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ON THE RELATION BETWEEN
GAUSSIAN MEASURES AND CONVOLUTION
SEMIGROUPS OF LOCAL TYPE

CHRISTIAN BERG

Summary.

The purpose of this paper is to relate the notion of Gaussian measures
introduced by Urbanik in [7] and the notion of convolution semigroups
of local type introduced by Forst in [4] and developed further in [2].
The main results are the following: If ()., is a convolution semigroup
of local type on a locally compact abelian group G, then every y; is a
translate of a Gaussian measure on a closed subgroup of G. If u is a
Gaussian measure on a locally compact abelian group, then there exists
a convolution semigroup (), of local type on @ such that p,=u. For
more precise statements see Theorem 7 and 8 below.

Introduction.

For a locally compact space X we denote by C,(X) the set of continu-
ous complex-valued functions on X with compact support. The restric-
tion of a Radon measure y on X to a Borel subset ¥ < X is denoted | Y.
A net (u,);.; of Radon measures on X is said to converge vaguely to a
Radon measure y on X if

limg (g, f) = (uf  for all fe Cy(X) .

In the following @ denotes a locally compact abelian group, and its dual
group is denoted I'. For the Fourier analysis on ¢ we use the notation
from the book of Rudin [6]. In particular T denotes the circle group.

In the first section we review some properties of convolution semi-
groups of local type and prove (Theorem 4 and Proposition 6) that a
convolution semigroup (1), on G is of local type if and only if (y(1)):so
is of local type on T for every y € I', and if and only if Rey(ny) =Rey(y)n?
for n € Z and y € I', where p is the continuous negative definite function
associated with (g);~0-
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In the second section we review some properties of Gaussian measures
and in the third section we examine the relation between convolution
semigroups of local type and Gaussian measures.

1. Convolution semigroups of local type.

By a (vaguely continuous) convolution semigroup on G we mean a
family (u);-o of Radon probability measures on @ satisfying

1) Hxphg = ty,, for t,s>0,
(2) lim,_,op = e vaguely .

A continuous function y: I' - C is called negative definite if for every
natural number » and for every n-tuple (y,,...,y,) of elements from I'
the matrix

(W) + ) — (i —75)

is non-negative hermitian.
A negative definite function y has the properties Rey(y)=0 and

P(—=»)=y(y) for y e I'.
There is a one-to-one correspondence between the set of convolution

semigroups (i), on G and the set of continuous negative definite func-
tions y: I' - C satisfying ¢(0)=0. The correspondence is given by the
formula (cf. [2]).

(3) B(y) = e for t>0 and pyeI .

If (u;);50 and y correspond to each other via (3) we will say that they
are associated.
The following result is an extension of Proposition 18.2 in [2].

ProrosrrioN 1. Let (1), be a convolution semigroup on G. Then there
exists a non-negative measure u on G\ {0} such that

Hmt—»ot_1<:ut’f > = </,t,f h
for every continuous bounded function f: G — C satisfying 0 ¢ supp (f).

The measure g is in particular the vague limit of the net

(| G\ {0})50

as ¢ tends to zero, and it is called the Lévy measure for (u;);-,.
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Proor or ProrosiTioN 1. Let S denote the set of symmetric Radon
probability measures with compact support on I' and let ¢ € 8. One
easily finds that

(4) (1=a)t1y)" = tY(1—eW)x(c—g,) for t>0,
where vy is associated with (u,),., according to (3). It follows that
lim, ,((1-0)t")" = pro—y

uniformly over compact subsets of I', and therefore yxo—v is a con-
tinuous positive definite function on I'. If x, denotes the positive bounded
measure on G such that

(5) fo = pro—yp,

it follows by the continuity theorem for Fourier transforms (cf. [2]
Theorem 3.13) that

hmt—»o((l - a)t—lﬂb 9> = {e:9)

for every continuous bounded function g: G — C.

Let f: @ - C be a continuous bounded function such that 0 ¢ supp(f).
There exists then ¢ € § such that 6<% on supp(f), (cf. [2], 18.1) and
therefore

f (x) = f(x)/(l —a(x)) for x € supp(f) ]
¢ 0 for x ¢ supp(f) ,

is a continuous bounded function on @, and we have consequently

limt->0t~1 <1ut’f> = hmt—>0<( 1- a)t_lﬂl’f6> = <lua’fa> .

