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AN AXTIOMATIC
APPROACH TO HOMOLOGICAL DIMENSION

JACK OHM!

0. Introduction.

The projective dimension d(M) of an R-module M is usually defined
to be the infimum of the integers n for which there exists an exact se-
quence of the form

0>P,>P, ;> ...>P,>M->0

with the P; projective, and a basic fact is the following relationship be-
tween the dimensions of modules in a short exact sequence: Given
0->A—-B->C->0 exact, then d(B)<max{d(4),d(C)}, and the in-
equality implies d(C)=d(4)+1. A similar result holds for injective di-
mension, which is defined by reversing the arrows in the above resolution,
and for flat dimension, where one resolves by flat rather than projective
modules. A related but opposite notion of dimension is obtained by
defining (M) to be the supremum of the integers » for which there exists
an exact sequence of the form

0O-K—>F, _,»>...>F,-M->0,

where the F; are finitely generated free and K is not finitely generated.
Then given a short exact sequence

0-4-B->-C-0,

o(B)2min {9(4),9(C)}, and the inequality implies 9(C)=2a(4)+1.

We shall prove here a short exact sequences theorem which includes
the above examples and many others. One way of attaining the generality
required for this theorem would be to work in an abelian category.
However, an analysis of what is needed reveals that morphisms and
commutative diagrams never really enter the picture; only the existence
of certain short exact squences matters. Thus, we have chosen instead
to proceed axiomatically, writing down the properties required for the
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theorem and then defining an exact sequence to be something having
these properties. This approach yields a particularly elementary treat-
ment, and the final result has more of a combinatoric than an algebraic
nature.

We begin in section 1 by introducing the notion of a set % with short
exact sequences &, the latter being triples of elements from & which
satisfy two pull-back (or push-out, depending on how one ultimately
wants to interpret things) diagrams. These short exact sequences are
then pieced together to generate long exact sequences.

In section 2 we define usual and opposite pre-dim functions, modeled
after the above examples. To each pre-dim function there is associated
a resolving set & and a zero set @, the important cases being 0= for
the usual pre-dim functions and 0= \ImZ for the opposite pre-dim
functions (where, intuitively, Im & represents the set of all elements of &
which are images of elements of &). For example, projective dimension
is a usual pre-dim function with @=2 = {projective R-modules}, while
the dimension o defined above is an opposite pre-dim function with
2 = {finitely generated free R-modules} and 0= {non-finitely generated
R-modules}. Next usual and opposite dim functions are introduced, a
dim function being merely a map from % to the positive integers with
infinity which behaves as described above on short exact sequences.
Thus, our goal now amounts to giving simple necessary and sufficient
conditions on the sets @ and &£ in order for a pre-dim function to be a
dim function. Section 3 is devoted to the proof of such a theorem.

We illustrate this theorem with a number of examples in section 5.
With the exception of flat dimension, all of these examples involve reso-
lutions by what we call ““jectives”’, a notion which includes projectives,
injectives, pure-projectives, pure-injectives, etc.; and such examples can
therefore be treated in a unified manner. The groundwork for this is
done in section 4, where the properties of jectives are developed.

We were initially drawn to this subject by Kaplansky’s elementary
treatment of projective dimension in [7]. A preliminary effort in the
direction of the present work is recorded in section 2 of [12].

Noration. N will denote the natural numbers; N, the set of integers
20; Ng° the set Nou{co}, where oo is an element such that n+oco=o0
and oo>n for every m € Ny; Z the integers; and Q the rationals. If M
is an R-module, [M] will denote the isomorphism class of M. The sym-
bols @ and IT will denote direct sum and direct product, respectively.
We shall use % for the collection of all R-modules and [%%] for the com-
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mutative monoid of isomorphism classes of elements of % obtained by
defining [M]+[N]=[MPN]. When we write

(¢,): 0>-4A-B->C-0,

o will refer to the map 4 —~ B and f to the map B — C. The symbol \
will denote set-complement.

1. Exact sequences.
Let . be a set, and suppose there is given a collection & of ordered

triples of the form (4,B,C), 4,B,C € &, which satisfies the following
two axioms:

PB, (Existence of left pull-backs): (4,B,C)e & and (4',B',B)e &
implies there exists M € & such that (4',M,4)e & and (M,B',C)e 8.

PB, (Existence of right pull-backs): (4,B,C)e & and (4',B',C)e &
implies there exists M € & such that (4,M,B')e & and (4',M,B) € &.

Such a pair (&, &) will be called a set with short exact sequences, and an
element of & will be called a short exact sequence. The appropriate dia-
grams for PB, and PB, are

PB, PB,
AI AI AI AI
: I P
M..B..C A...M...B
: | P
4 —B—¢C A—B—¢C

1.1 Exampres. Fix a commutative ring with identity R, and let %%
denote the set of R-modules. The following are some possible choices
for the set & of short exact sequences.

a) (%, €r). Let &5 be the set of all ordered triples (4, B,C) for which
there exist homomorphisms — such that 0 -~ 4 - B - C —» 0 is exact.
Then' for PB,, if x:4 -~ B and &': B’ - B, let

M = {(a,b') e A®B’ | a(a)=a'(d")};
and for PB,, if §:B - C and §":B' ~ (', let
M = {(b,b') e BOB' | p(b)=p'(b")}.
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a*) (%, €r*). Define &p* to be {(4,B,C) | (C,B,4A)e g} If x:B > 4
and g:B — B’ in the PB, diagram, then the required M is (A4®B')/N,
where

N = {(a, —b") € A@DB' | there exists b € B such that
o(b)=a and B(b)=>d'}.

(This M is called the push-out for the given diagram.) A similar construc-
tion works for PB,.

b) (F%, ExP). Define &zP to be the set of all (4,B,C) for which there
exist homomorphisms «,f such that

(x¢,8): 0>-A—->B—->C-=0

is exact and such that «: 4 — B is pure. (Recall that an injective homo-
morphism «:4 — B is called pure if for any B-module X, a®1: AQX —
B®X remains injective.) One verifies easily that the same M’s as in (a)
satisfy the PB, and PB, diagrams. (Hint: For PB_, the composite map
ARX - M®X - BRX is injective by the purity of 4 in B, so AQX —
M®X is also injective. A similar argument works for PB,.) Variation on
this theme: Use n-pure in place of pure. (An injective homomorphism
o: A — B will be called n-pure provided «a®1:4®X - B®X remains in-
jective whenever X has =<n generators. For abelian groups n-pure is
equivalent to pure, the crucial fact being that every finitely generated
abelian group is a direct sum of cyclics; see [5, p. 33, Proposition 37]
or [4, p. 133].)

b*) (F%,(6xP)*). Pure exactness can be dualized as in (a*): Define
(4,B,C) to be in (£xP)* if and only if (C,B,A4) € £zP. (Hint: To verify
that the same M’s as in (a*) satisfy the PB-diagrams, use the definition
of purity plus the snake lemma for PB,, and for PB, check that ¥ ®@X
is isomorphic to the push-out for the diagram obtained from the initial
one by tensoring with X.)

