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A THEOREM ON OPERATOR ALGEBRAS*
N. TH. VAROPOULOS

1. Introduction.

Let H be a Hilbert space and let us denote by #(H) the algebra of
bounded operators on H. Let B be a Banach algebra; we shall say that
B is an operator algebra if it can be identified topologically (i.e. up to
norm equivalence) with B< Z(H) a closed subalgebra of #(H) for some
Hilbert space H. (Notice that we make no assumption on an identity or
a possible involution of B).

What is clear is that every closed subalgebra of an operator algebra
is also an operator algebra and what is also true, but not trivial, is that
every quotient algebra of an operator algebra (i.e. an algebra of the form
B[I where I is a closed ideal of B) is also an operator algebra. This is a
result of Cole [1]. At least, what one finds in [1] is the proof when B is a
uniform algebra but the proof works for the non-commutative case and
yields the above result. (Lumer [2], A. Bernard [Seminaire Orsay 1972/73]
and others have observed that.) At any rate we shall take this result for
granted.

The main result that we shall prove in this note is the following:

THEOREM. Let B be a Banach algebra and let us suppose that B is isomor-
phic as a Banach space to C(X) for some compact space X, then B is an ope-
rator algebra.

Note. In the above theorem it suffices, in fact, to suppose that B is
a ¥ space in the sense of [3] (i.e. that many finite dimensional sub-
spaces of B can be identified uniformly to spaces of the form [, (the
I® space over n points).)

To prove the above theorem we shall develop a criterion for a Banach
algebra to be an operator algebra, analogous to A. M. Davie’s criterion
for Q-algebras [4]. We shall state this criterion below (we state it only
in one direction, since the other direction is obvious).
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CrITERION. Let B be a Banach algebra and let us suppose that there
exists some K > 0 such that the following holds:

For any S € B’ in the unit ball of the dual any m=1 and any F<B
finite dimensional subspace of B we can choose

Li:F>2H), j=12,...,m,

m linear mappings from F into #(H), for some Hilbert space H, and we
can also choose %,k € H two vectors such that:

151, 1%l = 1,
ILj(x)|le = K|, welF, j=12,...,m,
(y g oo @, 8) = (Ly(27)  Lg(y) . . .+ Lypy(®, )P, kD gy
forallz;e F (j=1,2,...,m).

In the above relation the bracket ( ) indicates the scalar product
between B and B’, and the - inside that bracket indicates the multipli-
cation in B. The bracket { )5 indicates the scalar product in H and the
- inside that bracket indicates the operator product.

In Section 2 we shall give a proof of the above criterion.

In Section 3 we shall prove our Theorem and we shall end up in
Section 4 by some other application of the above criterion and some
open problems.

2. Proof of the Criterion.

We shall be brief because the proof follows standard lines. The reader
who wishes to work out for himself all the details that will be left undone
here is advised to consult [4] and [5] first.

We shall first have to find an analogue of Craw’s lemma. That lemma
says that a Banach algebra B is a quotient of a uniform algebra, if it
satisfies

”P(xli' . "xn)”B = K Sup{IP(zla' . -:zn)l; ’zjl = 1}
forall x;€B, |ajf £, j =1,...,n,

for all polynomials without constant term P and an arbitrary number
of variables, where K and J are constants that depend only on the
algebra B.

That such a lemma exists for operator algebras was pointed out to
me by B. Cole (oral communication) in the case where the algebra is
commutative. I wish here to include non-commutative algebras. There-
fore, the first thing to do is to generalize the notion of a polynomial.
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The non-commutative version of the space of polynomials of » variab-
les without constant term will, of course, be the complex free associative
algebra on n generators without identity which we shall denote by @,-®,,
can be characterized by the fact that it is generated by = elements
€1, - - €, € D, and the fact that for any other associative algebra A
and any set «y,...,x, €4 of n elements of 4, there exists an algebra
homomorphism 7: @, - 4 that

7'[(6’) = (xj, j = l,...,'n.

We can realize @, concretely as a direct sum of tensor products in
such a way that every element P € @, admits a direct decomposition

(2) P=P1+P2+-..+Pd

in its “homogeneous components’ (d is the “‘total degree’” of P). For
every 1<¢=d,P, can be written

Py =23.2,,0€,0...Qe,,

where 1, € C and &= (a;,. . .,«,) run through the space of all multiindices
of order gq. The above is of course the analogue of the decomposition of
a polynomial in its homogeneous components.

