BIHARMONIC GREEN'S FUNCTIONS AND BIHARMONIC DEGENERACY

C. Y. WANG

It is well known that the harmonic Green's function plays an important role in the harmonic classification theory (e.g. Sario-Nakai [7]). Explicitly, if we denote by O_{HX}^N , X = G, B, D, C, the classes of Riemannian N-manifolds which do not carry harmonic Green's functions, or bounded, Dirichlet finite, or bounded Dirichlet finite nonconstant harmonic functions, respectively, then we have the strict inclusion relations

$$O_{HG}^{N} < O_{HB}^{N} < O_{HD}^{N} = O_{HC}^{N}$$

for every dimension $N \ge 2$. Recently L. Sario [4] introduced the biharmonic Green's function γ which, roughly speaking, satisfies $\gamma = \Delta \gamma = 0$ on the ideal boundary of a Riemannian manifold. In the present paper, we shall discuss the role played by γ in the biharmonic classification theory. It turns out that, in striking contrast with the harmonic case, the class O_T^N of Riemannian N-manifolds which do not carry γ neither is contained in nor contains any of the classes $O_{H^2X}^N$, X = B, D, C, of Riemannian N-manifolds which carry no bounded, Dirichlet finite, or bounded Dirichlet finite nonharmonic biharmonic functions, respectively.

1. On a Riemannian N-manifold R, take a regular subregion Ω of \overline{R} . Let $\gamma_{\Omega}(x,y)$ be the biharmonic Green's function on Ω with the biharmonic fundamental singularity at $y \in \Omega$, and with boundary data $\gamma_{\Omega} = \Delta \gamma_{\Omega} = 0$ on $\partial \Omega$, where $\Delta = d\delta + \delta d$ is the Laplace-Beltrami operator. Clearly

$$\gamma_{\Omega}(x,y) = \int_{\Omega} g_{\Omega}(x,z) g_{\Omega}(z,y) dz ,$$

where $g_{\Omega}(x,z)$ is the harmonic Green's function on Ω with pole z, and dz the volume element at z. The biharmonic Green's function γ , if it exists, on R is

$$\gamma(x,y) = \lim_{\Omega \to R} \gamma_{\Omega}(x,y) = \int_{R} g_{R}(x,z) g_{R}(z,y) dz$$
.

Received January 13, 1975.

The work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-124-73-G39, University of California, Los Angeles.

MOS Classification 31B30.

Take a regular subregion R_0 of R and denote by $\omega = \omega(x, R_0)$ the harmonic measure on $R - R_0$, with $\omega \mid \partial R_0 = 1$. It is known that every parabolic R belongs to O_T^N , whereas a hyperbolic R belongs to O_T^N if and only if $\omega \notin L^2(R - R_0)$ (Sario [4], [6]). This criterion is our main tool in testing the existence of γ .

2. We shall establish the following complete result:

THEOREM. The classes

$$\tilde{O}_{\varGamma}^N \cap \tilde{O}_{H^2X}^N, \ O_{\varGamma}^N \cap \tilde{O}_{H^2X}^N, \ \tilde{O}_{\varGamma}^N \cap O_{H^2X}^N, \ O_{\varGamma}^N \cap O_{H^2X}^N$$

are all nonvoid for X = B, D, C, and $N \ge 2$.

Trivially, the Euclidean unit N-ball is in $\tilde{O}_{\Gamma}^{N} \cap \tilde{O}_{H^{2}X}^{N}$, X = B, D, C. It remains to show that $O_{\Gamma}^{N} \cap \tilde{O}_{H^{2}C}^{N}$, $\tilde{O}_{\Gamma}^{N} \cap O_{H^{2}D}^{N}$, $\tilde{O}_{\Gamma}^{N} \cap O_{H^{2}B}^{N}$, $O_{\Gamma}^{N} \cap O_{H^{2}B}^{N}$, and $O_{\Gamma}^{N} \cap O_{H^{2}D}^{N}$ are not empty. The proof will be given in Sections 3–11.

