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A THEOREM ON RESTRICTED GROUP
REPRESENTATIONS

JAN MYRHEIM

Abstract.

We discuss the case where all irreducible representations of some finite
group G contain those of a subgroup H with multiplicities 0 or 1 only. A
sufficient condition is given which applies, in particular, to the symme-
tric group 8,, with §,_; as a subgroup.

1. Statement of the theorem.

We will consider the complex irreducible linear representations of the
finite group G' and their restrictions to the subgroup H of G'. We denote
by A (@) the group algebra of @ (see [1]), whose elements are the formal
linear combinations

(1) a = ZyeG a,q9

with complex coefficients a,. Thus A(G) is a complex vector space with
the group elements of G as a basis, defining, by the group product, also
an algebraic structure on 4(@). The group algebra A(H) of H is a subal-
gebra of 4(G).

Another subalgebra of A(G) is the commutant A(H)" of A(H), defined
as

(2) A(H) = {ac A(Q) | ab = ba for every b e A(H)}.

Note that A(H)' is equivalently defined as the commutant of H in A(Q).
We want to prove the following.

THEOREM. A) A necessary and sufficient condition that any irreducible
representation of @, when restricted to the subgroup H, will contain any irre-
ducible representation of H with multiplicity either O or 1, is that the commu-
tant A(H)' is commutative.

B) A sufficient condition is that any element g € G is conjugate to its in-
verse g1 by some element h € H, that is g~* =hgh~1.
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2. Application.

A trivial instance of part A) is that of a commutative group @, in which
all irreducible representations, of G as well as of H, are one-dimensional.
This same example shows that B) is not a necessary condition, since not
always g~1=g in commutative groups.

A less trivial instance of part B) is that of the symmetric group S, of
(all permutations of) » objects, say the numbers 1,2,...,n, with S,_, as
the subgroup in question (see [2]).

Any permutation p € S, is the product of disjoint (and commuting)
cycles. The usual notation for a cycle of length £ is

(3) ' 8 = (xl,xz, ceoe ,xk)

telling that s(z;)=x,, 8(x;) =xs,. . ., 8(;) =2;. Obviously

(4) 8§ = (@py. . ., TpZy) -
Now when r e §,,,
(5) rer~t = (r(zy),r(xy),. . .,7(xy)) .

From this one deduces that two permutations p,q € S, are conjugate,
(6) g = rprt forsomeres,,

if and only if they possess the same cycle structure (cycle lengths). Fur-
thermore, r € S, _; means that r(n)=n, and so p,q € S, are ‘S, _,-conju-
gate’, i.e.

(7) q = rpr-! for somere S, _,,

if and only if their cycle structures are identical and at the same time the
number n belongs to a cycle of the same length in p as in q.

Consequently, p and p~! are always S,,_;-conjugate in S,, and by our
theorem the multiplicity of an irreducible representation of S,_, in (the
restriction of) an irreducible representation of §,, is at most one. This
fact is of course well-known, but is usually proved by means of the cha-
racters (as in [2, chapter 7-5]).

3. Proof of the theorem.

Let D®,...,D®" be a complete set of inequivalent irreducible matrix
representations of @, and hence of A(G), of dimensions n,,...,n,. Asis
well-known [1], 4(G) is the direct sum of two-sided ideals 4D, .., A",
in such a way that D® is an isomorphism between 4® and the full alge-
bra of m, x n, matrices. Therefore A(H)' is commutative if and only if its
representation by any D® is commutative.
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C=DW(A(H)'), the representation of A(H)’, consists of those n,xn,
matrices that commute with every D®(h), h € H. We can assume that
D@ represents every element & € H by a fully reduced (block-diagonal)
matrix

do@) ... 0
(8) D) (n) =( : : )

0 ... dowm)

where d® is an irreducible matrix representation of H. (If necessary, ma-
ke a similarity transformation). We can further assume that if d*® and
d® are equivalent, they are equal. It is then a simple application of
Schur’s lemma [1] to show that C is isomorphic to the algebra consisting
of all complex s x ¢ matrices

"11.11 . e m.ls
(9) : :
Mgy oo Mgy

in which m,;=0 whenever d® and d® are inequivalent representations
of H.

C is commutative if and only if the matrices (9) are all diagonal, and
so the proof of part A) is complete.

Part B) follows from A) because the condition stated implies that the
commutant 4(H)’ is commutative. This is seen by introducing an expli-
cit basis for A(H)'.

Assume that a € A(@) commutes with all 2 € H and write a as in equa-
tion (1). Then, with |H| being the order of H, we have

(10) a = |H|Ypeghah™ = 3,cqy|H| D g hgh™
so that a is a linear combination of elements
(11) K(g) = Dhemhgh™

in A(H)'. The different K(g)’s are linearly independent and form a basis:
for A(H)'. The product of two basis elements is

(12)  K(g)K(g,) = zhl,haeﬂhlglhl_lhzgzkz_l = DreaK(g1hgah™)
= DnenK(hg hg,)

(define either A=h,~h, or h=h,"1h,) .
The condition stated in part B) of the theorem is simply that K(g-!)=
K(g) for every g € G. Under this condition 4(H)’ is commutative, because
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(13)  K(9:)K(9,) = K(g2™)EK(917™") = ZhenK(gehg, 1071
= 2nerK((g2a7 09 A7) ) = 3 g K (hg hg)
= K(g,)K(g,) -
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