We shall need now to introduce a submultiplicative norm on @,
(which will be the analogue of the uniform norm for polynomials).

We consider all possible homomorphism of @, into #(H), where H is
the separable Hilbert space, defined (as above) by the condition

n(e) =T;eL(H), j=1,...,n,
where T'; (j=1,...,n) are arbitrary contractions and we set
I1Pllo, = sup,|n(P)l g foral Ped,,

where the sup, is taken over the above set of homomorphisms 7.

It is easy to see that the above defines a submultiplicative norm on
@, and it is also easy to see (by an easy argument involving infinite
direct sums of Hilbert spaces) that there exist universal contractions
70,...,7,9€e £(H) such that

IPllg, = 17°(P)llg@n forall Ped,,

where 7%(e;) =T, (j=1,...,n). This fact shows that @,, the completion
of @,, by the above norm is an operator algebra.

The only other fact which we need about this norm is that for every
P e @, we have
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where P, is the “homogeneous component” of degree g of P. The proof is
easy and it is the direct analogue of the corresponding inequality for
polynomials. It is therefore omitted. Needless to say that free algebras
@, over an arbitrary set of generators N can be considered, and that
they can be normed in an analogous manner, so that @, become operator
algebras.

We can now state and prove the analogue of Craw’s lemma.

Lemwma 2.1. Let B be a Banach algebra and let us suppose that there
exists some positive constant K >0 such that for all n>1, all m=1, and
all homogeneous elements P € @,, of degree m and any choice ,,,. . .,x,
€ B tn the unit ball of B we have

=Pz = K™|Pllg, ,

where ni(e;)=x; (§j=1,...,n). Then B is an operator algebra.

Proor. Let 6=1/2K, let n>1 be arbitrary and let z,,...,2, € B be’
such that |lx;][<d (j=1,...,n). Let also P € @, be arbitrary and let =
the homomorphism from @, in B defined by n(e¢;)=w;(j=1,...,n). It
is clear then by the hypothesis of the lemma and (2) and (3) that

(4) =Pz = |1Plla, -

We can now consider the set N = B, the ball of radius é in B and con-
sider @, the free associative algebra generated by N. Using then the
identity mapping from N into B and the inequality (4) we see that we
can construct a homomorphism from @, onto B. This proves our lemma
because B, being then a quotient of an operator algebra (the algebra
®y), is an operator algebra itself.

Proor oF THE CRITERION. Let B satisfy the conditions of our criterion
for some K. Let us fix F a finite dimensional subspace of B and let us
also fix m =1 a positive integer and S € B," an element of the unit ball
of the dual of B; there exist then H a Hilbert space and k,k € H and
L; (j=1,...,m) satisfying the conditions of our criterion.

Let us consider then

% = H1+H2+...Hm+1,

which is a new Hilbert space such that H,=H (i=1,2,...,m+1) (ie.
the direct sum of m + 1 copies of H), let us fix I,: H; - H identifications
once and for all (i=1,2,...,m+1) and let us define operators in £ ()
by the following conditions
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L(z)H 11 =0;
L(x)H; < Hypy; L)y = Iy o Ly(x)o by,
forall t=1,2,...,m, allz e F and all ;€ H,.

It is clear then that # — L(x) is a linear mapping from F into £ (#)
of norm less than K and it satisfies the following condition:

@y @y o, S) = (L(@y) L(@y) . . . L@, oy
with h,=1,"Yh) e H, <3 ; ky=1,,,~Yk) € H ., <. What we have in

fact proved by the above considerations is the following

Lemma 2.2. If B is a Banach algebra that satisfies the conditions of our
criterion (for some K >0) we can suppose that H and h,k are so chosen
that the mappings Ly, L,,. . .,L,, are all identical.