It follows in particular that ¢-(x|G\{0}) converges vaguely on
G\ {0} to a non-negative measure x on G'\ {0} and that

(6) (1-0)u = p,|G\{0} forall cesS.

With f and ¢ as above we then have

limy ot upf) = {orfo) = | G\ {0} S0
= </"’(1_a)fu> = </l,f> .

Let G, and G, be locally compact abelian groups with dual groups I'y
and I, and let ¢: G; -~ G, be a continuous homomorphism. The dual
homomorphism ¢: I'y - I'y is defined by

(z,9()) = (p(x),y) for zeG, and yel,.

With this notation we have the following result.
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ProrosiTioN 2. Let (1), be a convolution semigroup on Gy with Lévy
measure u and associated continuous negative definite function y. Denoting
by vi= (1) the tmage measure of p, under @ for t > 0 then (v;),. o 18 @ convo-
lution semigroup on Gy with associated continuous negative definite function
wo@. The Lévy measure v for (v,),. o verifies

w.f) = ufopd
for every continuous bounded function f: G, — C such that 0 ¢ supp (f).

Proor. The measure »,=¢(y,;) is a Radon probability measure on G,
with Fourier transform

o(y) = SGl(tp(x),y) dp(x) = SGI(“""‘JB(V)) dpy(x)
= Alp) = e,

where y e I',.

The function wog is clearly a continuous negative definite function
on I, satisfying y(¢(0))=v(0)=0, and therefore (»),., is a convolution
semigroup on G,.

Let f: G5 — C be a continuous bounded function such that 0 ¢ supp (f).
Then 0 ¢ supp (fop) and we get by Proposition 1 that

) = limy ot f) = limy ot~ fop) = (u,fop) .

ReMARK. The last statement in Proposition 2 says that v is the re-
striction to Gy \ {0} of the image measure ¢(u) of x under ¢: G, \ {0} - G,.
Note that @(x) need not be a Radon measure on G, since ¢(u)({0}) can
be infinite. If ¢ is one-to-one we have v=g(u).

A convolution semigroup (u;);.o on G is said to be of local type (cf. [4]
and [2]) if the Lévy measure for (u,),., vanishes.
The following Corollary follows immediately from Proposition 2.

CoRrROLLARY 3. Let (u);-0 be a convolution semigroup of local type on G,
and let ¢: Gy —~ @y be a continuous homomorphism. Then (@(uy))iso 25 of
local type on G,.

The following result shows how to decide whether a convolution semi-
group is of local type by considering convolution semigroups on T.

THEOREM 4. A convolution semigroup (u;)o on G is of local type if
and only if (y(iy))i>0 98 of local type on T for every y € I
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Proor. The “only if”” part follows immediately from Corollary 3.
Let u denote the Lévy measure for (u),,, and suppose that (y(x,))
is of local type on T for every y € I". By Proposition 2 we then have

>0

(usfoy) = 0 forall feC(T\{1}) and yeI'.

For every x € G\ {0} there exist a character y € I" such that y(x)+ 1 and
a function fe C,+(T\{1}) such that f(y(x))>0. It follows that every
x € G\ {0} has a neighbourhood with y-measure 0, and u is consequently
zZero.

EXAMPLES OF CONVOLUTION SEMIGROUPS OF LOCAL TYPE (cf. [2]).

a) Let I: I' > R be a continuous homomorphism. The dual homomor-
phism [: R — @ determines a convolution semigroup (1);., on @, namely

= &y for t>0.

This convolution semigroup has clearly vanishing Lévy measure and is
thus of local type. The associated negative definite function is y(y)=
il(y) for ye I.

b) A continuous function ¢: I' — R is called a quadratic form if
q(y+0)+q(y—9) = 29(y)+29(5) for y,06erl.
A quadratic form is easily seen to have the following properties
q(0) =0 and g¢(ny) = n2q(y) for yel' and neZ.

