BIHARMONIC GREEN’S FUNCTIONS AND
BIHARMONIC DEGENERACY

C. Y. WANG

It is well known that the harmonic Green’s function plays an important role in the harmonic classification theory (e.g. Sario–Nakai [7]). Explicitly, if we denote by $O^N_{H^X}$, $X = G, B, D, C$, the classes of Riemannian N-manifolds which do not carry harmonic Green’s functions, or bounded, Dirichlet finite, or bounded Dirichlet finite nonconstant harmonic functions, respectively, then we have the strict inclusion relations

$$O^N_{H^G} < O^N_{H^B} < O^N_{H^D} = O^N_{H^C}$$

for every dimension $N \geq 2$. Recently L. Sario [4] introduced the biharmonic Green’s function γ which, roughly speaking, satisfies $\gamma = \Delta \gamma = 0$ on the ideal boundary of a Riemannian manifold. In the present paper, we shall discuss the role played by γ in the biharmonic classification theory. It turns out that, in striking contrast with the harmonic case, the class O^N_Γ of Riemannian N-manifolds which do not carry γ neither is contained in nor contains any of the classes $O^N_{H^\Omega^X}$, $X = B, D, C$, of Riemannian N-manifolds which carry no bounded, Dirichlet finite, or bounded Dirichlet finite nonharmonic biharmonic functions, respectively.

1. On a Riemannian N-manifold R, take a regular subregion Ω of R. Let $\gamma_\Omega(x, y)$ be the biharmonic Green’s function on Ω with the biharmonic fundamental singularity at $y \in \Omega$, and with boundary data $\gamma_\partial = \Delta \gamma_\partial = 0$ on $\partial \Omega$, where $\Delta = d \delta + \delta d$ is the Laplace–Beltrami operator. Clearly

$$\gamma_\Omega(x, y) = \int_\Omega g_\Omega(x, z) g_\Omega(z, y) \, dz ,$$

where $g_\Omega(x, z)$ is the harmonic Green’s function on Ω with pole z, and dz the volume element at z. The biharmonic Green’s function γ, if it exists, on R is

$$\gamma(x, y) = \lim_{\Omega \to R} \gamma_\Omega(x, y) = \int_R g_R(x, z) g_R(z, y) \, dz .$$

Received January 13, 1975.

The work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-124-73-G39, University of California, Los Angeles.

MOS Classification 31B30.
Take a regular subregion R_0 of R and denote by $\omega = \omega(x, R_0)$ the harmonic measure on $R - R_0$, with $\omega|\partial R_0 = 1$. It is known that every parabolic R belongs to O_T^N, whereas a hyperbolic R belongs to O_T^N if and only if $\omega \notin L^2(R - R_0)$ (Sario [4], [6]). This criterion is our main tool in testing the existence of γ.

2. We shall establish the following complete result:

Theorem. The classes

$$\bar{O}_T^N \cap \bar{O}_{H^2X}^N, \quad O_T^N \cap \bar{O}_{H^2X}^N, \quad \bar{O}_T^N \cap O_{H^2X}^N, \quad O_T^N \cap O_{H^2X}^N$$

are all nonvoid for $X = B, D, C$, and $N \geq 2$.

Trivially, the Euclidean unit N-ball is in $\bar{O}_T^N \cap \bar{O}_{H^2X}^N$, $X = B, D, C$. It remains to show that $O_T^N \cap \bar{O}_{H^2C}^N, \bar{O}_T^N \cap O_{H^2D}^N, \bar{O}_T^N \cap O_{H^2B}^N, O_T^N \cap O_{H^2B}^N$, and $O_T^N \cap O_{H^2D}^N$ are not empty. The proof will be given in Sections 3–11.

