitrary 4 x, M-module. We write it as a quo-
tient of a free 4 x4, M-module and obtain a commutative diagram with
exact rows:

t igg 7'} f

0—— K — JI;(4uM) - U >0,

where ¢ is induced by IT;t,. The “snake lemma” gives us a long exact
sequence (note that KerII;7r,=11; Ker®=0)

0 — Kerf - Cokert - [[; 4/Im® — Cokerf - 0,
which implies that Kerf is 4/Im @-projective.
Condition (v) does not at all look like condition (v)’ above. But for

@ =0 (and under the conditions (i)’ and (iii)’) they are equivalent because
of the following exact sequence of 4 x M-modules (see Reiten [117)

0> M Imf > Mo ,U > MQ,Cokerf > 0
(10) Jo f {o
0 - Imf > U > Cokerf - 0

What becomes of the diagram (10) when @+0%? Let (U,f) be an
A x4 M-module. We obtain a commutative diagram with exact rows
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M Imf > MR ,U > MQ ,Cokerf - 0

(10)’ lﬁ ! lo

0> Imf U Cokerf —— 0

where f; is induced by f and Imf, cIm®U. We can form this diagram
again with (U,f) replaced by (Imf,f;) and get an A x, M-module
(Imf;,f,) with Imf,cIm@®Imf. The next step gives us a module
(Imf,,fs) with Imf, < (Im®)2U.

If Im @ is nilpotent we will by this process eventually reach a commu-
tative diagram (10)’ with the two extreme homomorphisms equal to
zero. Thus, in this case (and with IgldimA/Im® <1, M , flat) condition
(v) is equivalent to the condition

(V)" M@,V is A/Im®-projective for every left 4/Im®-module V.

(Of course, (v)" is always contained in (v)).

The fact that for Im@® nilpotent every 4 x, M-module (U,f) is a
finite extension of modules (V,0), where V is an 4/Im ®-module provides
a good tool for the determination of the homological dimension of
(U.f). The following lemma is easily proved.

LeMMA 4. Let A x4 M be a semi-trivial extension with Im ® nilpotent and
(U,f) an A x4 M-module. Then

lhd 4 i, (U, f) =
sup {n | Ext} y,x ((U.f),(V,0)) * 0 for an A[ImP-module V}
and

IgldimA4 xp M = sup{lhd 4 4, (V,0) | V is an A[/Im®P-module} .

We return to the conditions (i)—(v). The example 1 of Section 1
shows that these conditions are not sufficient to make lgldim A4 x, M <1.
The condition of Im@ being nilpotent will, however, make them suffice.
To prove this we need the following lemma.

LeEMMA 5. For every A x4, M-module (W,g) and every A[Im®-module
V we have
Hom 4 v, 3((W,9),(V,0)) = Hom 4;p,,0(Cokerg, V) .

If o: (W,9) - (W',g') is an A x4, M-homomorphism then the morphism
Hom 41, o(Cokerg’, V) — Hom 4 1, o(Cokerg, V)

induced by « and the isomorphism above is the morphism Hom 41, o(&, 15),
where &:Cokerg — Cokerg’ is induced by «.
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Proor. The isomorphism follows directly from the commutative
diagram (4). The second part is just a consequence of the definitions of
& and of Hom 41, 4(&, 15).

With Lemmata 4 and 5 at hand we may strengthen the result on
projective 4 x4 M-modules for Im® nilpotent. f below was defined in
Section 2.

PROPOSITION 2. Let A xo M be a semi-trivial extension with Im®
nilpotent. An A x4 M-module (U, [f) is projective if and only if the following
conditions hold :

(a) Cokerf is A/Im ®-projective

(b) the sequence Ker® @ ,U L Me,U —J U is exact.