The next examples illustrate how new sets with short exact sequences
can arise from given ones.

c) (¥,8| ). Let (¥,&) be a set with short exact sequences, let &’
be a subset of &, and let

€| = {(4,B,C)e & | 4,B,Cec &'}.

The PB-diagrams remain valid for (¥’,&| &’) provided &’ is closed
under extensions, i.e., provided

(4,B,0)e& and A,Ce¥’ implies Bed .



AN AXIOMATIC APPROACH TO HOMOLOGICAL DIMENSION 201

In particular, one can replace S5 by %!, the finitely generated R-
modules, in the above examples. Another example of this type is
(g €r|TR), where Jg= {finitely generated torsion R-modules}. (An
R-module M is said to be a torsion R-module if for every non-zero x € M,
there exists a regular r € R such that rz=0; for finitely generated M,
this is equivalent to the existence of a regular r € R such that M =0.)

d) (&,6(&’)). Another way of obtaining a new set with short exact
sequences from a given (%, &) is to let &’ be a subset of & which is
closed under extensions and then let

&(F') = {(4,B,0)e&| AeF}.

For example, choose (F%,85*) as in (a*) and let TF = {torsion-free
R-modules}; then (%%, &x*(TF)) is a set with short exact sequences.

We shall adhere to the notation of the above examples in later discus-
sions.

1.2. Long exact sequences. These sequences will be constructed by join-
ing short exact sequences as follows. A sequence of the form (M,,,. .., M,),
M,e &, nz3, will be called exact if there exist K, € &, 1=1,...,n—1,
such that K.=M,, K, ,=M,, and (K;,M; K, )&, i=2,...,n—1.

M,—M, ,—...—M,—M,— M,

N /N NS\
Kn—l Kn—z K2 Kl

Similarly, an infinite sequence (...,M,,...,M;) will be called exact if
there exist K; € &, 1=1,2,..., such that K, =M, and (K, M, K, ,)e&
for 1=2,....

If two sequences (M,,...,M,.,,K) and (K,M,,...,M,) are exact,
then the sequence (M,,...,M, ,M;,...,M,) is also exact. Conversely, if
(M,,...,M,)is exact, then for every ¢ such that n—2 ¢ 2 2, there exists
K,e & such that (M,,...,M;,,K;) and (K, M,,...,M,) are exact.
(This K; need not be unique.)

1.3. Images. If & is a subset of &%, we shall use ImZ (or, more pre-
cisely, Im(y, 5 Z) to denote
{M € & | there exist K € & and P € & such that (K,P,M)e &} .

If & consists of a single element M, we shall merely write Im M, rather
than Im {M}. Note that PB, implies that if M, e Im M, and My e Im M,,
then M;eImM,. Caution: Our axioms do not imply £<Im&, al-
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though this will be the case in our examples since they all have
(0,M,M)e & for any M € &.

It seems appropriate to remark on our terminology at this point. We
have consistently favored Example 1.1(a) in choosing names. Thus, our
PB-diagrams are called pull-backs rather than push-outs. Similarly, we
use ImZ in 1.3, although when interpreted in terms of the example
(SR, €r*) of 1.1(a*), ImZ consists of all kernels M for short exact se-
quences of the form

0O>-M-P->K-—>0 with PeZ.

2. Pre-dim and dim functions.

Fix throughout section 2 a set with short exact sequences (#,&) and
subsets @ and & of &.

2.1. Resolutions. Let M € &. The sequence (M) will be called an (0, Z)-
resolution of length 0 for M if M € @; an exact sequence of the form
(K,Pp_gs... Py, M), n=1, will be called an (0, %)-resolution of length »
for Mif Ke 0 and P;e #,i=1,...,n—1; and an infinite exact sequence
(«vesPpse .., Py, M), P, e P, will be called an (0, 2)-resolution of length
oo for M.

Res(0,P) (respectively, Res® (0, %)) will denote

{M e & | M has an (0,%)-resolution of length » for
some n € N, (respectively, n € N3°)} .

Let (K,P,_y,...,Py M) be an (0,%)-resolution for M. From the defi-
nition of exact sequence (1.2) there exist K,, 1=0,...,n, such that
Ky=M, K,=K, and (K;,P;, ,K; ;)€ &, i=1,...,n. Any such K, will
be called an i-th kernel for the given resolution. Moreover, the resolution
will be called efficient if K, ¢ @ whenever K, is an ith kernel for the resolu-
tion, 1=0,...,n—1. (Here we intend that M € @ implies (M) is efficient.)
An efficient (0, %)-resolution of length oo is defined similarly: none of its
kernels should be in @. Thus, the efficient (0, %)-resolutions for M are
just those which cannot be cut-off to shorter resolutions.

2.2. Pre-dim functions. The usual (respectively, opposite) (0,2)-
pre-dim function is the function dg, 5 (respectively, 9q, »): Res™(0,2) —~
Ng® such that if M eRes(0,#), then dy 5(M)=inf (respectively,
09, p(M)=sup) of the set of integers

{n € Ny | M has an efficient (0, %)-resolution of length n},
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and if M € Res*(0,7)\ Res(0,2), then d, (M) (respectively, 9, z(M))
= 00,

Our main concern will be with two kinds of (0, #)-pre-dim functions.
One is the usual (0, 2)-pre-dim function for which 0=, and the other is
the opposite (0,%)-pre-dim function for which 0=%\Im%. We shall
refer to these as the usual and opposite 2-pre-dim functions, respectively.

When the context makes the meaning clear, we shall omit reference
to the pair (0,%). Also, when O=2P, we shall often omit reference to O
and merely write Res(%), P-resolution, dg, etc. Thus, dropping the @
implies 0=, with one exception: reference to the opposite Z-pre-dim
function implies 0 =% \1ImZ.

2.3. REMARES. 1. The word “‘efficient’’ in the definition of the (0,%)-
pre-dim functions is of significance only in the case of the opposite
function, and in this case it is needed to insure that M € 0 => 0 5(M)=0.
Note that for an arbitrary (0, %)-pre-dim function, the dimension of M
is 0 if and only if M € 0.

2. dg, (M) =+ oo if (and only if) M € Res(0,Z), but it can happen that
M € Res(0,2) and yet 0 5(M)= oco.

3. It is possible to develop both kinds of pre-dim functions from a
common definition. One would begin by endowing Ng° with either the
usual ordering 0<1l<2<...<o or the opposite ordering 0>1>2>
...>oo0 and then define dy 5 and 0, 5 by taking infs with respect to
these orderings. However, because the orderings are fundamentally
different, one is soon forced to consider separate cases, which is what
we have chosen to do from the start.