3. To show that $O_T^N \cap \bar{O}_{H^2C}^N \neq \emptyset$, consider the N-cylinder

$$T : \{(x, y_1, \ldots, y_{N-1}) \mid |x| < \infty, |y_i| \leq 1\}$$

with each pair of opposite faces $y_i = 1, y_i = -1, i = 1, \ldots, N - 1$, identified by a parallel translation orthogonal to the x-axis. Endow T with the metric

$$ds^2 = e^{-x^2}dx^2 + e^{-x^2/(N-1)} \sum_{i=1}^{N-1} dy_i^2.$$

In view of $\Delta h(x) = -e^{x^2}h''$, a harmonic function of x must be of the form $h(x) = ax + b$ for some constants a, b. Let $R_0 = \{|x| < 1\} \cap T$ and, for $x_0 > 1$, $\Omega = \{|x| < x_0\} \cap T$. The harmonic measure $\omega_\Omega(x, R_0)$ on $\bar{\Omega} - R_0$ is $(1-x_0)^{-1}(|x| - x_0)$. Letting Ω exhaust R, we obtain the harmonic measure on $R - R_0$, $\omega(x, R_0) = \lim_{\Omega \to R} \omega_\Omega(x, R_0) \equiv 1$. Therefore T is parabolic and consequently $T \in O_T^N$.

To show that $T \in \bar{O}_{H^2C}^N$, we first note that

$$u(x) = \int_0^\infty e^{-t} dt$$

is a nonharmonic biharmonic function on T; in fact, $\Delta u(x) = 2x$. Clearly u is bounded and its Dirichlet integral

$$D(u) = c \int_{-\infty}^{\infty} (u')^2 dx = c \int_{-\infty}^{\infty} e^{-2x^2} dx$$

is finite. Therefore $T \in \bar{O}_{H^2C}^N$.
4. Next we shall show that \(\partial_N^N \cap O_{H^2D} \neq \emptyset \). Consider the \(N \)-ball

\[
S = \{ x \mid |x| = r < 1, \ x = (x^1, \ldots, x^N) \}
\]

with the Poincaré metric \(ds = (1 - r^2)^{-1} |dx| \), where \(|dx| \) is the Euclidean metric. If \(h(x) \) is a harmonic function, then

\[
\Delta h(x) = -(1 - r^2)^N r^{-N+1} [1 - r^{-2} - (N-2) r^{-1} h'] = 0,
\]

and consequently \(h(x) \sim a(1 - r)^{N-1} + b \) as \(r \to 1 \). Hence the harmonic measure \(\omega(x, R_0) \) of \(R_0 = \{ x \mid r < \frac{1}{2} \} \) is \(\sim (1 - r)^{N-1} \) and

\[
\|\omega\|^2 \{ \frac{1}{2} < r < 1 \} \approx c \int_{\frac{1}{2}}^1 (1 - r)^{N-2} dr < \infty.
\]

By Sario’s test for the existence of the biharmonic Green’s function \(\gamma \), we conclude that \(S \in \partial_N^N \).

5. Suppose we have a \(u \in H^2D \) on \(S \). Then

\[
|\langle \Delta u, \varphi \rangle| = |\langle du, d\varphi \rangle| \leq \sqrt{D(u)} \sqrt{D(\varphi)} = K \sqrt{D(\varphi)}
\]

for all \(\varphi \in C^\infty_0 \). We shall show that \(S \in O_{H^2D}^N \) by constructing a family of \(C^\infty_0 \)-functions \(\varphi_t, \ 0 < t \leq 1 \), on \(S \) such that \(|\langle \Delta u, \varphi_t \rangle| / \sqrt{D(\varphi_t)} \) is not bounded.

Let \((r, \theta) = (r, \theta^1, \ldots, \theta^{N-1}) \) be the Euclidean polar coordinates on \(S \), and \(S_n(\theta) = \sum \alpha_n S_n(\theta) \) spherical harmonics of degree \(n \), that is, \(r^n S_n(\theta) \) is harmonic with respect to the Euclidean metric. Take a \(u \in H^2 \). Since \(\Delta u \in H, \Delta u \) has a representation

\[
\Delta u(r, \theta) = \sum_{n=0}^\infty f_n(r) S_n(\theta),
\]