Proor. Lemma 2 gives the necessity of (a) and (b). To see that they
are sufficient let (U,f) be an 4 x, M-module satisfying them and let

o«: P —~ U be an A-epimorphism with P projective. There is a corres-
ponding short exact sequence of 4 x, M-modules

(11)

g Tp f

(CHARY V()]

0> K U )

The module in the middle is 7'(P) and g is induced by 7. By Lemma 4
(U,f) is projective if and only if the sequence
(12) 0~ HomA Xd)M((U’f)’ (V, 0)) -> HOmA xo M (T(P),(V, 0)) —>
- HomA XwM((K’g)’(V: O)) -0
is exact for every 4/Im®-module V. By Lemma 5 this is equivalent to
the sequence
(13) 0> Homyy, o(Cokerf, V) - Hom, 1 o(4/ImP R, P, V) -
- Hom 1, o(Cokerg, V) — 0

being exact.

Now the “snake lemma” on diagram (11) gives the exact sequence of
A[Im @-modules

Kerzp - Kerf —2 . Cokerg - A/Im®P Q 4P — Cokerf - 0.

The commutative diagram with exact rows
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Ker®d @ PuLKerdQ M QP - Kerd®,U - 0
. f
MQUPLMQRQ MRS, P

and (b) (we know that Kerrp=Im7p) shows that & is zero. Thus
there is the following short exact sequence of 4/Im®-modules

(14) 0 —Cokerg -~ A/Im® ® , P — Cokerf — 0
The maps of (13) are those induced by (14) according to Lemma 5. By
(a) (13) is exact, and the proposition follows.

REMARK. The following propositions can be proved in a similar way
(cf. [8, 10, 11]).
I. The 4 x4, M-module (U,f) is injective only if

(a;) Kerfy is an injective 4/Im @-module
and
(by) the sequence

U — Hom 4(M,U) —— Hom ,(Ker®,U)

is exact.
fi was defined in Section 1 and f; is the composition
Hom ,(M,U) 2R4U0ID, Hom (M, Hom 4(M,T)) -
- Hom ,(M @ 4M,U) - Hom ,(Ker®,U),
where the last map is the one induced by the natural injection Ker® —
M M.
II. The 4 x4 M-module (U,f) is flat only if

(agr) Cokerf is a flat 4/Im @-module
and
(byr) the sequence

Kerd@, U 1> MR,U 15U
is exact ( f as in Proposition 2).

III. If Im® is nilpotent then the conditions (a;) and (b;) imply that
(U,f) is an injective A x, M-module, and the conditions (a;;) and
(byy) imply that (U,f) is a flat 4 x4, M-module.

Math. Scand. 37 — 16
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We can now summarize the results on Igldimd4 x4, M <1.

TaEoREM 3. Let A be a ring, M an (A4, A4)-bimodule and &: M @ ;M —
A a bimodule-homomorphism such that ®(m,,my)mg=m,D(my,mz),m; € M.
Let A x4 M be the corresponding semi-trivial extension. If 1gldim 4 x, M
<1, then the following conditions hold:

(i) lgldimd4 =1, Igldim4/ImP < 1.

(ii) 4M s projective.

(iii) M , is flat.

(iv.) Ker®=0.

(v) Kerf is A/Im P-projective for every A x5 M-module (U ,f).

If Im® is a nilpotent ideal of A, then the conditions (i) — (iv) and the
Jollowing subcondition of (v):
(v)” M ,U is A[Im®P-projective for every A[ImD-module U

tmply that 1gldim 4 x4, M < 1.

Proor. It only remains to prove that for Im@® nilpotent, (i) — (iv),
(v)"" imply Igldim4 x, M <1. By Lemma 4 we need only consider the
homological dimension of modules (U, 0), where U is an 4/Im ®-module.

Thus, let U be an A/Im®-module. By (i) there is an A-projective
resolution of U

0-—>P1—>Po——f——-> U~0.

We get an exact sequence of 4 x, M-modules

0 0

M@ P LM M P,—L - PuM®, P,

|
MQPuMR MR Py —  PouM®,P,

1M ® (2,0 (x,0)
MQ,U —° U
Y {
0 0

The module in the middle is 7'(P,), thus 4 x,M-projective. f, is induced
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by ©p,; more precisely, fo|M ® 4P, is the natural inclusion M ® 4P; -
M, P,and fo| M @ 4 M ® 4P, is the map

MR M, Py 280 1ng @, P,—— Im&P, 5 P,.