\ e
[INREEY

2.4. Independence of resolution. This property will play an important
role in what follows. M € Res(0,#) will be said to be independent of
(0, P)-resolutions if any two efficient (@, Z)-resolutions for M of finite
length have the same length; this happens if and only if dg 4(M)=
g, p(M) < oo. Furthermore, the pair (0,2) will be said to have the in-
dependence of resolution property provided every M € Res(0,#) is inde-
pendent of (@, %)-resolutions; this happens if and only if the usual and
opposite (@, #)-pre-dim functions coincide.

2.5. Characterization of the usual pre-dim functions. The usual (0,2)-
pre-dim function d has the following properties:

i) For any M € Res, if M ¢ 0, then there exists an exact sequence
(K,P,M) with K € Res, P € 2, and d(M)=d(K)+1.



204 JACK OHM

ii) If (K,P,M) is exact with K € Res and P € &, then M € Res and
d(M)<d(K)+1.

iii) M e O < d(M)=0.

iv) M € Res®*\ Res = d(M)=cc.

Conversely, these properties characterize the usual (0, %)-pre-dim func-
tion: If d: Res™ - Ng° is a function which satisfies (i)—(iv), then d is the
usual (0, 2)-pre-dim function. The proof is straightforward, and we omit
it.

I know of no similar characterization for the opposite (@, 2)-pre-dim
function in terms of short exact sequences.

2.6. Dim functions. A usual (respectively, opposite) dim function is a
function d: & — NJ° such that for any short exact sequence (4,B,C),
d(B)<max{d(4),d(C)} (respectively, d(B)=min{d(4),d(C)}) and the
inequality implies d(C)=d(4)+1.

Let d be a usual (respectively, opposite) dim function, let

0, = {MeS| dM)=0},

and let 2;=0, (respectively, Z;={M € & | d(M)=}). Note that for
any M € Res(0;,%;), any two efficient (0;,P;)-resolutions for M have
the same length, namely d(M). Therefore the pair (04, %;) has the in-
dependence of resolution property, and hence the usual and opposite
(04,2,)-pre-dim functions coincide. Moreover, by the defining property
of a dim function, this (04 %,;)-pre-dim function agrees with d on
Res®(04,%,;). Thus, although it is useful to think of a usual or opposite
dim function as respectively originating from a usual or opposite pre-dim
function, the kind of pre-dim function is actually irrelevant.

2.7. THE MAIN THEOREM. We shall now put some mild restriction on
the pairs (0,%) under consideration. In the case of the usual £-pre-dim
function, we shall assume & = OuIm & (orequivalently, & =Res™® (0, %)),
which is needed to insure that the usual £-pre-dim function is defined
on all of &. In practice, this condition will be achieved by confining at-
tention to Res™ (0, Z).

In the case of the opposite &-pre-dim function, we already have
& =0uImZ since, by definition, 0=\ ImZ; but we shall also need
Res(0,7)nP = @, which implies that every element of & has dimension
oo, This condition will also be easily verified in all of our examples.

Given a pair (0,%) which satisfies these conditions, the following
theorem gives necessary and sufficient conditions in order for the
Z-pre-dim function to be a dim function.
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THEOREM. Let O and P be subsets of & such that O=P and & =
OulmP (respectively, such that 0= \ImZP and Res(0,Z)nP=0).
Then the usual (respectively, opposite) P-pre-dim function is a usual
(respectively, opposite) dim function if (and only if)

Dy(P): For any exact sequence (4,B,P) with Pe P, Ac @ < Bel.

2.8. Flat dimension. Let us consider an example. Take (¥5, &) as in
1.1(a), and let = {flat R-modules}. Then S5 =ImZ since & contains
the free R-modules, and £ satisfies Dy(Z) by [2, p. 31, Proposition 5].
Thus, by the above theorem, the usual Z-pre-dim function is a usual
dim function.

3. Proof of the main theorem.

Fix throughout section 3 a set with short exact sequences (<,&) and
subsets @ and £ of & such that & =0uIm 2, or equivalently, such that
& =Res™(0,2), and let d denote the usual or opposite (@, %)-pre-dim
function.

3.1. Properties I(P) and D(Z). For any n € N, and any subset I of &,
consider the following two properties:

1.(7): If M ¢ 0, then for any two short exact sequences (K,P,M)
and (K',P',M) with P,P'e 7, d(K)=n <> d(K')=n.

D, (7): For every short exact sequence (4,B,P) with P e .7, d(4)=
n < d(B)=mn.

Furthermore, let I(J") (respectively, D(J)) be the property “I (")
(respectively, D,(7")) for all n e N;”.

We shall be mainly interested in these properties when J =#. In
particular, note that I(#) implies that (#,%) has the independence of
resolution property, so I(Z) should be thought of as a strong independ-
ence of resolution property. Similarly, D,(Z) is an elementary case of
the defining property for a dim function.

3.2. LemMA. D (T) = I, (7).

Proor. Given (K,P,M), (K',P',M)e &, by PB, there exists Le &%
such that (K,L,P’'),(K',L,P) € &. Therefore by D,(7") applied twice,
d(K)=n < d(L)=n <> d(K')=n.

The next theorem characterizes those (0, #)-pre-dim functions which
satisfy I(2).
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3.3. THEOREM. Let f: & — N be a function. Then f is the usual (0,P)-
pre-dim function and satisfies I(P) if and only if

i) M ¢ O and (K,P,M) is exact with Pe 0 = f(M)=f(K)+1, and

i) Me 0 < f(M)=0.

Proor. The direction <= follows by induction on the length of an
efficient (0@, %)-resolution for M. For =, ii) is immediate, and i) is a
consequence of the following more precise statement, which will be
needed in the proof of 3.5.

3.4. LeMMA. Let n € N, and suppose d is an (0, %)-pre-dim function
which satisfies I,,_,(#). Then for any exact sequence (K,P,M) with
PeZ and M¢O0, dK)=n—1 < d(M)=n.

ProOF. <«: d(M)=n>0 implies there exists (K',P',M)e & with
K' e Res, P’ e #, and d(K')=n—1. Then by I, ,, d(K)=n—1.

=: Since K € Res, M € Res. If d(M)=o00, then d is the opposite
(0,2)-pre-dim function and there exists an exact sequence (K',P’, M)
with K’ € Res, P' € #, and d(K') zn; and hence by I,,_,(#), d(K)*+n—1,
a contradiction. Therefore d(M) < oo; so there exist K’ € Res and P’ € &#
such that (K’,P', M) is exact and d(K')=d(M)—1. By I, ,(2?),d(K')=
n—1; and thus d(M)=mn.

In summary, condition I(£) implies (0,%) has the independence of
resolution property and hence that the usual and opposite (0, 2)-pre-dim
functions coincide. Moreover, the (0,%)-pre-dim functions which satisfy
I(P) are characterized by properties i) and ii) of 3.3.

