THE TRACE IN SEMI-FINITE VON NEUMANN ALGEBRAS

GERT KJÆRGÅRD PEDERSEN

In [3] R. V. Kadison and the present author presented a simple approach to the comparison theory, additive trace and type classification of von Neumann algebras using an additive equivalence relation \approx , applicable to all positive operators, in favour of the original Murray-von Neumann equivalence \sim , applicable only to projections. However, as we wrote "this approach does not banish the difficulties from the fundamentals of the subjects; for the identification of the two theories (namely the fact that for projections E and F, $E \sim F$ if and only if $E \approx F$ [3, Theorem 4.1]) employs the Murray-von Neumann additive trace".

This note attempts to annul the above statement. For using the Riesz decomposition property of the relation \approx together with the barest minimum of knowledge about Murray-von Neumann equivalence and finite projections we construct the trace in a semi-finite algebra. The idea of the proof was inspired (as usual) by Kadison's elegant proof in [2] of the existence of a trace in a finite factor.

A comparison of our method with other simplified versions of Murray-von Neumann's construction of a trace (see [2], [1, III, 8] and recently [4]) reveals (as might be expected) that nothing valuable is free. We buy our simple proof at the expence of the rather detailed knowledge about order-theoretic properties developed in [3]. However, as order-theoretic properties have become an indispensable tool in current treatments of operator algebra, our proof may in the long run prove the most economical.

LEMMA 1. If φ is a faithful, normal state on a von Neumann algebra \mathscr{R} such that $\varphi(AA^*) \leq a\varphi(A^*A)$ for some constant a and all A in \mathscr{R} , then there is a faithful, normal, finite trace on \mathscr{R} .

PROOF. For each S in \mathcal{R}^+ define

$$\bar{\varphi}(S) = \sup \{ \varphi(T) \mid T \approx S \}$$
,

Received December 10, 1974.

with \approx as in [3, Definition A]. Note that if $S = \sum A_i A_i$ and $T = \sum A_i A_i$ then by the assumption on φ we have

$$\varphi(T) = \sum \varphi(A_i A_i^*) \leq \sum a \varphi(A_i^* A_i) = a \varphi(S)$$
.

It follows that $\varphi(S) \leq \bar{\varphi}(S) \leq a\varphi(S)$. Clearly $\bar{\varphi}$ is positive homogeneous, and since \approx is an additive relation $\bar{\varphi}$ is superadditive on \mathcal{R}^+ .

Take two sets $\{A_i\}$ and $\{B_j\}$ in \mathscr{R} such that $\sum A_i A_i^* = \sum B_j^* B_j \in \mathscr{R}^+$. By [3, Proposition 2.4] there is a set $\{C_{ij}\}$ in \mathscr{R} such that $A_i^* A_i = \sum_j C_{ij}^* C_{ij}$ and $B_j B_j^* = \sum_i C_{ij} C_{ij}^*$ for each i and j. Assuming, as we may, that $\{A_i\}$ is given and $\{B_j\}$ is chosen such that $\bar{\varphi}(\sum A_i A_i^*) < \varepsilon + \sum \varphi(B_j B_j^*)$ for some $\varepsilon > 0$, we have

$$\bar{\varphi}(\sum A_i A_i^*) - \varepsilon < \sum \varphi(C_{ij} C_{ij}^*) \leq \sum \bar{\varphi}(A_i^* A_i);$$

whence in the limit $\bar{\varphi}(\sum A_i A_i^*) \leq \sum \bar{\varphi}(A_i^* A_i)$. Taking the set $\{A_i\}$ to be a singleton we get $\bar{\varphi}(AA^*) = \bar{\varphi}(A^*A)$; taking it finite we get the subadditivity of $\bar{\varphi}$ (and thus the linearity on \mathcal{R}^+); and taking it arbitrary we get the complete additivity of $\bar{\varphi}$ on \mathcal{R}^+ . It follows that $\bar{\varphi}$ is a normal trace on \mathcal{R} , and since $\varphi \leq \bar{\varphi} \leq a\varphi$ the trace is faithful and finite as well.

LEMMA 2. If φ is a faithful, normal, semi-finite trace on EAE, with E a projection in \mathcal{R} , then φ extends to a faithful, normal, semi-finite trace on $C(E)\mathcal{R}$.