It follows that Kerf,=0 and Cokerfy=P,[Im®PuM Q ,U.
P, [Im®PP, c P)/ImPP, = A[ImP R ,P,,

which is A4/Im @-projective. Since IgldimA4/Im® <1, also P,/Im®PP, is
A[Im ®-projective. This together with (v)"’ give that Cokerf, is 4/Im ®-
projective. The theorem now follows by Proposition 2.

Let us now turn to the case of lgldim4 x, M <2. Again we make a
comparison with the trivial extensions. For them there is the following
complete result.

THEOREM 4. Let A x M be a trivial extension. Then lgldimA x M <2 if
and only if all the following is satisfied.

(a) 1gldim4 <2

(b) whd M =1

(¢) MIMRJF,M=0

(d) (M QM) s flat

(e) Tory(M,M)=0

) MQuM R ,U is A-projective for every A-module U

(g) Tor,4(M,U) is A-projective for every A-module U

(h) Hom ,(Tor,4(M,U),V) ~ Ext A M Q,U,V) induced by an exact
sequence 0 — Tor A(M,U)>X >Y >MQ,U 0 of A-modules
18 eps for every A-module V.

Proor. Let U be an A-module and take an A-resolution of U

0>-K->P->-U->0

with P projective. It gives rise to a short exact sequence of 4 x M-mo-
dules
0> (KuM®,P,f)—~T(P)~(U,0)~>0,

where fis induced by 7p: f|/M ® 4, K is the natural map M @ ;K - M Q , P
and fIMQ@ M QP is zero. Let @, > K and @, > M ® P be A-epi-
morphisms with @,,Q, projective. We get a short exact sequence of
A x M-modules

(18) 0> (LuHuM®4Q9) > T(@Q1Qp) > (KLMQ,P,f) >0.
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Here L=Xer(Q, > K) and H=Ker(Q,uM ® ,Q, - M ® ,P) where the
map on the second summand is ¥ Q,Q, > M QK >MQ,P. g is
induced by 7y, ¢, Which makes g(M ® L)< H,g(M @ 4H) =M R ,Q,
and g|M ® , M @ ;Q,=0.

If lgldimd4 x M <2, then (LuHuM ® ,Q,,g) is projective. Then (a)
follows since L is 4-projective and (b) follows since ¥ @ ,L -~ M ® ,Q,
is mono. Diagram chasing shows that Kerg=Im1,®g implies Kerl,,®f
=.Im1M®AM®f. This gives M @ M QMQQUuK > M QMRS uM Q4P
epi, whence (c) and M @ , M R ,K -~ M Q@ M ® 4P mono, whence (d).

Kerg=Im1,,®g and (d) shows that the sequence

(16) 0> MRH—>MQQuM QM0 ~ MM P -0

is exact so Tor 4(M,M Q ,Q,) > Tor4(M,M Q ,P) is epi. Hence (e).
For (f)—(h) take the “snake lemma’ on the sequence (15); we get

the exact sequence

MRI MR, M, MR ,Q,—>Kerf—>Cokerg - @, 1@, - Cokerf 0.
It splits in several exact sequences:

MRMRuQ >~ MQUuMQ 4P ~MQ,Q/9(M®,H)~0,

which gives (f), and
0 - Tor AM,U) > HlgMRQ4L) > Qs> MR,U —~0,

from which (g) follows directly. But we also get (h). Put @;=H/[g(M ® , L)
If

0> Tor AMU)>X>Y->MR,U~0
is exact, let Z=Ker(Y - M ®,U) and W=Ker(Q, ~ M ®4U). Since
Q,, Q; are projective there are maps @, -~ Y, @; —~ X which give commu-
‘tative diagrams with exact rows

O—*W—’Qz—’M®AU_>O

.