3. To show that $O_{\Gamma}^{N} \cap \widetilde{O}_{H^{2}C}^{N} \neq \emptyset$, consider the N-cylinder

$$T: \ \{(x,y_1,\ldots,y_{N-1}) \ \big| \ |x| < \infty, \ |y_i| \le 1\}$$

with each pair of opposite faces $y_i = 1$, $y_i = -1$, i = 1, ..., N-1, identified by a parallel translation orthogonal to the x-axis. Endow T with the metric

$$ds^2 \, = \, e^{-x^2} dx^2 + e^{-x^2/(N-1)} \, \textstyle \sum_{i=1}^{N-1} \, dy_i^2 \; . \label{eq:ds2}$$

In view of $\Delta h(x) = -e^{x^2}h''$, a harmonic function of x must be of the form h(x) = ax + b for some constants a, b. Let $R_0 = \{|x| < 1\} \cap T$ and, for $x_0 > 1$, $\Omega = \{|x| < x_0\} \cap T$. The harmonic measure $\omega_{\Omega}(x, R_0)$ on $\overline{\Omega} - R_0$ is $(1 - x_0)^{-1}(|x| - x_0)$. Letting Ω exhaust R, we obtain the harmonic measure on $R - R_0$, $\omega(x, R_0) = \lim_{\Omega \to R} \omega_{\Omega}(x, R_0) \equiv 1$. Therefore T is parabolic and consequently $T \in O_T^N$.

To show that $T \in \tilde{O}_{H^2C}^N$, we first note that

$$u(x) = \int_0^x e^{-t^2} dt$$

is a nonharmonic biharmonic function on T; in fact, $\Delta u(x) = 2x$. Clearly u is bounded and its Dirichlet integral

$$D(u) = c \int_{-\infty}^{\infty} (u')^2 dx = c \int_{-\infty}^{\infty} e^{-2x^2} dx$$

is finite. Therefore $T \in \tilde{O}_{H^2C}^N$.

124 C. Y. WANG

4. Next we shall show that $\tilde{O}_{\Gamma}^{N} \cap O_{H^{2}D}^{N} \neq \emptyset$. Consider the N-ball

$$S = \{x \mid |x| = r < 1, x = (x^1, \dots, x^N)\}$$

with the Poincaré metric $ds = (1-r^2)^{-1}|dx|$, where |dx| is the Euclidean metric. If h(x) is a harmonic function, then

$$\Delta h(x) = -(1-r^2)^N r^{-N+1} [(1-r^2)^{-(N-2)} r^{N-1} h']' = 0,$$

and consequently $h(x) \sim a(1-r)^{N-1} + b$ as $r \to 1$. Hence the harmonic measure $\omega(x, R_0)$ of $R_0 = \{x \mid r < \frac{1}{2}\}$ is $\sim (1-r)^{N-1}$ and

$$\|\omega\|_2^{\ 2} |\left\{\frac{1}{2} < r < 1\right\} \, \approx \, c \, \int_{\frac{1}{2}}^1 (1-r)^{N-2} dr \, < \, \infty$$
 .

By Sario's test for the existence of the biharmonic Green's function γ , we conclude that $S \in \tilde{O}_r^N$.

5. Suppose we have a $u \in H^2D$ on S. Then

$$|(\Delta u, \varphi)| = |(du, d\varphi)| \le \sqrt{D(u)} \sqrt{D(\varphi)} = K\sqrt{D(\varphi)}$$

for all $\varphi \in C_0^{\infty}$. We shall show that $S \in O_{H^2D}^N$ by constructing a family of C_0^{∞} -functions φ_t , $0 < t \le 1$, on S such that $|(\Delta u, \varphi_t)| / \sqrt{D(\varphi_t)}$ is not bounded.

Let $(r,\theta) = (r,\theta^1,\ldots,\theta^{N-1})$ be the Euclidean polar coordinates on S, and $S_n(\theta) = \sum_i a_i S_{ni}(\theta)$ spherical harmonics of degree n, that is, $r^n S_n(\theta)$ is harmonic with respect to the Euclidean metric. Take a $u \in H^2$. Since $\Delta u \in H$, Δu has a representation

$$\Delta u(r,\theta) = \sum_{n=0}^{\infty} f_n(r) S_n(\theta)$$
,

which converges absolutely and uniformly on compacts of S, with $f_n(r)S_n(\theta) \in H(S)$ for $n = 0, 1, 2, \ldots$ Suppose $f_n \equiv 0$ for some $n \geq 0$. Choose for our testing functions φ_t , $0 < t \leq 1$,

