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BIHARMONIC GREEN’S FUNCTIONS AND
BIHARMONIC DEGENERACY

C.Y.WANG

It is well known that the harmonic Green’s function plays an impor-
tant role in the harmonic classification theory (e.g. Sario—Nakai [7]).
Explicitly, if we denote by Oﬂx ,X=G,B,D,C, the classes of Riemannian
N-manifolds which do not carry harmonic Green’s functions, or bounded,
Dirichlet finite, or bounded Dirichlet finite nonconstant harmonic func-
tions, respectively, then we have the strict inclusion relations

OgG<OgB<OgD=0ﬁo

for every dimension N = 2. Recently L. Sario [4] introduced the bi-
harmonic Green’s function y which, roughly speaking, satisfies y=A4y=0
on the ideal boundary of a Riemannian manifold. In the present paper,
we shall discuss the role played by y in the biharmonic classification
theory. It turns out that, in striking contrast with the harmonic case,
the class OY of Riemannian N-manifolds which do not carry y neither
is contained in nor contains any of the classes ngx, X=B,D,C, of
Riemannian N-manifolds which carry no bounded, Dirichlet finite, or
bounded Dirichlet finite nonharmonic biharmonic functions, respectively.
4
1. On a Riemannian N-manifold R, take a regular subregion 2 of R.
Let y,(z,y) be the biharmonic Green’s function on 2 with the biharmonic
fundamental singularity at y € 2, and with boundary data y,=4y,=0
on 92, where A=dd+4dd is the Laplace—Beltrami operator. Clearly

vo(®,y) = Sggg(x,z)ga(z,y)dz ,

where g,(z,z) is the harmonic Green’s function on 2 with pole 2, and dz
the volume element at z. The biharmonic Green’s function y, if it exists,
on R is

y(x,y) = limg | pyo(x,y) = SRgR(x’z)gR(zay)dz .

Received January 13, 19765.

The work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-
124-73-G39, University of California, Los Angeles.

MOS Classification 31B30.



BIHARMONIC GREEN’S FUNCTIONS AND BIHARMONIC DEGENERACY 123

Take a regular subregion R, of R and denote by w = w(x, R,) the harmonic
measure on R —R,, with w|0R,=1. It is known that every parabolic R
belongs to ON, whereas a hyperbolic R belongs to OY if and only if
w & L*R—R,) (Sario [4], [6]). This criterion is our main tool in testing
the existence of y.

2. We shall establish the following complete result:
THEOREM. The classes

0¥ n 0%.x, ON n 0%,x, OF n O¥.x, OF n O%.x

are all nonvoid for X=B,D,C, and N = 2.

Trivially, the Euclidean unit N-ball is in O¥n0¥,x, X=B,D,C. It
remains to show that ONNnO¥,;, OFnO¥,p, ONnOY,.5 O¥n0%Y,5, and
ONnO¥,, are not empty. The proof will be given in Sections 3-11.

3. To show that O¥ nO¥,;+ @, consider the N-cylinder

T: {(x’ylv - sYN-1) l || < o0, |y, = 1}

with each pair of opposite faces y;=1, y,= -1, ¢=1,...,N—1, identi-
fied by a parallel translation orthogonal to the z-axis. Endow 7' with
the metric

ds® = e Tda? ¢ /N-DIN 1 dy 2

In view of Ah(x)= —e*’h’’, a harmonic function of x must be of the form
h(x)=ax+b for some constants a,b. Let Ry={|x|<1}nT and, for
zy>1, Q={|z|<x,}nT. The harmonic measure wy(z,R,) on 2—R, is
(1 —2,)~Y(|z| — x,). Letting 2 exhaust R, we obtain the harmonic measure
on R—R,, w(z,Ry) =lim,_, pwg(x,Ry)=1. Therefore T' is parabolic and
consequently 7' € OX.