A non-negative quadratic form gq: I — [0,00[ is negative definite (cf.
[5] or [2], 7.19) and the associated convolution semigroup (u);.o on G
is of local type. This can be seen by going back to the proof of Proposi-
tion 1 and remarking that for ¢ €S and y € I' we have

g*a(y) = {$(a(y +90)+q(y —0))da(9)
= q(y)+§q(d)da(9) ,
80 that g*o—q is a constant function. This implies that the measure u,

in (5) is concentrated at the zero element of &, and by (6) the Lévy
measure u for (u);., therefore satisfies

(1-6)u =0 forall ces.

For every xze G\ {0} there exists o€ 8 such that ox)<l (e.g. o=
(e, +¢_,) for some y € I'), and u is consequently zero.
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c) It follows by a) and b) that any function y: I' - C of the form
w=q+1l, where ¢: I' - R is a non-negative quadratic form and I: I' - R
is a continuous homomorphism, is a continuous negative definite func-
tion, and the associated convolution semigroup (u);., is of local type.
In fact we can write

My = opxegy  for >0,

where (0;);., is the convolution semigroup associated with ¢, and the
Lévy measure for (u),., is the sum of the Lévy measures for (o)., and
(&g¢))1>0» hence zero.

Conversely we have the following result proved in [2]:

ProrosrTION 5. Let ()¢ be a convolution semigroup of local type on G
and let y be the associated negative definite function. Then p can be written

Y =q+il,

where q: I' - R is a non-negative quadratic form and l: I' - R a continuous
homomorphism, and denoting by (o}),- o the convolution semigroup associated
with q we have

Wy = oyxegy  for £>0.

For the sake of completeness we sketch a proof:

Using the notation from the proof of Proposition 1 we get by (6) that
1, is concentrated at the zero element of G for every o € S, which by (5)
is equivalent with y*o—y being constantly equal to u (&) for every
o € S. Denoting g=Rey and I=Imy we have

(7) gxo—q = u,(G@) and Ilxoc—1l=0 forall sef.
For eI’ we put o=13%(es+¢e_5) €8 into (7), and using o(0)=0,

Reyp(y)20, p(—y)=vp(y) for y € I, it is easy to see that ¢ is a non-nega-
tive quadratic form and ! is a continuous homomorphism.

As a special case of the preceding discussion we get that a convolution
semigroup (u;),..o on T is of local type if and only if the associated negative
definite function y: Z -~ C has the form

(8) p(n) = an®+ibn for neZ,

where 2= 0 and b € R. This can also be deduced from the Lévy-Khin-
chine formula for y (cf. [3, p. 74]), because the Lévy measure for the
convolution semigroup is the representing measure in the Lévy—Khin-
chine formula for .
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Example c) together with Proposition 5 give a complete description
of the convolution semigroups of local type. However, it will be important
in section 3 that the following ‘“weak conditions” imply locality.

ProPOSITION 6. Let (u;);.o be a convolution semigroup on G with asso-
ciated megative definite function p on I'. Then the following conditions are
equivalent :

(1) ()0 ts of local type.
(i) ¢g=Rewy is a quadratic form.
(iii) ¢g=Rey satisfies g(ny)=n?q(y) for ne Z and y € I.

Proor. The implications (i) = (ii) and (ii) => (ili) follow from the
preceding discussion.

(ii) = (i). We assume that ¢=Reyp is a quadratic form and we know
that ¢= 0. By example c) it suffices to prove that I=Imy is a homo-
morphism of I" into R.

Let o0 € 8 be fixed. As in example b) we find

gxo—q = {qdo,
8o that ¢ o —g¢ is a non-negative constant function. Furthermore we find
1xa(0)—1(0) = {ldo = 0,
because I(—y)= —I(y) for y € I" and o is symmetric. The function
pro—p = (gxo—¢q)+i(lxo—1)
is positive definite (cf. (5)), and we therefore have for y e I
ly*o(y) —p(y)| = y*0(0)—y(0) = g*a(0)—g(0)
= gxa(y)—q(),

so it follows that
lxo(y)—Uy) =0 for all yerI'.

From this equation it follows like in the proof of Proposition 5 that
1: I > R is a homomorphism.