$$\varphi_t(r,\theta) = \varrho_t(r)S_n(\theta), \quad \varrho_t(r) = g((1-r)/t),$$

where g is a fixed nonnegative C_0^{∞} -function with supp $g \subset (\beta, \gamma)$, $0 < \beta < \gamma < 1$. Clearly

$$\begin{aligned} |(\Delta u, \varphi_t)| &= \operatorname{const} |\int_{1-\gamma t}^{1-\beta t} f_n(r) \varrho_t(r) r^{N-1} (1-r^2)^{-N} dr| \\ &> \operatorname{const} (1-\gamma)^{N-1} (\gamma t)^{-N} |\int_{1-\gamma t}^{1-\beta t} f_n(r) \varrho_t(r) dr| .\end{aligned}$$

Since $f_n(r)S_n(\theta)$ is harmonic and $\equiv 0$, we have $f_n(r) = 0$ for all r, and $\lim_{r\to 1} f_n(r) = 0$, where the limit exists in view of the monotonicity of f_n , entailed by the maximum principle. For t sufficiently small, we obtain

$$|(\Delta u, \varphi_t)| > \operatorname{const} t^{-N} \int_{1-\gamma t}^{1-\beta t} \varrho_t(r) dr$$

$$= \operatorname{const} t^{-Nt} \int_{\beta}^{\infty} g(s) ds$$

$$= \operatorname{const} t^{-N+1}.$$

On the other hand, the Dirichlet integral of φ_t is

$$\begin{split} D(\varphi_t) &= \int_{\mathcal{S}} |\mathrm{grad}\, \varphi_t|^2 d\, V \\ &= \int_{1-\gamma t}^{1-\beta t} (1-r^2)^2 \big(c_1 \varrho'(r)^2 + c_2 r^{-2} \varrho(r)^2\big) r^{N-1} (1-r^2)^{-N} dr \\ &< t^{-(N-2)} \big(d_1 \int_{1-\gamma t}^{1-\beta t} \varrho'(r)^2 dr + d_2 \int_{1-\gamma t}^{1-\beta t} \varrho(r)^2 dr\big) \\ &= t^{-(N-2)} \big(d_1 t^{-1} \int_{\beta}^{\nu} g'(s)^2 ds + d_2 t \int_{\beta}^{\nu} g(s)^2 ds\big) \\ &= e_1 t^{-N+1} + e_2 t^{-N+3} < e t^{-N+1} \;. \end{split}$$

Hence for t sufficiently small, the ratio

$$\frac{|(\varDelta u, \varphi_t)|}{\sqrt{D(\varphi_t)}} > \operatorname{const} \frac{t^{-N+1}}{t^{(-N+1)/2}}$$

is not bounded, and we have $f_n \equiv 0$ for every n. A fortion $\Delta u = 0$, and $S \in O_{H^2D}^N$.

6. To show that $\tilde{O}_{\Gamma}^N \cap O_{H^2B}^N \neq \emptyset$, consider the N-ball $B_{\epsilon} = \{r < 1\}$ with the metric

$$ds = (1-r^2)^{-1-\epsilon}|dx|,$$

where $\varepsilon > 0$. In the same manner as in Section 4, we see that the harmonic measure ω of $\{x \mid r < \frac{1}{2}\}$ is $\sim (1-r)^{(N-2)(1+\varepsilon)+1}$ as $r \to 1$, and

$$\|\omega\|_2{}^2|\left\{\tfrac{1}{2} < r < 1\right\} \, \approx \, \textstyle \int_{\frac{1}{2}}^1 (1-r)^{2(N-2)(1+\epsilon)+2} (1-r)^{-N(1+\epsilon)} dr \, < \, \infty \, \, .$$

Thus $B_s \in \tilde{O}_r^N$.