To show that T' € O, we first note that

u(z) = (e rdt

is a nonharmonic biharmonic function on 7'; in fact, du(x) = 2. Clearly
% is bounded and its Dirichlet integral

D(u) = ¢ {2, (u)dx = ¢ {Z e2"dx

is finite. Therefore 7' € 0, .
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4. Next we shall show that O¥ nO%,, + @. Consider the N-ball
8 ={x]| |x|=r<l, z=(at,...,2V)}

with the Poincaré metric ds= (1 —72?)-1dz|, where |dz| is the Euclidean
metric. If A(x) is a harmonic funetion, then

Ah(x) = — (1 —r2)Np-N+1[(1 _r2)—(N—2)rN—1h']' =0
and consequently h(x)~a(l—r)¥-1+b as r > 1. Hence the harmonic
measure w(z,R,) of Ry={x| r<}}is ~ (1-r)¥1 and

lwllp?[{}<r<1} mv e (1 —r)V-2dr < oo

By Sario’s test for the existence of the biharmonic Green’s function y,
we conclude that S e OF.

5. Suppose we have a u € H2D on 8. Then

|(4u,@)| = |(du,dg)| < VD(u))D(p) = KV D(g)

for all p € C;®. We shall show that S € OF,, by constructing a family

of Cy*-functions ¢, 0<¢=<1, on S such that |(du,q)| /l/D(q;,) is not
bounded.

Let (r,0)=(r,0,...,6081) be the Euclidean polar coordinates on S,
and S,(0)=3;a,S,:(0) spherical harmonics of degree n, that is, S (0)
is harmonic with respect to the Euclidean metric. Take a u € H2. Since
du € H, Au has a representation

7’0) zn Ofn('r)s 6)’

which converges absolutely and uniformly on compacts of S, with
Jn()8,(0) € H(S) for n=0,1,2,. ... Suppose f, =0 for some n = 0. Choose
for our testing functions ¢, 0<¢=1,

9r,0) = e(r)S,(0), edr) = g((1-7)ft),

where g is a fixed nonnegative C,*-function with suppg<(8,y), 0<f<
y < 1. Clearly

|(Au,@,)| = const|§;25% f,(r)ey(r)r¥—1(1 - r2)~Ndr|
> const (1 —y)V=1(yt)~N|{{Z5 falrledr)dr| .
Since f,(r)S,(6) is harmonic and =0, we have f,(r)+0 for all r, and

lim,__,f.(r) %0, where the limit exists in view of the monotonicity of f,,
entailed by the maximum principle. For ¢ sufficiently small, we obtain
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[(Au,@))| > constt—N §1=50,(r)dr
= constt~t (1g(s)ds
= const{-N+1,

On the other hand, the Dirichlet integral of ¢, is

D(g)) = {slgrade,2dV
= 1250 (1=7r2)(cy0’(r)? +car—20(r)?)rN-1(1 —12)~Ndr
t_(N_z) Sl 0 "(r)2dr+d, Siiﬁie(r)zd'r)
t~NV-2(d 21 (Lo’ (s)2ds + dyt (g(s)%ds)
= et Nt 4 gt —N+3 < gf—N+1

A

Hence for ¢ sufficiently small, the ratio

|(du, @) Wb
V D(¢,) > cons H-N+1)/2

is not bounded, and we have f, =0 for every n. A fortiori Au=0, and
Se0¥.p.

6. To show that O¥NO¥,;+@, consider the N-ball B,={r<1} with
the metric
ds = (1—1r%)-1-¢|dx|,

where ¢>0. In the same manner as in Section 4, we see that the har-
monic measure w of {& | r<3}is ~ (1—r)®-20++1 g5 r » 1, and

lolls?| {3 <r <1} av {} (1 —7)2V-204042(] — p)-NA+Idr < oo .

Thus B, € 0.