0—>Z—>Y—>M®AU—>O

Tesp.
0 > Tor,4(M,U) - Q3 - W - 0

—

0 > Tor,4(M,U) > X - Z —~ 0
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where the maps W — Z are the same. These diagrams give the commuta-
tive diagram

Hom , (Tor (4(M,U), V) — Ext (W, V) ——— Ext M &,U,V)

| )

Hom ,(Tor,4(M,U),V) - Ext MZ,V) —— Ext (M, ,U,V).

The upper left hand map is epi, since @, is projective and the composite
bottom map is the map of (h). Thus the conditions (a)—(h) are ne-
cessary.

The argument may now be reversed to prove that if (a) —(h) hold,
then (LuHuM ® 4Q,.9) is A x M-projective. The only difficulties arise
in proving

KergiM @ JH = Im1 Q9| M QM R L

and H[g(M ® 4 L) projective. The first follows from (16) being exact and

Kerl y®f = Imly g, m®f-
For the second we know that lhd JH[g(M ® L)< 1. From the exact
sequence
Hom ,(Tor,4(M,U),V) - Ext J(W,V) > Ext J(H[g(M @ 4L), V) -0

it is seen that it suffices to prove that the first of these maps is epi. But we
also have

Hom , (Tor(4(M,U), V) - Ext (W,V) —— Ext XM ®,U,V)

and the composition is epi by (h).

Remark. Recently Clas Lofwall has completely solved the problem of
determining lgldim 4 x M. His method is a development of that used in
[10] and uses iterated homology.

Now to A x4 M with @+ 0. The following example shows that lgldim
A x4 M <2 does not necessarily impose finiteness conditions on 4 and
M
a4

ExampLE 3. Let K be a field and put R=K[X]/(X?),S=M=N=K.
Let « be the image of X in R. The R-module structure on K is given
thus:

f@)k = f(0)k  for f(X)e K[X],keK.
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9:KQgK=K >R takes k to kr and y: KQzrK -~ 8 is zero. ¢,y
satisfy the commuting diagrams (2)’. Let A be the corresponding gene-
ralized matrix ring. A is semi-primary by Proposition 1, so lgldimA=
1+1hd J(A) (see [1]). By Lemma 1

J(A) = (f;” I(f)

and by direct calculation it is seen that Ihd,J(A)=1. Thuslgldim 4 x, M
=2 for A xo M=A, although IgldimA4 =1hd , =whdM =oc0. Here
A/Im @ is semi-simple and Im @ is nilpotent.

Remark. The example above shows that for #+0 we may have
Igldim A4 x4, M <lgldim A4 (cf. remark 2 of Section 3). In this case even
Igldim 4 is infinite while lgldim 4 x4, M is finite. It is easily seen that
Igldim 4 <1gldim 4 x4, M +1hd ,M, so that lhd ,M infinite is necessary
for this to occur.

Now consider the following example where we as M,N instead of K
take a two-dimensional vector space over K.

ExampLE 4. Let R, S be as in Example 3 and let R act on K as above.
M=N=7V is a twodimensional vector space over K with an inner pro-
duct [,]. ¢: M Q¢N — R is given by (v,v') — [v,v']x and y: N QpM -8
is zero. Again ¢,y satisfy the diagrams (2)’. Let A’ be the corresponding
generalized matrix ring. It is semiprimary with

- (31

and direct calculation shows that lhd,,J(A’)=o0. Thus IgldimA4 x, M
=00 for A xo M = A’. We mention that the left finitistic global di-
mension of A’ is 1.

What is then the difference between the rings 4,4’ of Examples 3
and 4? Let us consider necessary conditions for lgldim 4 x4, M <2. We
are led to the following observations.