Suppose there exists a $u \in H^2B$. Then $|(\Delta u, \varphi)| = |(u, \Delta \varphi)| \le K(1, |\Delta \varphi|)$, with $K = \sup_{B_e} |u|$, for every C_0^{∞} -function φ . Again we have $\Delta u = \sum_{n=0}^{\infty} f_n(r) S_n(\theta)$. Suppose $f_n \equiv 0$ for some $n \ge 0$. Choose testing functions $\varphi_t = \varrho_t(r) S_n(\theta)$, $0 < t \le 1$, as in Section 5. For t sufficiently small, we have

$$|(\varDelta u,\varphi_t)| \, > \, \mathrm{const} t^{-N(1+\epsilon)} \int_{1-\gamma t}^{1-\beta t} \varrho_t(r) \, dr \, > \, \mathrm{const} t^{-N(1+\epsilon)+1} \; .$$

On the other hand,

$$\begin{split} \varDelta \varphi_{\pmb{i}} \; = \; - \, (1 - r^2)^{2(1 + \epsilon)} \, \left[\varrho_{\pmb{i}}^{\, \prime \prime} + \left(\frac{N - 1}{r} + \frac{2(N - 2)(1 + \epsilon)r}{1 - r^2} \right) \, \varrho_{\pmb{i}}^{\, \prime} \right. \\ & \left. - n(n + N - 2)r^{-2}\varrho_{\pmb{i}} \right] \, S_{\pmb{n}} \; . \end{split}$$

126 C. Y. WANG

It follows that, for t sufficiently small,

$$\begin{array}{l} (1, |\varDelta \varphi_t|) < t^{-(N-2)(1+\epsilon)} \int_{1-\gamma t}^{1-\beta t} (c_1 \varrho_t^{\ \prime \prime} + c_2 t^{-1} \varrho_t^{\ \prime} + c_3 \varrho_t) dr \\ < \operatorname{const} t^{-(N-2)(1+\epsilon)-1} \,. \end{array}$$

Therefore, $|(\Delta u, \varphi_t)|/(1, |\Delta \varphi_t|) > \text{const} t^{-2\varepsilon}$, which is unbounded. This contradiction shows that every $f_n \equiv 0$, hence $\Delta u = 0$, and $B_{\varepsilon} \in O_{H^2B}^N$.

7. To show that $O_{r}^{N} \cap O_{H^{2}B}^{N} \cap O_{H^{2}D}^{N} \neq \emptyset$, consider the N-space

$$E = \{0 < r < \infty, r = |x|, x = (x^1, \dots, x^N)\}$$

with the metric

$$ds = r^{-1}|dx|,$$

where |dx| is the Euclidean metric. A harmonic function of r, is of the form $a \log r + b$ for some constants a, b. In particular, the harmonic measure on the region bounded by r=1 and $r=r_0>1$, is

$$\omega_{r_0} = 1 - (\log r_0)^{-1} \log r$$
.

As $r_0 \to \infty$ or $r_0 \to 0$, $\omega_{r_0} \to 1$, and therefore $E \in O_{\Gamma}^N$.

8. For each harmonic function h on E, we have the expansion of h

$$h(r,\theta) = \sum_{n=0}^{\infty} f_n(r) S_n(\theta) ,$$

where $(r,\theta)=(r,\theta^1,\ldots,\theta^{N-1})$, and $f_nS_n\in H$ for every n. By a straightforward computation of $\Delta(f_nS_n)=0$, we find that $f_0(r)=a\log r+b$ and, for n>0,

$$f_n(r) = a_n r^{p_n} + b_n r^{q_n}, \quad p_n, q_n = \pm \sqrt{n(n+N-2)}$$

with a, b, a_n , b_n constants. Thus h has the expansion

$$h(r,\theta) = \sum_{n=1}^{\infty} (a_n r^{p_n} + b_n r^{q_n}) S_n(\theta) + a \log r + b.$$

9. Next we expand a biharmonic function u on E. First we observe that $s(r) = -\frac{1}{2}(\log r)^2$ and $\tau(r) = -\frac{1}{6}(\log r)^3$ are solutions of $\Delta s(r) = 1$ and $\Delta \tau(r) = \log r$. We also note that

$$u_n = -(2p_n)^{-1} r^{p_n} \log r \cdot S_n, \quad v_n = (2p_n)^{-1} r^{q_n} \log r \cdot S_n$$

satisfy the equations $\Delta u_n = r^{p_n} S_n$ and $\Delta v_n = r^{q_n} S_n$. Since $\Delta u \in H$,

$$\Delta u = \sum_{n=1}^{\infty} (a_n r^{p_n} + b_n r^{q_n}) S_n + a \log r + b.$$

Set

$$u_0 = \sum_{n=1}^{\infty} (a_n u_n + b_n v_n) + a \tau(r) + b s(r)$$
.