Suppose there exists a u € H2B. Then |(4du,p)|=]|(u,4¢)| = K(1,|4¢|),
with K =supg |u|, for every Cy*-function ¢. Again we have Adu=
S ofn(r)8,(0). Suppose f,=0 for some n=0. Choose testing functions
@r=0(r)S,(0), 0<t <1, as in Section 5. For ¢ sufficiently small, we have

|(Au,@,)| > consti-Na+a (1=Po(r)dr > consti-Na+o+l

On the other hand,

N-1 2(N—2)(l+s)r) ,
t

= — (1 —g2)21+e) |1
dg, (1—7%) [e: +( —t—_na

—n(n+N-— 2)1-—29,] S, .
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It follows that, for ¢ sufficiently small,

(1,]4¢,]) < t-N-2+9 Si:ﬁ(clet” +cot~1o, +ca0,) dr
< consti—NV-2X1+e-1

Therefore, |(du,e,)|/(1,|4¢;|) > constt-2, which is unbounded. This con-
tradiction shows that every f,=0, hence Au=0, and B, € 0Y,5.

7. To show that O¥ N0,z O¥,p+ @, consider the N-space
E = {0<r<oo,r=|z|,x=(2,...,2Y)}

with the metric
ds = r-|dz|,

where |dz| is the Euclidean metric. A harmonic function of r, is of the
form alogr+b for some constants a,b. In particular, the harmonic meas-
ure on the region bounded by r=1 and r=7,>1, is

o,, = 1—(logry)~1logr.

As 7y > o0 or 1y > 0, w, — 1, and therefore E € O} .

8. For each harmonic function 2 on E, we have the expansion of &

}L(T, 0) = E:ouofn(r)‘sn(e) ’

where (r,0)=(r,60,...,6N-1), and f,8, € H for every n. By a straight-
forward computation of A(f,S,)=0, we find that f(r)=alogr+b and,
for >0,

Iulr) = ayrPn+ b8, pr.q, = t)n(n+N-2),
with a, b, a,, b, constants. Thus % has the expansion

h(r,0) = 3., (@,7P"+b,r")8,(0) +alogr+b .

9. Next we expand a biharmonic function » on E. First we observe
that s(r)= — }(logr)? and 7(r)= — }(logr)® are solutions of 4s(r)=1 and
Ax(r)=logr. We also note that

u, = —(2p,)uPrlogr-S,, v, = (2p,) " logr-S,
satisfy the equations du,=rP*S, and Av,=r"S,. Since du € H,

du = 351 (@prP*+b,r™")8, +alogr+b .
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Set
Uy = Zf»o=1 (a"nun + bnvn) +at(r)+ bs(r) .

Clearly A(u—wuy)=0. Thus u—u, € H and
U = U+ Doy (CurPP+d 198, +clogr+d

for some constants c,, d,, c, d.

10. To show that E € O¥,5, suppose there exists a u € H2B. We make
use of the inequality |(u,¢)| <sup|u|(1,|p|) for all ¢ € LL. In the expan-
sion of u, if a, #+ 0 for some n, let g,=g,(r)S,,, where g, is a fixed continu-
ous function, g, =0, suppe; =(1,2), and g[r)=g,(r+1—¢) for t=1. By
the orthogonality of {S,}, and {{*'g,(r)dr=const as ¢ - oo, we have

(u,) ~ C §i*1rP2~1 logr-gr)dr ~ CtP»logt
and
(Llpl) ~ Ce1.

Therefore a, =0 for p, —1= —1, that is, for all n. That ¢, =0 for all »
is concluded in the same manner.

If b,+0 for some n, then we choose g,(r)=p,(r/t), with p, and ¢, as
above, and have

(u, ) ~ Ctin logt’ (L, lgl) ~ C,

as t - 0. Clearly all n with g, <0 are ruled out, and we have b,=0 for
all n. Similarly all d,=0.

Thus the function  reduces to az(r)+bs(r)+clogr+d. Since 7, s,
logr are linearly independent and unbounded, we have a=b=c=0, and
u is a constant.

11. To show that E € O},;, suppose there exists a » e H2D. In its
expansion, let «, now signify the sum of the terms involving an §,,
and denote by wu, the radial part of the expansion of w. Then

U = E:Lo Up «

By the Dirichlet orthogonality of the S, , we have D(u) 2 D(u,,) for every
n. A direct computation shows that D(u, )= oo for every nonconstant u,,.
Thus F € OﬁgD.

The proof of our theorem in Section 2 is herewith complete.
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