Lemma 6. If Igldim 4 x4, M < 2 then the composed map
1y QD

8 a monomorphism and Ker® is A [Im P-projective.
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Proor. We study the ideal Im® x M of 4 x, M. The map of the
lemma is just {|Ker® ® M where t: M @ ,(Im®uM) - ImPuM is in-
duced by 7, Ker@=Kert|]M Q ;M. If P> M is an A-epimorphism
with P projective, we get as usual a short exact sequence of 4 x, M-
modules

0> (K,f) >T(P)>ImdxM >0

where f is induced by 7p and (K,f) is projective. Diagram chase like
that of the proof of (d) of Theorem 4 shows the first statement of the
lemma (note that Ker®® P~ M QM ® 4P is mono); the second
statement is a consequence of the “snake lemma”.

Actually, this lemma gives the difference between the rings 4,4’
above. For A’ the map of Lemma 6 is not a monomorphism. But then
there is the following example.

ExampLE 5. Let K be a field and put R=K[X]/(X?),M =J=J(R)
and S=N = R/J2. Let ¢ be the map

J®s8 —— J g R
and y the map

BlJP@pd —s T JJJ2 5 8.

The corresponding generalized matrix ring satisfies the conditions of
Lemma 6 but its Jacobson-radical is easily shown to be of infinite ho-
mological dimension. Its left finitistic global dimension is 2.

For @ =0 the results on Igldim 4 x M were most satisfactory for M ,
flat. In the next section we study lgldim 4 x, M under the corresponding
conditions. In particular, we shall obtain a result on Igldim4 x, M <2.

5. M, and (Ker®) 4 flat.
For @ =0 there is the following precise result if M, is flat (cf. [10,
Corollary 3 of Theorem 2]):

IgldimA4 x M < n<>Ext (M®?Q, U,V) = 0for p+q = n+1
and all 4-modules U, V.

For @ + 0 we can prove an analogous result for

lgldimd xo M < 2.
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ProrosITION 3. Let A xo M be a semi-trivial extension with M 4 flat,
Tor4(Ker®,U)=0 for every A/Im®P-module U and 1gldim 4/Im® < 2.
Iflgldim A x4, M < 2 then

(i) Thd4pme M @ 4 U £1 for every A[Im D-module U,
(ii) Ker® ® 4 U is A[Im D-projective for every A[ImD-module U,
(iii) Ker®d ® M =0.

If Im D is nilpotent then (i)—(iii) implies IgldimA4 x4, M < 2.

Proor. Let U be an A/Im®-module and let 0 >~ K - P — U — 0 be
an exact sequence of A-modules with P projective. It gives rise to an
exact sequence of 4 x, M-modules

0> (KuMx,P,f)>TP) - (U0 -0,

where f is induced by 7,. Let ¢,: @, >~ K and g,: @, > M QP be A-
epimorphisms with @,,Q, projective. Again we get an exact sequence of
A x4 M-modules

0~ (LuH,g)»>T(@Q1Qy) >~ (KrMQP,f)—>0,
where L=Ker(QuM ® ,Q, ~ K) and H=XKer(Q,uLM Q@ 0, > M Q ,P),

the maps on the second summands being fol,, ®p,; (¢=2,1), g induced

by TQ1uQy°
The “‘snake lemma” gives (i), (ii). (iii) follows by diagram chase: there
is a commutative diagram with exact rows

0->KerdQ@, H > Ker®R,Q, L Ker®Q M RQ 40, > KeroQ  MQQ P -0

Me,E——0

MR MRS MQ,4Q,

0 > H -> anM®AQ1

Where: Ker o MR P> MQQ,K and KerdQ MR ,Q, > M RQ,0,
are zero, Ker®® ,Q;, > M Q,M Q®,0, is mono and the left hand
column is exact.

If Im® is nilpotent then (i)-(iii) are easily seen to make (LuH,g)
projective by Proposition 2. Hence lhd,,,(U,0)<2, so Igldim
A x4 M <2 by Lemma 4.
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For &=0, if M, is flat then by the first paragraph of this section
lgldim 4 x M < oo only if lgldim 4 < co and M®" =0 for some integer n.
Reiten [11] proves the converse of this statement. Actually this is true
also if @+0.

THEOREM 5. Let A x5 M be a semi-trivial extension. Suppose that
M, is flat and MO =0. Then IgldimA x, M <lgldim 4 +n.