3.5. P-kernels. Let 1 € N,. We define an ith P-kernel for M € & to
be an element K € & for which there exist P,,...,P; ;€& with
(K,P;_y,...,Pp, M) exact. (A Oth P-kernel for M will be understood to
be M.) Such a K will be denoted o 5* M ; if ¢ =1, we shall merely write
A » M. This notation will be employed somewhat ambiguously; at times
we shall use X ', M to signify an arbitrary ith &-kernel and at other
times to signify a particular ¢th &-kernel.

If (0,2) has the property I(%), then one ith &-kernel for M is in @
if and only if every ith #-kernel for M is in @; so at least in this context
the statement J ,'M € @ has only one meaning. In particular, for a
pre-dim function d satisfying I(&), as in 3.3, d(M)=Ileast ¢ such that
X HtMe.
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Note that J (5 M)=H 4+1 M, that is, a first kernel for an ith
kernel for M is an ¢+ 1st kernel for M. Also, a first #-kernel for M
might not exist, the crucial requirement being M € Im .

Suppose now we are given an exact sequence (4,B,C) with BeImZ.
Then by PB,; there exist kernels J¢ 5B, A 5C such that (X 5B, X 5C,A)
is exact.

PB,
5 |

HyC...P...C

l

A——B—C

Similarly, if #",C € Im 2, then by applying PB, again we find that there
exists " 42C such that (A »C, A pA,H 5B) is exact. Finally, if # 54 €
Im#, we can repeat the process once again to conclude that there exist
A p2A, A 2B such that (A z%A,H 2B, A »°C) is exact. These observa-
tions will be used in the proofs of the next theorems.

3.6. LEMMA. Let &' be a subset of & such that P <P and such that
P’ € &' implies any first P-kernel for P’ is again in P’. Then Dy(Z') =
D(#).

Proor. Show by induction on n that D, (') holds for any n e N,.
Condition Dy(#') is given, so let n>0 and assume D, ,(Z'). Suppose
the given sequence of D,(#')is (4,B,P’), P' € #'. Note that D,,_,(#') =
D, _(?) = 1, _,(2), the first implication following from # <2 and the
second from 3.2.

If d(4)=n or d(B)=mn, then 4,B ¢ 0 by Dy(#'); so A,BeIm& since
F=0uImP. Then (X B, A zP',A) is exact by 3.5, and also there
exists P € & such that (# z4,P,A) is exact. Hence by PB,,

Hpd A pA
: |

HgB ...L ... P
: |

H gB— A gP'— A

Then

dB) =n <> d(HX pB) = n—1 <> d(L) = n—-1
<> d(AH gd) =n—-1 <> d(d) =n,

by 3.4 and D,,_,(#').
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3.7. MAIN THEOREM FOR O=Z. Suppose 0=P and &F =PuImP.
Then condition Dy(P) implies that the usual P-pre-dim function d is a
usual dim function.

Proor. By applying 3.6 (with Z=¢"), one can conclude that D(Z)
holds, from whence it follows via 3.2 that I(£) also holds. Thus, we are
now dealing with a function d described by the two properties of 3.3.
We divide the proof into four cases; the first three will establish that for
any short exact sequence (4,B,C), if two of d(4),d(B),d(C) are finite,
then so is the third. To ease the notation, let a =d(A4), b=d(B), c=d(0).

CaSEi. @,c<o00 = b< oo, by induction on c. If ¢=0, this follows from
D(2); so suppose c=1. We may assume that any ith &-kernel /B
is not in £, since otherwise b<oco. Then by hypothesis /"B e ImZ.
Now note that 3.3 implies d(o¢ B)=b—1 and d(#2B)=b—2 and that by
3.5 (X'B,#C,A) is exact.

If ¢c=1, by 33, X CeP. If A¢P, then by 3.3 applied to
(B, AC,A), d(A'B)y=a—1; so b=a<oo. If 4P, D(P) applied to
(A B, A4C,A) yields "B e &, which contradicts the above assumption
on ZP-kernels for B.

If ¢>1, then A CéP = A CelmP, which by 3.5 implies
(20, XA, B)is exact. If nowa=1, then by 3.3 ¥4 € # and d(H"B) =
d(x20)+1. But C,4C¢P = d(A?C)=c—2 by 33; so b—1=
c—1 = b=¢c<oo. If on the other hand a>1, then X 4¢P =
HAelmP by F=PulmP. Therefore by 3.5, (H24,42B,#2C) is
exact. But 4,4 4¢P = d(HA?4A)=a—-2, and C,AC &P = d(A2C)
=c—2; so by induction hypothesis applied to (H#24,42B,%%C), we
conclude d(o#2B) < co and hence b < co.

CASE ii. a,b<oc0 => ¢< oo, and

Casg iii. b,c<o0 => a< oo, will follow from Case i by taking J =
Res(#) in the next lemma.

3.8. Lemma. Assume & =PuImP. Let T be a subset of & such that
Jorany X gM, M €T <> X pMeT, and consider the following:

1) For any exact sequence (4,B,C), A,CeJ = BeT.
2) For any exact sequence (4,B,C), A,Be I =>CeT.
3) For any exact sequence (4,B,C), B,CeJ = AeT.

Then (1) = (2) = (3), (and if P<T, then (3) = (1)).
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Proor. (1) = (2): If Be P, then A=A4CeT =CeT.1f B¢,
then B e Im#; and hence by 3.5 (4 B,#C,A) is exact. Then Be I =
A'BeJ by hypothesis; and 4,4 BeJ = A CeJ by (1). There-
fore C € by hypothesis.

(2) = (3): If BeZ, then A=24CeJ and we are done; so suppose
B¢ 2. Then BeIm#, and hence by 3.5 (X B, C,4) is exact. Then
B,CeJ = A B,#CeJ by hypothesis; and hence by (2), 4 €7

We have now shown that if any two of a,b,c are finite, then the third
is also, from which Theorem 3.7 follows whenever one of a,b,c is co.
Thus, it remains to establish the theorem for a,b,c < oo.

CasE iv. Suppose a,b,¢ <, and proceed by induction on a+b+c. If
¢ =0, the theorem results from D(Z). If b=0, then B € & and the theo-
rem is immediate. Thus, we may assume b,c > 0. Then by 3.3, d(£C)=
c¢—1and d(#"B)=>b— 1. By induction hypothesis applied to (;¢ B,%# C, 4),
we conclude that c—1<max{b—1,a} and the inequality implies a=b,
which is easily seen to be equivalent to the required assertion of 3.7.

We now turn to the proof of the opposite part of the main theorem.
First we need two lemmas.

3.9 Lemma. Let O0=F\1mP, and suppose
PcP ={MecS| M¢&Res(0,2)}.
Then Dy(P) = D(Z') (and a fortiori Dy(P) = D(P) = I(P)).

Proor. By 3.6 it suffices to show Dy(#) = Dy(Z'). This will follow
from the next lemma, which will also be needed in another context.

3.10 LEMMA. Let 0= \ImP and assume DyP). For any exact
sequence (4,B,0), if CeImP, then Be 0 = A€ 0; and if (for any
H 5C) H 5C e ImP, then A€ O = Beld.