(iii) = (i). Let y € I" be fixed. The dual homomorphism : Z — I" is
given by #(n)=ny for n € Z, so by Proposition 2 the negative definite
function associated with (y(u));s is

o(n) = yp(ny) forneZ,
and by hypothesis

Rep(n) = Rey(ny) = n*Rey(y) = n?Reg(l) for neZ.
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This shows that Reg is a quadratic form on Z, so by (ii) => (i) in the case
G=T we get that (y(u4)), is of local type. Since y € I' was arbitrary
Theorem 4 implies that (u,),., is of local type.

ReEmaARk. The implication (iii) = (ii) could have been established
using the result from [5] that

y b lim,,_, . Rey(ny)/n?

is a quadratic form.

2. Gaussian measures.

A probability measure 7 on T is called normal if the Fourier coefficients
of 7 are given as

(9) T(n) = yre~9* for neZ,

where y € T and d > 0.
A Radon probability measure = on a locally compact abelian group &
is called Gaussian (cf. [7]) if the following conditions are satisfied:

(i) There exists a convolution semigroup (7,),. o on G such that r=1;.
(ii) For every character y € I'\ {0} the image measure y(7) is normal
onT.

It is proved in [7] that there exist Gaussian measures on @ if and only
if @ is connected, and that supp(z)=G for every Gaussian measure T
on G.

REMARK. Given a Gaussian measure on G there may be several con-
volution semigroups on @ such that (i) holds:
Let G=T and let v be the probability measure on T with Fourier
coefficients
f(n) = e forneZ.

Then 7 is Gaussian and the convolution semigroups (u;);o and (¥).,
on T defined by

fy(n) = e=n*, 5(n) = e~2mimg—m* for t>0 and neZ

(are of local type) and satisfy y,=»,=7.
On the other hand if both @ and I" are connected (that is, G=I"=R")
there exists at most one convolution semigroup on @ such that (i) holds.
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3. The relation between the concepts of section 1 and 2.
In the following theorem we use the notation from Proposition 5.

THEOREM 7. Let (u;);-o be a convolution semigroup of local type on @,
let w=q+1l be the associated mnegative definite function on I' and let
(01)i>0 e the convolution semigroup on G associated with q so that

W = Oy*&jy  for £>0.
For each t > 0 the measure o, is a Gaussian measure on the closed subgroup

H={yel'| ql»)=0}*

of G, and u, is a translate of o,.

Proor. Let ¢>0 be fixed. It is easy to see that

supp (o)) < {y e I'| G(y)=1}*,
so it follows that

supp(oy) € {yeI'| q(y)=0}* = H .

We shall verify that o, satisfies the conditions (i) and (ii) of section 2
relative to H.

The condition (i) is clear by putting z,=g;, for s>0.

Let y denote a non-trivial character on H and let y € I'\ H* be such
that the restriction of y to H is equal to y (see [6] 2.1.4 for the existence
of y). Then we have

(X(Ut))A(n) = (y(a,))"(n) = 0yny) = el = e~lavm*  for neZ,

and since y € I'\ H* we have g(y) > 0, so by (9) x(¢;) is a normal measure
onT.

REMARK. Part of the argument in the preceding proof was also used
in [1].

THEOREM 8. Let 7 be a Gaussian measure on a connected locally com-
pact abelian group G. Every convolution semigroup (i) on G such that
u,=1 ts of local type.

Proor. Let (u;),., be a convolution semigroup on G such that u,=7
and let  be the associated negative definite function. By definition there
exists at least one such convolution semigroup.
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By Proposition 6 it suffices to prove that
Rey(ny) = Rey(y)n? for neZ and ye I,

and it clearly suffices to consider y € I'\ {0}.
For y e I'\ {0} we have

(y(w))"(n) = e~ for ¢>0 and neZ,

and by assumption y(u,) is a normal measure on T, so by (9) there exist
an element y(y) € T and a number d(y) >0 such that

(¥())~(0) = (y(y))re-2m*  for neZ.
It follows that

eV — (y(y))"e“d(y)”z for neZ,

hence
e—R&'P('W) —_ e_d(y)”z fOI' ne zZ ]

so that d(y)=Rey(y) and
Rey(ny) = Rey(y)n? for neZ.
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