Proor. The proof goes as that of Reiten for @=0. M®""' =0 implies
that Im @ is nilpotent, so by Lemma 4 we just have to consider modules
(U,0) with U an 4/Im®-module. For such a module we have the follo-
wing exact sequence of 4 x4, M-modules

0> (M®,U,0) - T(U) > (U,0) >0,
and Ihd 4 x  »T(U)<1hd 4U, since M 4 is flat. Thus
Ihd 4 x52(U,0) < max(lgldim 4, 1hd 4y, »(M @ ,U,0)+1).
Repeating the process we get
1hd 4 4y 0r(U,0) < max(Igldim A4 +n—1,1hd 4 x, n(M®"®,U,0)+n).
But (M®"® ,U,0)=T(M®"® ,U) and the theorem follows.

As we have seen is M®" =0 for some integer » not at all a necessary
condition for lgldimA4 X, M <oo, if M, is flat. There is however a
necessary condition for Igldim 4 x4 < oo which for @ =0 is just M®" =0

for some 7.
In order to obtain this condition we must extend the complex

Kerd@,U - M@, U 1> U

of Section 2. At first we consider the module (U,f)=A4 x, M. What is
Kerf for this module? Since fiKer®®,4 is the inclusion Ker® —
M®, M and flIKerd®,M =0, we have Kerf=Ker® ® M. Consider
the homomorphism

lgero f 1t Ker® @ M Q@4 (AuM) ~ Kerd @4 (AnM).

It is the identity on Ker® ® M and zero on Ker®® M @ M. Thus
we have an exact sequence of 4-modules



250 INGEGERD PALMER

Kero @, MQ (AuM)
1Kere @ f

Ker®® , (A1 M)

|7
M (AuM)

Au M
and it is easy to see how to extend it further: take
Igero @4 MOPQf: Ker®® MO ® ,(AuM)-»Ker®d® MO’ Q ,(ALM)

for p20. This map is the identity on Ker® ® ,M®"™" and zero on
Kerd ® (M®™*,

For an arbitrary 4 x, M-module (U,f) we get a corresponding com-
plex (D; MfU),:
Ker®d @ MO *Q,U forn = 2

(@; MfU), = Mu®* @, ,U forn = 0,1
0 forn < 0,

with the differentials

lged @, MO > Qf forn = 3
d, = f forn = 2
b forn = 1.

An A x4 M-homomorphism (U,f) - (V,g) induces in the natural way
a map of complexes (D; Mfu)y, - (P; MgV),. By an argument analogous
to that of the proof af Lemma 2 we see that (@; MfU), is acyclic if
(U,f) is projective.

Let us now assume that M , and (Ker®), are flat. Then the following
condition holds:

(17)  Iflhd, x,u(U.f) < r, then Hy(P; MfU)y) = Ofors = r+1.

This is proved by induction on r. It is true for =0 as was seen above.
If 1hd 4 o m(U,f)=7>0, we write (U,f) as a quotient of a projective
A x4 M-module (P,p):

0~ (K,9) > (P,p) > (U,f) >0,
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which gives lhd 4, ,(K,9)=r—1. A diagram chase on the following
diagram with exact rows and the middle column exact

' y V
0 (P; MgK); 4y ~ (D; MZ’P)iu - (D; MfU)yyy —> 0

0~ (9; MyK); —~ (D; MpP); -~ (D; MfU); -0
v v i

shows that exactness of (@; MgK), at ¢ implies exactness of (D: MfU),
at s+ 1.

From this we will deduce the following necessary condition for the
finiteness of Igldim 4 x, M.

PRrOPOSITION 4. Let A x5 M be a semi-trivial extension and suppose
that M4 and (Ker®), are flat. Then IgldimA4 x, M <n(n=1) only if
Ker®d ® MO =0,

Proor. The proposition has been proved for n <2 in Theorem 3 and
Proposition 3.