Proor. By PB,
H 30 A HC
4 ... L ... P
A—B——C .

Math. Scand. 37 — 14
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Therefore Be 0=%\Im%? = Le (@, and then by Dy(%), A € 0. Con-
versely, B¢ 0 =~ BelmZP. Then by 3.5 (X 4B, A 5C,4) is exact.
But X ,CeIlm? = Aelm? = A44¢0.

3.11. MAIN THEOREM FOR O=\ImZ. Suppose 0= \ImP and
Res(0,2)nP=@. Then condition Dy(P) implies that the opposite P-
pre-dim function 0 ts an opposite dim function.

Proor. By 3.9, property D(Z') holds, where
P ={MecS| M¢Res(0,2)} .

Then a fortiori D(#) holds and hence by 3.2 also I(£). A consequence of
I(&) is that the usual and opposite (0, Z2)-pre-dim functions coincide.
Thus, we are now dealing with a function 9 described by the two properties
of 3.3. We again let a=20(4), b=29(B), c=9(C) for the given short exact
sequence (4,B,C) and divide the proof into four cases.

CaSE i. ¢=o0. Then C ¢ Res(0,#) by 3.3, and hence by D(#’), a=b.

CaSEil. b=c0. B¢é0 = BeIm? = CeIm#P = C¢0; and then
by 3.3, d(A#C)=c—1 (where 2'C abbreviates £ ,C). Also, by 3.5,
Belm? = (X' B,7C,4) is exact.

If a=0, then A4Ae0@ = A¢ImP = A Cé&ImP (because
(X B,AC,A) is exact) = A Ce@ = c=1, which is what is required.

If a>0, then (4" A)=a—1 by 3.3. Also, by 3.10 applied to the exact
sequence (4B, C,A), X’'B¢&0 = HC¢0. Therefore 4 CeImP,
and hence by 3.5 (X 2C,4 4,4 B) is exact. By Case i applied to this
sequence, o( 2C)=0(A " A). Thus, by 3.3, c—2=a—1; so c=a+ 1, which
is the required equality.

CASE iii. a =oc0. Then 4 ¢ 0. If B € 0, then by 3.10, C' ¢ Im#; and hence
C € 0, which yields the required equality. On the other hand, if B ¢ 0,
then B € Im&?; hence C € Im# and C ¢ 0. Moreover, by 3.5 (4" B, C,A)
is exact; and therefore by Case i applied to this sequence, 9(¢"B)=
(X C). But B,C¢ 0O = (A B)=b—1 and 9(o4C)=c—1. Thus, b=c.

CASE iv. a,b,¢ < 0. Proceed by induction on a+b+c. First note that
¢=0 => C¢ImZPZ = B¢EImP = b=0, which is the desired conclusion.
Similarly, if ¢ > 0 but =0, then by 3.10, a =0, which is again the desired
conclusion. Thus, we may assume b,¢ > 0. Then by 3.3, (¢ C)=c—1 and
(A B)=b—1. Also, by 3.5, (¥ B,#C,A) is exact. By the induction
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hypothesis applied to this sequence, 8(#"C) = min {9(#"B),9(4)} and >
implies 9(4)=0(#"B)+ 1. Thus, c—1=min{b—1,a} and > implies a="b,
which is easily seen to be equivalent to the assertion of the theorem.

4. Jectives.

Let (#,&) be a set with short exact sequences, and let us now assume
that .# has the additional structure of an abelian monoid with opera-
tion + and identity 0. Furthermore, we shall suppose that & satisfies,
in addition to PB; and PB,, the following axioms:

&5 (0,0,0) € &.

&,. (Addition). For any M e #, (4,B,0)e & = (A+M,B+M,C)
and (4,B+M,C+M)eé.

&3. (Equality). (0,M,M')e & or (M, M',0)e& = M=M".

A pair (#,&) consisting of an abelian monoid 4 together with a set of
sequences & satisfying PB,, PB,, &,, &,, and &, will be called a monoid
with short exact sequences.

For a familiar example, take the pair ([$;],[£]), where [F%] denotes
the monoid of isomorphism classes of R-modules, the operation + being
defined by [M,]+[M,]=[M,PM,], and where [£] consists of all se-
quences ([4],[B],[C]) for which (4,B,C) € £5. Other examples can be
similarly constructed from those in 1.1-(a), (b), (¢) by replacing the
underlying set by the corresponding monoid of isomorphism classes of
R-modules. (Note, however, that the example ([F%],[x*(TF)]) from
1.1-(d) does not satisfy &,).

4.1. CONSEQUENCES OF THE AXIOMS.

a) It follows from &, by induction that for any M € .#, (M,,...,M,)
is exact = (M,,... M, +M M+ M,...,M,), 15i<n—1, is exact.

b) For any subset & of A ,#<ImZP. This is because by &, and &,,
(0,M,M) € & for any M € &. In particular, the condition & =2uImZ#?
mentioned in 2.7 now becomes ¥ =ImZ.

c) By &, and &,, for any M,.M'e M, (M, M+M',M')c &. A se-
quence of this type will be called a split (short exact) sequence. Thus,
& always contains the split sequences. On the other hand, if Sp denotes
the set of all split sequences, then (#,Sp) is itself a monoid with short
exact sequences.

Given a short exact sequence (4, B,C), an element P € 4 will be called
Jjective relative to (A,B,C) if for any K,K',P' € # such that (K',P’,A)
and (K,P,C) are exact, there exists M € 4 such that (K',M,K) and
(M, P’ + P,B) are exact. One should have in mind the following diagram :
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K'..M..K
I P
(4.2) P P+P P
I oo
4A—B—2C.

Note that jectives split short exact sequences, in the sense that if (4, B, P)
is exact and P is jective relative to (4,B,P), then B=A4 + P. One sees
this by taking K=K'=0 and P'=4 in the above diagram. Then M =0
by &5, and hence B=A4 + P by &,. If P is jective relative to every short
exact sequence in &, then we shall simply call P jective (or (#,&)-jec-
tive, to be precise. The terminology was suggested to me by M. R. Gabel.)

4.3. TrEOREM (Vekovius [14]). P is jective if (and only if) every short
exact sequence of the form (4,B,P) is split.

Proor. We must find an M which fills out the jective diagram 4.2.
By PB, there exists L € .# such that (4,L,P) and (K,L,B) are exact.
By hypothesis (4,L,P) is split, so L=A4 + P. Since (K',P’, A) is exact,
(K',P'+P,A+P) is also exact by &,. Now apply PB, to (K,4+P,B)
and (K',P'+P,A+P) to obtain an M such that (K',M,K) and
(M,P’+P,B) are exact. This M is the required element.