CONCLUSION OF THE PROOF OF THE CRITERION. Let us suppose that
the L’s are then identical and let us prove that B satisfies the conditions
of Lemma 2.1. Towards that let

P=33,,2¢,0... €,

be a homogeneous element of @, (for some %= 1) of degree m (for some
m=1). We have then (preserving all the notations introduced for the
proof of Lemma 2.1)

((P),8) = D Aul®py " ®py oo . %, , 8

(A(P),8) = 3 ALy Ly - .+ Ly by
for an appropriate choice of A,k € H (some Hilbert space) and L, = L(x,)
e Z(H) (p=1,2,...,n) for some linear mapping L: F — FL(H) defined
on F the subspace of B generated by x,,z,,...,%,.
From the above we conclude that
[<n(P), 8)| = K™||P|l,,

and this together with Lemma 2.1 completes the proof.

so that

3. Proof of the Theorem.

What we have done up to now was of a formal nature. The inequa-
lities we shall need in this paragraph are, however, less trivial. We
shall need in particular the following theorem from Grothendieck’s
theory of Banach spaces (cf. [6] and [3]: the second reference is more
accessible to non specialists).

Math. Scand. 37 — 12
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THEOREM (G). Let b: C(X)x C(X) - C be a complex bilinear form on
C(X) of norm 1, where X is a compact space. Then there exist u,v € P(X)
two probability measures on X and b: L*(du) x L¥dv) - C a bilinear form
such that

ba,y) = b(i(x).j(), ||l = 100,

where ©: C(X) — L¥du) and j: C(X) — L¥dv) are the canonical injections.
We shall introduce now some notations. Let m = 1 be a positive integer

and let B=1[,> be the m-dimensional I* space. Let also {e,,...,e,,} be
the canonical basis on [, so that

llxll = sup;l4;| forallz = 37 de;eB.
Let us suppose that
Bp:BxB—-B, p=12...,n-1,

are bilinear mappings of norm ||8,]|<1, where again n > 1 is an arbitrary
integer. Let finally
b:BxB—~C

be a bilinear form on B of norm |b|| <1 and let us denote
F (@, 2y, . .,,) = b[ @ Bu[1, 85 - - - Bra[®n1,2a). . .1]] -
We have then the following

Lemma 3.1. Let mz1,n21, B,’s and b and F be as above. Then there
exist linear mappings Ly, L,,. . .,L,

Li: B~ %(H), |Lj <100, j=0,..n,

where H 1is the separable Hilbert space, There exist also h,k € H such that
I\|l, ||&]| £ 1 and such that

F(xg, @y, .. 2,) = {(Lo(g)  Ly(xy)* . o .~ Lp(2,)h, kg -

(Same notations as in the criterion).

As soon as we have the above lemma, our theorem follows at once,
for it suffices to take f;,B,,... the bilinear mappings defined by the
algebra multiplication in C(X) and b(z,y)=<{z-y,8),8 € (C(X))’. Some
care has of course to be taken to reduce the problem to finite dimen-
sional subspaces and such like, but these considerations, being essentially
of a trivial nature, will be omitted.
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When n=1 the identity that defines F should be interpreted
F (1) = b[zo,2,] -

Proor or LEmMA 3.1. The lemma certainly holds in the case n=1
(with the above interpretation of F); this is just Theorem (G) stated
above.

The proof of the lemma will therefore be done by induction on n. We
shall show in detail how to pass from case n=1 to case n=2 and this
will in fact be typical.

Using the case n=1 we see that the bilinear mapping g, can be written
in terms of the canonical basis {e,,. . .,e,}=DB as follows:

Bals, 5] = E}'Ll Aj(xy,25)e;

where the A, are bilinear forms of norm =<1 which in turn can be written
in the form (inductive hypothesis n=1)

Aj(24,7,) = <Lja)(x1)'Lj(z)(wz)hphz>y s

where h,,h, are vectors in the unit ball of some separable Hilbert
space H, and the L,®,L/® are linear mappings

L:B—~2H), |IL®] = 100, i=1,2;j=12...m.

Let now b be as in the lemma. We then see that F(x,,2;,%,) can be
written
F = b[xo’ﬂl[xl’wz]] =
= 2;: q=1 a‘pq<Mp(xo)Lq(l)(xl)Lq(z)(xz)hl’h2>H s

where M, (p=1,...,m) are the linear mappings from B to Z(H) defined
by M, (,) =multiplication in H by the scalar z,® (= the ptt coordinate
of z,), and where 4 =(a,,); 4, is a scalar matrix satisfying the condi-
tion

I =1 Optip¥ql = 1 forall luy),lv,| £ 1, p=12,...,m.