We use (17) for (U,f)=the ideal Im® x M. If IgldimA x4, M <n and
n = 3 we obtain the following exact sequence:

Ker®d @ MO "' @ ,(ImPu M) > Kerd @ , UO"* @ ,(ImPu M) >
> Ker® ® ,M®"° ® (Im®u M)

But Ker®® ,M® ®,Im®=0 for every r, and the proposition now
follows.

The complex (@; MfU), provides one way of generalizing the com-
plex (MfU), of [10, § 3]. Another will be given in the following section.

Ry
6. A spectral sequence.

The results for =0 in [10] were derived from a spectral sequence
converging to Ext% , ,((U,f),(V,0)) with the first terms

Ept = HG(HomA(Q*(M)®ﬂ ®4U, I*(V)))

where @, (M) is a resolution of M by (4,A4)-bimodules and I*(V) is an
injective resolution of the A-module V.

There is a similar spectral sequence for @ + 0, converging to Ext; , ; »
((U,£),(V,0)) but we did not succeed in obtaining any results from it.
Let us, however, derive this sequence.
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For an 4 x4 M-module (U,f) we shall define a complex TM(U,f)y of
A x4 M-modules. Let

(A xe M)QM®"Q,U forn =0
TM(U,f), = U forn = —1
l 0 forn £ —2.

The differential d,,: TM(U,f), > TM(U,f),_, is for n= 1 given by

do((a,m)@m®. . . @m,Qu) = (DP(m,m,),am,)@m,Q. .. @M, u
+ ( - 1)"(a,m)®m1® v ®mn—1®f(mmu)
(cf. [9, p. 306)). d, is given by

do((a,m)@u) = au+f(m,u) .

If (U,f)= A x4 M, the complex TM(U,f), is acyclic and splits, i.e.
every short exact sequence

0->Imd, > A x, M) ,M®"®,U - Imd, >0
splits.
Now let L, :

cor > (Lpof) > Ly fu-a) = - > (Lo fo) > (U,f) > 0

be a free resolution of (U,f). We form a double complex Ly, of 4 x, M-

modules:
Ly = TM(Lyf),, 19 20.

The maps Ly, — L, ;4 are induced by the differentials of L,. Apply
the functor Hom 4y ,a(—,(V,9)) to the complex L,,; we get the
double complex

(18) Hom 4y 31(Ligxs (V,9)) -

Since the rows L, are split exact, the nth homology group of the asso-
ciated single complex of (18) is isomorphic to Ext} ., »((U.f),(V,9)).
Thus, let us consider the double complex (18). It is easily seen that

HomA X@M(T( W): ( V’g)) = HomA( W’ V) ’
8o we have
Hom 4 xou(Ligp: (V,9)) = Hom (MO @ 4L, V).
What becomes of the differentials of (18) under this isomorphism ?
The map
Hom ,(M®” Q 4L,, V) - Hom 4(M®* ® ,L,,,, V)

is the natural one induced by L,,; - L,. The map
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Hom ,(M®® @ 4L, V) -~ Hom ((M®"*' @, L, V)
is more troublesome. It is the sum of two maps, one of which is the natural

map given by
Lyor ®f,: MO Q, L, ~ M®"Q,L,;

the other is & — go(1,,Q«) for « € Hom ,(M®® ® ,L,, V).
If g=0, then the double complex (18) is isomorphic to the double
complex K** where

K?? = Hom ,(M®*®,L,.V),

and the maps are induced by the differentials of L, and the maps
1,,2®f; The nth homology group of the associated single complex
of K** is isomorphic to Ext} , , »((U.,f),(V,0)). The modules M®* Q , L,
and the maps 1,,»-1®f, for ¢ fixed do not make up a complex, however,
so we have to proceed further.

Since V is an A/Im @-module, there is an isomorphism

Hom ,(W,V) ~ Hom 4ino(4/ImP Q W, V)
which makes K** isomorphic to the double complex K**, where
Kre = Hom 4y, o(A/Im® R, MO R 4L, V)
and the differentials are the natural ones. Here we have complexes
(one for each q)
(19) ... > AImdQ MO @, L, > AIlmP QM Q, 4L, ~ ...

and they are all split exact. (Of course, we could have gone to K*x
directly from (18) by Lemma 5, but the above motivates the choice of

g=0.)
Let I*(V) be a resolution of ¥ by injective 4/Im @-modules. Consider

the triple complex K*** where
Ko = Hom y/pmo(4/Im® @ (MO R, L, I7) .