4.4. CorOLLARY (Vekovius). If P and P’ are jective, then P + P’ is jective.

Proor. We must show that every short exact sequence (4,B,P +P’)
is split. By PB, applied to the row (P,P+P’,P’) and the column
(4,B,P + P'), there exists M € 4 such that (4,M,P) and (M,B,P’) are
exact. Since P and P’ split short exact sequences, M =4+ P and
B=M+P' =A+P+P.

Note also that by &, 0 is jective, so by 4.4 the subset of .# consisting
of all jectives forms a submonoid of .#.

4.5 ExampLEs. What are the jectives of ([F%],[£]), where [#%] is the
monoid of isomorphism classes of R-modules and & is one of the choices
Ery Er*, ExP,(ExP)* from 1.17 These examples possess certain proper-
ties that derive from the fact that the sequences of & are defined via
maps. Recall that an exact sequence of R-modules

(¢,8): 0>A->B->C~->0
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is said to be split (or map-split) if there exists a homomorphism g’: ¢ - B
such that fof’ =identity, or, equivalently, if there exists a homomorph-
ism oa’: B — A such that «'ox=identity. While such a split sequence
has the property that B~ A®C, it can happen that B~ A®PC and yet
the given sequence does not split: consider

0> 2Z > ZD(@F Z/2Z) ~ Z[2Z® (@ Z/2Z) - 0.

Let us call an R-module P map-jective for (%%, &) if every exact sequence
of the type used to assert that (A4,B,P)e€ & map-splits in the above
sense. If P is a map-jective of (F%, &), then certainly [P] is jective for
([%%->):[€]); but, as we shall see, the proof of the converse is more dif-
ficult and depends on the existence of “enough’ map-jectives for (%, &).

i) LEmMMA. If M is a map-jective for (Fg, &) and P is a direct summand
of M, then P is also a map-jective for (¥, &).

Proor. (For &=¢Eg, the other cases being very similar): Suppose
M~ P3PQ, and («,8): 0 > A - B~ P — 0 is exact. Then

(PO, ﬂ@ld) 0—->A4->BPQ > PP —~0

is also exact, so there exists a splitting homomorphism 8': PHQ - BDE;
and then S’ restricted to P and followed by projection on B yields a
splitting homomorphism for the original sequence.

iil) LEMMA. Suppose (Fr,E) has enough map-jectives, in the sense that
S =1Im {map-jectives}. Then [P] is a jective for ([S%],[&]) (if and) only
if P is a map-jective for (%, ).

Proor. Since S =Im {map-jectives}, there exists a map-jective M for
(%, 6) and K e, such that (K,M,P)eé. Then by definition
([K1,[M],[P)) € [£], so [M]=[K]+[P] since [P] is jective. Therefore
M~ K®P, and hence by Lemma i), P is a map-jective.

Thus, if (¥, &) has enough map-jectives and one knows what they are,
then by Lemma ii) one also knows the jectives of ([#%],[£]). The map-
jectives for (%, &), where & is one of &z, Er*, P, and (£zP)* have been
studied ; and for commutative R with identity, there are enough of them
(for &g, €r*, see [10, pp. 92-93]; for &zP, see [3, p. 7, Theorem 5.1]
and also [6, p. 77] for a related discussion; and for (&zP)*, see [15, p. 709,
Corollary 6]). For example, for R=Z, they are respectively {free groups},
{divisible groups}, {direct sums of cyclics}, and {H®D | H is a direct
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summand of a product of cyclic torsion groups and D is divisible}; see
[4] and [5].

Finally, let us look at the jectives of one further example from 1.1,
namely ([7 g]l,[6r|T g]). At least for noetherian R, the following pro-
position shows that [0] is the only jective. (I do not know if the “finitely
presented’’ can be replaced by ‘“finitely generated.”)

iii) ProPOSITION. If M +0 is a finitely presented torsion module, then
there exists an exact sequence 0 ~ A —~ B - M — 0, with A and B finitely
generated torsion modules, such that B is not isomorphic to ADM.

Proor. Since M is finitely presented, there exist a finitely generated
free R-module F' and a finitely generated R-module K such that

0>K->F->M-—>0

is exact. Moreover, M is finitely generated torsion implies there exists
a regular a € R such that aM =0. Then 0 > K/aK - FlaK -~ M — 0 is
also exact; and K/aK and F[aK are finitely generated torsion modules
since a(K[/aK)=0 and a%*F/aK)=0. However, a(F[aK)+0 since
a(FlaK)=aF[aK~M=+0; and a(K[aK)=0=aM. Thus, FlaKz
(K[aK)DM.

4.6. Summands of jectives. The discussion in 4.5 yields:

ProPOSITION. For & any one of &, Er*, ExP, (ErP)*, a summand of
an ([%%],[£])-jective is again jective.

Proor. Suppose [@Q]+[P] is ([Fg,],[£])-jective. Then by 4.5ii) QPP
is a map-jective for (%%, €); and hence by 4.51) P is a map-jective for
(g, €). Therefore [P] is a jective for ([Sg],[£])-

Note that this proof shows, more generally, that for any monoid
with short exact sequences (#, &), if there exists a subset J of .# such
that (a) J consists of jectives, (b) # =ImJ, and (c)  is closed under
summands, then the (4, &)-jectives are closed under summands.

We shall give next an example from [14] for which 4 + B=4, with 4
jective but B not; thus, a summand of a jective need not be jective. The
simplified presentation given here was pointed out to me by J. N. White.

Let .# be the submonoid of [%5] generated by [Z], [Z/2Z], and

(@7 (Z/22)].
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Cram: (A,[E,]|A) is a monoid with short exact sequences.

The axioms &,,&,,&; are trivially satisfied, so it remains to check
PB, and PB,.

LeMMA. [G] € A and H a subgroup of @ = [H]e 4.

Proor. @ is a direct sum of finitely many copies of Z and countably
many copies of Z/2Z. Since a subgroup of a direct sum of cyclics is
again a direct sum of cyclics [5, p. 23, Theorem 24], H must again be of
this form.

Now, in the notation of the PB,; diagram of section 1, the existence
of pull-backs for ([%%],[£7]) implies there exists [M] e [#] which fills
out the diagram. Then by the above lemma, [B'le 4 = [M]e 4.
Similarly, there exists [M] e [%] which fills out the PB, diagram of
section 1, and by construction this M is a submodule of BPB’. Since
[B®B'] € A, it again follows from the above lemma that [M] € .#.

Observe next that [Z/2Z] is not jective for (A,[&7]|#), for
([2Z],[Z],[Z/2Z]) € [£4]| -# but is not split.

Finally, let us check that [@°(Z/2Z)] is jective. Let P=® (Z/2Z).
If ([M],[N]1,[P])e[&]|#, then there exist homomorphisms — such
that 0 > M -~ N - P — 0 is exact. Since P is not finitely generated,
neither is N; so [N] € A4 implies N is a direct sum of (at most) finitely
many copies of Z and infinitely many copies of Z/2Z. To see that
N~ M®P, it therefore only remains to check that the torsion-free rank
of N equals the torsion-free rank of 3, which follows by tensoring the
given exact sequence with Q.