PROOF. By a standard maximality argument there a family $\{V_i\}$ of partial isometries such that $\sum V_i V_i^* = C(E)$ and $V_i^* V_i \leq E$ for each i. For each S in \mathcal{R}^+ define

$$\bar{\varphi}(S) = \sum \varphi(V_i * SV_i) .$$

If $T^*T \in C(E)\mathscr{R}$ then

$$\begin{split} \bar{\varphi}(T^*T) &= \sum_{ij} \varphi(V_i^*T^*V_jV_j^*TV_i) = \sum_{ij} \varphi(V_j^*TV_iV_i^*T^*V_j) \\ &= \bar{\varphi}(TT^*) \;. \end{split}$$

Moreover, $\bar{\varphi}$ is a normal extension of φ and thus a normal trace on $C(E)\mathscr{R}$. Since φ is semi-finite on $E\mathscr{R}E$, $\bar{\varphi}$ is semi-finite on $C(E)\mathscr{R}$.

Lemma 3. If \mathcal{R} contains a non-zero finite projection then there is a faithful, normal, finite trace on $E\mathcal{R}E$ for some non-zero projection E.

PROOF. Passing if necessary to an algebra $F\mathscr{R}F$ we may assume that I is finite and that φ is a faithful, normal state on \mathscr{R} . Applying Zorn's lemma we find a maximal pair of orthogonal families $\{E_i\}$ and $\{F_i\}$ of

non-zero projections in $\mathscr R$ such that $E_i \sim F_i$ and $\varphi(E_i) > \varphi(F_i)$ for each i. Put $E_0 = \sum E_i$ and $F_0 = \sum F_i$. Then $E_0 \sim F_0$ and $\varphi(E_0) > \varphi(F_0)$. Consequently $E_0 \neq I$ and $F_0 \neq I$, since either equality sign would entail the other by the finiteness of I. Moreover, $E_0 \sim F_0$ implies $I - E_0 \sim I - F_0$. With $a = \varphi(I - E_0)^{-1}\varphi(I - F_0)$ let $\{G_j\}$ and $\{H_j\}$ be a maximal pair of orthogonal families of non-zero projections in $(I - E_0)\mathscr R(I - E_0)$ and $(I - F_0)\mathscr R(I - F_0)$, respectively, such that $G_j \sim H_j$ and $a\varphi(G_j) < \varphi(H_j)$ for each j. Put $G_0 = \sum G_j$ and $H_0 = \sum H_j$. Then $G_0 \sim H_0$ and $a\varphi(G_0) < \varphi(H_0)$. Consequently $G_0 \neq I - E_0$ and $H_0 \neq I - F_0$ (either equality would entail the other). Moreover, with $E = I - E_0 - G_0$ and $F = I - F_0 - H_0$ we have $E \sim F$. Let V be a partial isometry in $\mathscr R$ from E to F and consider any pair of equivalent projections P and Q in $E\mathscr RE$. Since $P \sim VPV^*$, $a\varphi(P) \geq \varphi(VPV^*)$ by the maximality of $\{G_j\}$ and $\{H_j\}$. But $Q \sim VPV^*$ whence $\varphi(Q) \leq \varphi(VPV^*)$ by the maximality of $\{E_i\}$ and $\{F_i\}$. Consequently $\varphi(Q) \leq a\varphi(P)$.

Take now A in $E\mathscr{R}E$ and let A=U|A| be its polar decomposition. Given $\varepsilon>0$ there is an orthogonal family $\{P_n\}$ of spectral projections of |A| and suitable coefficients $\{\lambda_n\}$, such that $||A*A-\sum \lambda_n P_n|| < \varepsilon$. It follows that

$$\|AA^* - \sum \lambda_n U P_n U^*\| = \|U|A|^2 U^* - \sum \lambda_n U P_n U^*\| < \varepsilon.$$

Since $P_n \sim UP_nU^*$ for each n we have $\varphi(UP_nU^*) \leq a\varphi(P_n)$ from what we proved above; and from the linearity of φ it follows that $\varphi(AA^*) < 2\varepsilon + a\varphi(A^*A)$. Since ε was arbitrary $\varphi(AA^*) \leq a\varphi(A^*A)$ for all A in $E\mathscr{R}E$ and Lemma 1 applies, completing the proof.

Theorem. If \mathcal{R} is a semi-finite von Neumann algebra then there is a faithful, normal, semi-finite trace on \mathcal{R} .

PROOF. Combine Lemma 3 and Lemma 2 with a standard maximality argument.

REFERENCES

- J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, (Cahiers Scientifiques 25), 2e édition, Gauthier-Villars, Paris, 1969.
- R. V. Kadison, On the additivity of the trace in finite factors, Proc. Nat. Acad. Sci. USA 41 (1955), 385-387.
- 3. R. V. Kadison and G. K. Pedersen, Equivalence in operator algebras, Math. Scand. 27 (1970), 205-222.
- F. J. Yedon, A new proof of the existence of a trace in a finite von Neumann algebra, Bull. Amer. Math. Soc. 77 (1971), 257-260.