The nth homology group of its associated single complex is isomorphic
to Ext} WM((U,f),(V, 0)). Now proceed as in [10]. We obtain the
following counterpart of Theorem 3 therein.

THEOREM 6. There is a spectral sequence converging to

EXtﬁ X M(( ny)’ ( Vr 0)) )
whose first terms are

Epe = Hi(Hom y1po(4/ImP ® A MO ® L, IXV))) .
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The problem now is to interpret at least £, and (at least some of)
the differentials d,??. Since we may only consider modules (¥,0) in the
second variable we would have to restrict the investigations to cases
where Im® is nilpotent (see Lemma 4). It would then also suffice to
consider modules (U,0) in the first variable. There is a commutative
diagram

HY(Hom 4/1o(A[ImP @ 4MO* Q ,U,I*(V))) -~ HIYK?*¥)
induced by f d, P4
HY(Hom 4/1,no(A[Im® @ , MO™ @ LU, I*(V))) — HYKP+1**)

In case @=0 then for p=0 the upper horizontal map is an isomorp-
hism and we get a relation between f and d,%.

For @+ 0 we could conclude d,%¢=0 from f=0 if the upper horizontal
map were an epimorphism. We would like this to hold for every pair of
A[/Im®-modules U, V. In particular, the complex 4/Im® ® , L, would
have to be acyclic for the resolution L, of every 4/Im@-module U.
This would however require Tor4(4A/Im®,A/Im®P)=0, a condition

which together with Im @ nilpotent would imply @ =0.
Since we do not know of any other way of ascertaining

f=0=>d% =0,

we did not pursue further in this direction.

Finally we remark that (19) indicates another way of generalizing the
complex (MfU), of [10] (cf. the end of Section 5). For an 4 x4, M-module
(U,f) the composite map

AImdQ MO MQ,U
l 14/ ime®1y®f
AImdQ MR, U
Lyme®f

is easily seen to be zero. Thus there is a complex
(A/Im® @ s M®* ® 4 U, 1 1m0 (o) ®” ' @f )y 2 0
(we let 1,97 =0), which for & =0 is the complex (MfU),..
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7. Final remarks.

There remains of course a vast amount of work to be done on the
semi-trivial extensions of a ring. We list some problems.

ProBLEM 1. Does Igldim4 x, M <n impose any restrictions on
Igldim 4/Im@?

ProBLEM 2. Is it possible to get results similar to Corollary 3 of
Theorem 2 in [10], cited at the beginning of Section 5 above, for M ,
(and perhaps also (Ker®),) flat? Would conditions on lgldim 4/Im® be
necessary ¢ Proposition 3 is related to these questions.

ProsLEM 3. If Problem 2 were shown to have a positive answer, it
would be natural to ask whether that result could be generalized to the
case of M (and perhaps also Ker®) having a resolution by (4 ,4)-bimo-
dules which are flat as right modules over 4. (cf. [10, § 6]).

In Section 3 where we assumed @ epi we found Igldim4 x, M for
A x4 M being a generalized matrix ring, while certain conditions on 4
were necessary to determine lgldimA x, M for a general semi-trivial
extension. Now every ring 4 x, M is related to a generalized matrix
M

ring, namely the rin 4 . There is a ring automorphism of
g y g\ 4 o g P

A M . a m a" m'
( M A )‘M, taking (m’ a’) to (m o ) It generates a group of order

. 4
2 acting on (M 4 )w,w

isomorphic to 4 x4 M.

. The subring of invariants for this group is

ProBLEM 4. Does the above explain why 2 being invertible in 4 is
crucial in getting Theorem 1 for A x, M not a generalized matrix
ring ?
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