We conclude section 4 with some properties of dim functions.

4.7 Properties of dim function. Let d be a usual (respectively, opposite)
dim function for (A, &).

a) If (M,,...,M,) is exact and d(M;)+ oo (respectively, d(M,;)=oc)
for all but one of the M, then d(M;)+ « (respectively, d(M,)= o) for
1=1,...,n.

b) d(4 + B)=max (respectively, min) {d(4),d(B)} or d(4)=d(B)=occ.
This is because (4,4 + B,B) and (B,A4 + B,A) are both exact.

c) d(A+ ...+ A)=d(A4) by (b).

d) If P is jective and P € ImZ,;, then d(P)=0 or d(P)=oo. For,
(K,Q,P) exact with @ € #; implies =K + P.
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5. Examples of dim functions.
Usual dim functions.

In developing most of the examples below, we shall work with a
monoid with short exact sequences (#,&) and a submonoid # of 4
satisfying
i) & consists of jectives, and
ii) if P e &, then Q € Z if (and only if) P+Q € 2.

To apply the main theorem 2.7 for usual pre-dim functions with 0 =2,
we must first reduce to a situation where #=ImZ% (which by 4.1 is
equivalent to .#=2ulm#?). This will be accomplished by replacing
(A, &) by (Res®(2),& |Res®(Z)). First one must verify that this latter
pair is again a monoid with short exact sequences, which follows via
1.1(c) from the next lemma.

(5.1)

LevMMa. Suppose P is a submonoid of M consisting of jectives. Then
(4,B,C)e & and A,C € Res®(#) = B e Res™ ().

Proor. Since 0 € #, 4 and C have #-resolutions of length oo:
(....P ,Py,4), (..., P, Py,C).

Coam: (...,P,+P,,Py+P,,B) is exact and hence is the required
P-resolution for B.

This follows from the fact that P, is jective, for then the jective dia-
gram 4.2 yields the required kernels L, for (...,P,'+ Py, Py + Py, B):

K, L, . K,

| : I
P_, P_+P,, Py,

l : I
K£-1 — L, — K.,.

Note finally that # < Res™ (%), and for any M € Res™(Z), there exist
P e and K € Res®(2) such that (K,P,M) e &|Res™(P).

Now, by the main theorem, to prove that the usual #-pre-dim func-
tion for (Res*(#),&|Res®(%)) is a usual dim function, one need only
verify

Dy(#): If (A,B,P)e & with P € P, then A € # <> B e 2. But, since
P is jective, B=A + P, and therefore Dy() is just 5.1(ii). Thus, we have
proved the following theorem.
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5.2 THEOREM. Let & be a submonoid of M satisfying 5.1. Then
(Res™ (), & | Res™(P)) is a monoid with short exact sequences, and the
usual P-pre-dim function for (Res® (%), & | Res™(P)) is a usual dim func-
tion.

Let us now apply this to some examples.

5.3 Examples of usual dim functions.

a) Let & be the set of all jectives of ([#%],[£]), where & is one of
&g, Er*, &xP, (E5P)* (see 1.1). It follows from 4.4 and 4.6 that such a
P satisfies 5.1, and therefore by 5.2 the usual Z-pre-dim function is ac-
tually a usual dim function. Note also that [%%]=Res™ (&%), since by 4.5
& contains enough elements with respect to these choices of &. The
resulting dimensions are usually called projective, injective, pure-pro-
jective, and pure-injective respectively.

b) Finitely generated analogues of the dim functions of (a) may be
obtained by replacing ([%%],[€]) by ([%%],[€|FR!]) and £Z by Pt=
Pn[Fpt]. Pt again satisfies 5.1, so the usual #!-pre-dim function is a
usual dim function; we shall call the resulting dimensions f.g. projective
dim, f.g. injective dim, ete.

The domain of definition Res™(£!) for these functions is not always
the full [#%!]. For example, if & =&, then R is coherent [2, p. 63] if
Res™(P1) = [H!]. Similarly, in the injective case &£=&Eg*, if R=2Z, then

Pt = {((M]e[F!]| M is divisible} = {{0]}

and hence Res™(#1)={[0]}. (In case &=&x*, I do not know if 2! is
the set of all jectives of ([F3!],[£1]).)
¢) Use (11, (€] S41)), and let

P = {{M] e[| M is stably-free} .

Recall that an R-module M is stably-free if there exists a finitely
generated free F' such that M@F is also finitely generated free. Then &
satisfies 5.1 and thus gives rise to a usual dim function, which we shall
call the stably-free dim function. Note that the set & here may be a
proper subset of the set of all jectives, e.g. the ideal 0xZ in R=ZxZ
is projective but not stably-free.

d) Flat dim (see 2.8). This dim function differs from the above in that
its defining set &, for appropriate choice of R, does not consist of jec-
tives.

e) Cotorsion dim. As we have remarked earlier, the example
([FR), [€x*(TF)]) from 1.1-(d) is not a monoid with short exact sequences
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due to the failure of &,. However, at least when R=7Z, one can define a
dim function for ([¥%],[62*(TF)]) in the same manner as above. Call
an abelian group P cotorsion if any (4,B,P) € &*(TF) splits, and let

P = {{M]e[%]| M is cotorsion} .

Then Im#Z =[%] ([4, p. 247, Theorem 58]; see also [11, p. 11, Corollary
2.5] for a related result); and if (4,B,P) e &,*(TF), then A e P <
Be P[4, p. 233]. Thus, by our main theorem, the usual #-pre-dim func-
tion is a usual dim function.

f) We conclude with an example of a usual dim function d for (4, &)
such that the set

Py={MeA| dM)=0}

does not have enough elements, i.e., such that Im , ,%;+.#. Take d
to be the projective dim function for ([4],[&7]). Then &,P< &, implies
d is also a usual dim function for (A, &) = ([9%],[£;P]). However, InZ ;&
[#] since by [2, p. 33, Corollary], [M] € ImZP; implies M is flat and
hence torsion-free.

5.4, The set &. Suppose P is a submonoid of # which consists of
jectives but does not satisfy the further condition of 5.1 that P e Z
and P+Q e P = Qe P. We can then enlarge &£ slightly to the set

P = {M e M | there exists P € & such that M+ P € #},
which does satisfy 5.1. For example, if
P = {M]e[HR]| M is a free R-module}
(in ([#%),[€R]), then

P = {(M] e [F] | M is projective};
or if
P = {[M]e[%]| M is finitely generated free},
then
P = {(M]e[F]| M is stably-free} .

Moreover, if dp and dp are the respective usual #- and @—pre-dim func-
tions for (.#, &), then dgy(M)=dz(M), except possibly when dz(M)=0=
dp(M)—1. This is seen by observing that any P-resolution for M of
finite length >0 can be modified to a P-resolution by applying &, a
number of times. Thus when & consists of jectives, although dg itself
need not be a dim function, it differs only slightly from the dim function
dg.
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5.5. Comparison of usual dim functions. Let (#,&) and (A',&’) be
monoids with short exact sequences, and fix a monoid homomorphism
¢: M — M such that ¢(&)<=¢&’. (We use ¢(&) to denote

{(p(4),9(B),9(C) | (4,B,C) € &}).