Clearly $\Delta(u-u_0)=0$. Thus $u-u_0\in H$ and

$$u = u_0 + \sum_{n=1}^{\infty} (c_n r^{p_n} + d_n r^{q_n}) S_n + c \log r + d$$

for some constants c_n , d_n , c, d.

10. To show that $E \in O_{H^2B}^N$, suppose there exists a $u \in H^2B$. We make use of the inequality $|(u,\varphi)| \leq \sup |u|(1,|\varphi|)$ for all $\varphi \in L^1$. In the expansion of u, if $a_n \neq 0$ for some n, let $\varphi_t = \varrho_t(r)S_n$, where ϱ_1 is a fixed continuous function, $\varrho_1 \geq 0$, supp $\varrho_1 \subset (1,2)$, and $\varrho_t(r) = \varrho_1(r+1-t)$ for $t \geq 1$. By the orthogonality of $\{S_n\}$, and $\{t^{t+1}, t^{t+1}\}$ for $t \geq 1$, we have

$$(u,\varphi_t) \sim C \int_t^{t+1} r^{p_n-1} \log r \cdot \varrho_t(r) dr \sim C t^{p_{n-1}} \log t$$

and

$$(1, |\varphi_t|) \sim Ct^{-1}$$
.

Therefore $a_n = 0$ for $p_n - 1 \ge -1$, that is, for all n. That $c_n = 0$ for all n is concluded in the same manner.

If $b_n \neq 0$ for some n, then we choose $\varrho_t(r) = \varrho_1(r/t)$, with ϱ_1 and φ_t as above, and have

$$(u, \varphi_t) \sim Ct^{q_n} \log t$$
, $(1, |\varphi_t|) \sim C$,

as $t \to 0$. Clearly all n with $q_n \le 0$ are ruled out, and we have $b_n = 0$ for all n. Similarly all $d_n = 0$.

Thus the function u reduces to $a\tau(r)+bs(r)+c\log r+d$. Since τ , s, $\log r$ are linearly independent and unbounded, we have a=b=c=0, and u is a constant.

11. To show that $E \in O_{H^2D}^N$, suppose there exists a $u \in H^2D$. In its expansion, let u_n now signify the sum of the terms involving an S_n , and denote by u_0 the radial part of the expansion of u. Then

$$u = \sum_{n=0}^{\infty} u_n.$$

By the Dirichlet orthogonality of the S_n , we have $D(u) \ge D(u_n)$ for every n. A direct computation shows that $D(u_n) = \infty$ for every nonconstant u_n . Thus $E \in O_{H^2D}^N$.

The proof of our theorem in Section 2 is herewith complete.

128 C. Y. WANG

BIBLIOGRAPHY

- D. Hada, L. Sario and C. Wang, Dirichlet finite biharmonic functions on the Poincaré Nball, J. Reine Angew. Math. 272 (1975), 92-101.
- D. Hada, L. Sario and C. Wang, Bounded biharmonic functions on the Poincaré N-ball, Ködai Math. Sem. Rep. (to appear).
- 3. N. Mirsky, L. Sario and C. Wang, Parabolicity and existence of bounded or Dirichlet finite polyharmonic functions, Rend. Ist. Mat. Univ. Trieste 6 (1974), 1-9.
- 4. L. Sario, A criterion for the existence of biharmonic Green's functions, J. Austral. Math. Soc. (to appear).
- 5. L. Sario, Biharmonic measure, Ann. Acad. Sci. Fenn. A.I. 587 (1974), 1-18.
- 6. L. Sario, Biharmonic Green's functions and harmonic degeneracy, J. Math. Kyoto Univ. (to appear).
- L. Sario and M. Nakai, Classification Theory of Riemann Surfaces (Grundlehren Math. Wissensch. 164), Springer-Verlag, Berlin, Heidelberg, New York, 1970, 446 pp.
- L. Sario and C. Wang, Parabolicity and existence of bounded biharmonic functions, Comment. Math. Helv. 47 (1972), 341-347.
- L. Sario and C. Wang, Parabolicity and existence of Dirichlet finite biharmonic functions,
 J. London Math. Soc. (2), 8 (1974), 145-148.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA, U.S.A.