Another use of Theorem (G) together with the above inequality on 4
implies then that there exists B=(b,,); ,.; another matrix which
satisfies

m
P q=

Apg = PG‘ Hp¥e P4 = L...,m, ”B” < 100,

where {u, 2 0}7_; and {», = 0}7_, are scalars satisfying

Ez;lﬂp = Eglo”q =1,

and where ||B|| indicates the operator (matrix) norm of B.
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Let us now define A =HQH®...DH the m-fold orthogonal sum of
H with itself and let us define operators in #Z(5#) as follows:

‘L®x;) 0 ... O
L) = O L% (x,) .
0 ... Lm(’a(x,)
(¢=1,2 and z; € B) and
My(zg) O ... O
feg=| O Msloo
0 .. M m.(x.,)

Both the above definitions give operators “diagonal” in blocks. Let also
B=(b,, 1)y 4-1 be defined in blocks, where the (p,q)t® block is b,,-I.
(I =identity in #(H)). B is in fact B x I, the “cross product” or tensor

product operator. 3
An easy verification shows that the operator 7'= - B- L™- L® can be
written in block form 7'=(T,,)p,-, Where

Tyq = bpM,LLPL®, p,g=1,...,m.

Let us finally define two vectors £,,%, € 5# as follows:

El = (V;‘_lhl’l/‘;z—hv- . "Vﬁ;hl) .

ﬁz = (V.ﬁhz’l/”zhm- e s VVmba)
It is obvious then that |||, ||A,)| < 1 and that

F(2y,21,%5) = <M (%)‘B ‘E(l)(xl)ﬂz)(xz)ﬁlsﬁz>x .
This and the obvious fact that
IZ9| < supy\LA, ||| < sup,|M,|, |B| < |IBI| < 100

completes the proof for n=2.
The passage from n=N to n=N+1 is identical, only the notations
are more cumbersome. It is therefore omitted.

4. Some remarks and open problems.

The theorem we have proved is really a theorem on Banach spaces.
It states that a Banach space of type .#* has the property that the
only Banach algebra structure it admits, is necessarily the structure of
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an operator algebra. Other spaces have the same property, e.g. all Hil-
bert spaces or equivalently all spaces of type #2 (trivially!). Let us call
the above property “property P”.

A close analysis of the proof of the Theorem shows.

ProrosrrioN 4.1. Let B be a closed subspace of C(X) for some compact
space X, and let us suppose that BQB is a closed subspace of C(X)& C(X).
Then B has property P. (Cf. [T] for notations on ®).

The only thing that we must observe is that in the above proposition
we may suppose, without loss of generality, that C(X)~1,* for some set
A (i.e. is the I*° space of some discrete space 4) once this is observed, the
proof of the proposition follows the same lines as the proof of the Theo-
rem. (Of course, one has to understand what ® means and has to use
Hahn-Banach.) I do not know of any good nontrivial examples, however,
for which the hypothesis of the proposition is verified. A good possible
candidate for such a space is 4(D), the disc algebra. (Cf. [8] for a discus-
sion of this problem.)

Another problem that presents some interest is to decide what other
spaces of type £P for some p=1 have property P. A tempting guess,
based on interpolation arguments (cf. [5]), would be that all spaces of
type £? (2= p< + ) have property P, but this I cannot prove.

An even more wild guess is that the space .#(H), or even more gene-
rally the space of every C* algebra, has property P. But I do not really
have any good evidence to support that.

The only evidence I have, in fact, is the following proposition.

PRrOPOSITION 4.2. Let H be the separable Hilbert space (we impose the
condition of separability only for convenience, the proposition holds in fact for
the general case) and let us fix E={ey,e,,. ..} an orthomormal basis on H
and let

M={m= (myg; 1,j=12,...)}

be the space of matrix representations of bounded operators on H with
respect to the basis E (that is, my={Te; e;)).
Then we can give on M a commutative Banach algebra structure by
defining
mn = (myny; 4,5 =12,...)

for m,n € M. That algebra is then an operator algebra.
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Proor. (Outline) For a proof that M under the above multiplication
is a normed algebra, we shall refer the reader to [9, §3]. The proof that
is given there, combined with our criterion here, proves in fact more,
namely that M is an operator algebra.

The fact that M under the above multiplication is a normed algebra
is something that was brought to my attention by Milne (Edinburgh).
Later, A. Shields pointed out to me that it appeared in the literature
for the first time in [10].

I should like to finish up with the following problem:

Is the above algebra M a Q-algebra or is it not?
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