Fix also a subset & of A such that # =ImZ, a usual Z-pre-dim func-
tion d for (#,&), and a usual dim function d’ for (A',&").
The next theorem lifts to our present setting a result from [9].

a) THEOREM. i) If there exists n € N§° such that d(M)=0 = d'(p(M))
<n, then d(M)< oo = d'(p(M))<n+d(M).

ii) If there exists me N§ such that d(M)<1 = d'(p(M))=n+d(M),
then d(M)<co = d'(p(M))=n+d(M).

Proor. i) Proceed by induction on d(M). The d(M)=0 case is given,
so suppose 0<d(M)<oo. Then there exists (K,P,M)e & such that
PeP and d(M)=d(K)+1. Since d’ is a dim function, either

d'(p(P)) = max{d'(p(K)),d'(p(M))} ,
in which case d'(¢(P))<n = d'(p(M))<mn, or

d'(p(M)) = d'(p(K))+1,

in which case the induction hypothesis applied to K yields the desired
result.

ii) The proof is essentially the same as (i), except that in the induction
step one assumes d(M)>1, which implies d(K)= 1. Then

d'(p(P)) = max {d'(p(K)),d'(p(M))}
cannot happen since n+ max {n+d(K),d’(p(M))}.

b) CoROLLARY. Let M =M', E=E', and let @ be the identity map. If
P =P <P, {jectives}, then d(M) < oo = d(M)=d'(M). (Recall that

Py = (M M| d(M)=0}.)

Proor. Since Z<Z,;, d(M)=d'(M); and, in particular, d(M)=0 im-
plies d'(M)=0. Now suppose d(M)=1. Then there exist Py, P, € & such
that (P, Py, M) is exact. If d’(M)=0, then M is jective by hypothesis;
and therefore P, + M =P, which implies M e .@’:9’, a contradiction to
d(M)=1. Thus, d'(M)=1; so the corollary follows from (a-ii).
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c) ExamprEs. i) Take the monoid with short exact sequences to be
([, [€r] =), let d' be the finitely generated projective dim of
5.3(b), and let d be the stably-free dim of 5.3(c). The above corollary
agserts that d(M)=d'(M) whenever d(M) < co. Note, however, that it
can happen that d(M)=occ and d'(M)=0: take R=ZxZ and M=0xZ.

ii) Let d’ be flat dim and d be projective dim for ([%;],[£z]). Then
.@d=.9;'d<:gﬂd, but there exist choices of R for which d'(M)=+d(M) < oo.
For example, take R=7, M = Q. Then d'([M]) =0 but d([M]) =1 (see [8]
for a discussion of the projective dim of a quotient field). Thus, Corol-
lary (b) is false without the assumption that £ consist of jectives.

iii) Let d be the pure-projective dim for ([%],[£,P]), and let d’ be
the projective dim for ([%5],[£7]). Then [£;P]<[&,] implies that the
identity map of [%%] to [#%] is of the required type. Moreover, d([M])=0
implies M is a direct sum of cyclics and hence d’([M])<1. Therefore
d'([M]) £ 1+d([M]) for all [M] such that d([M]< co.

Opposite dim functions.

5.6. THEOREM. Let P be a submonoid of M satisfying (#) M is jective
and M+NeP = N is jective. Then the opposite P-pre-dim function
for (M, &) is an opposite dim function.

Proor. By the main theorem 2.7, we must check that Res(0,#)n#=0
and

Dy(2): for any exact sequence (4,B,P), Pe P, AcImP <> BeImP.

To see Res(0,2)nP = B, note first that since 0 is jective, (#) implies
that every element of & is jective. Now, for given P € & consider any
exact sequence (K,,P,,P) with PyeZ. Then P jective implies P,=
K,+ P, which implies K; e Im%. Moreover by (#), K, is jective. It
follows by a repetition of this argument that for any exact sequence of
the form (K,P,,...,Py,P) with P;e?, KeIlmP. Thus, K¢O=
FL\ImZ, and hence P ¢ Res(0,P).

Now consider Dy(#). P jective implies B=4+P = (P,B,A)eé.
Therefore Be Im#? = A4 eIm. Conversely, 4 € Im# => there ex-
ists (K,Q,4)e &, Qe? = (K,Q+P,A+P)e . But Q+P e since
2 is closed under +, 80 B=A+PeIm®?.

A

5.7. Examples of opposite dim functions. In these examples we shall
first specify a monoid with short exact sequences from 1.1 and then a
submonoid £ of # satisfying 5.6(#). It will then follow from 5.6 that
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the opposite Z-pre-dim function is an opposite dim function. Note
that to check (#) it suffices to know that £ consists of jectives and that
a summand of an (., &)-jective is again jective.

a) Finitely generated free dim: ([F],[€R]); P={[M]e[FR]| M is
finitely generated free}. It is immediate that & satisfies (#). That this
opposite Z-pre-dim function is a dim function can also be found in [2,
p. 60, Exercise 6].

b) Z-injective dim: ([H%]),[€r*]);

P = {{M]e[SR] | M is Z-injective} .

An injective module M is defined to be Z-injective if every direct sum
of copies of M is again injective, or equivalently, if the collection of
ideals {AnnN | N <M} has a.c.c. It follows easily that & satisfies (#).
Beck [1] shows that this opposite X-injective dim is closely related to
some interesting chain conditions on R.

¢) ¥ -injective dim:

([ZR)[ER*]); 2 =¥ n{{M]e[HR]| M is injective},

where ¥~ is any submonoid of [#%]. It is again immediate that & satis-
fies (#).
For example, fix an R-module V and let

¥V = {{M]e[FR]| M is a direct summand of a direct product
of copies of V};

in particular, if ¥ = R the resulting ¥~ is just the monoid of isomorphism
classes of ‘“‘torsionless’ B-modules. Or, let

¥ = {[M]e[%]| M is projective} .

These opposite ¥ -injective dims include a number of notions that
sometimes go by the name of ‘““‘dominant dimension’; see Storrer [13]
for a very readable account. One can also define a dual concept by using
((#z):[€R]) and

P = ¥V n{[M]e[F]| M is projective} .

REMARKS. 1) In the Bourbaki treatment of opposite f.g. free dim (a)
and in the Beck treatment of opposite Z-injective dim (b), the authors
start counting with —1 instead of 0.

2) The opposite Z-pre-dim functions in (b) and (c) are usually defined
by means of the unique “minimal” injective resolutions, where ‘‘minimal”
here refers to resolving by successive injective hulls. However, once one
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realizes that these functions are dim functions and thus independent of
resolution, it is no longer necessary to be so delicate.
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