which converges absolutely and uniformly on compacts of \(S \), with \(f_n(r) S_n(\theta) \in H(S) \) for \(n = 0, 1, 2, \ldots \). Suppose \(f_n \not\equiv 0 \) for some \(n \geq 0 \). Choose for our testing functions \(\varphi_t, \ 0 < t \leq 1 \),

\[
\varphi_t(r, \theta) = \varphi_t(r) S_n(\theta), \quad \varphi_t(r) = g((1 - r)/t),
\]

where \(g \) is a fixed nonnegative \(C^\infty_0 \)-function with \(\text{supp} g \subset (\beta, \gamma), \ 0 < \beta < \gamma < 1 \). Clearly

\[
|\langle \Delta u, \varphi_t \rangle| = \text{const} |\int_{\frac{1}{2} - \gamma t}^{\frac{1}{2} - \beta t} f_n(r) \varphi_t(r) r^{-N-1} (1 - r^2)^{-N} dr|
\]

\[
> \text{const} (1 - \gamma)^{N-1} (\gamma t)^{-N} |\int_{\frac{1}{2} - \gamma t}^{\frac{1}{2} - \beta t} f_n(r) \varphi_t(r) dr| .
\]

Since \(f_n(r) S_n(\theta) \) is harmonic and \(\not\equiv 0 \), we have \(f_n(r) \not\equiv 0 \) for all \(r \), and \(\lim_{r \to 0} f_n(r) \not\equiv 0 \), where the limit exists in view of the monotonicity of \(f_n \), entailed by the maximum principle. For \(t \) sufficiently small, we obtain
\[|(\Delta u, \varphi_t)| > \text{const} t^{-N} \int_{1-r^2}^{1-r^t} \xi_t(r) \, dr \]
\[= \text{const} t^{-N} \int_{\beta}^{1-r^t} \xi_g(s) \, ds \]
\[= \text{const} t^{-N+1}. \]

On the other hand, the Dirichlet integral of \(\varphi_t \) is

\[
D(\varphi_t) = \int_S |\nabla \varphi_t|^2 \, dV
\]
\[= \int_{1-r^t}^{1-r^2} (1-r^2)^2 (c_1 \xi_t(r)^2 + c_2 r^{-2} \xi_t(r^2))^r \left(1-r^2\right)^{-N} \, dr
\]
\[< t^{-N+2} \left(d_1 \int_{1-r^t}^{1-r^2} \xi_t(r)^2 \, dr + d_2 \int_{1-r^t}^{1-r^2} \xi_t(r^2)^2 \, dr \right)
\]
\[= t^{-N+2} \left(d_1 t^{-1} \int_{\beta}^{1-r^t} \xi_g(s)^2 \, ds + d_2 t^{-1} \int_{\beta}^{1-r^t} \xi_g(s)^2 \, ds \right)
\]
\[= e_1 t^{-N+1} + e_2 t^{-N+3} < e t^{-N+1}. \]

Hence for \(t \) sufficiently small, the ratio

\[
\frac{|(\Delta u, \varphi_t)|}{\sqrt{D(\varphi_t)}} > \text{const} \frac{t^{-N+1}}{t^{-N+1}/2}
\]

is not bounded, and we have \(f_n \equiv 0 \) for every \(n \). A fortiori \(\Delta u = 0 \), and \(S \in O_{H^2}^N \).

6. To show that \(\bar{U}_R \cap O_{H^2}^N \neq \emptyset \), consider the \(N \)-ball \(B_\varepsilon = \{ r < 1 \} \) with the metric

\[
ds = (1-r^2)^{-1-\varepsilon} |dx|,
\]

where \(\varepsilon > 0 \). In the same manner as in Section 4, we see that the harmonic measure \(\omega \) of \(\{ x \mid r < \frac{1}{2} \} \) is \((1-r)^{(N-2)(1+\varepsilon)+1} \) as \(r \to 1 \), and

\[
\| \omega \|_2^2 |\{ \frac{1}{2} < r < 1 \} \approx \int_{\frac{1}{2}}^1 (1-r)^{2(N-2)(1+\varepsilon)+2} (1-r)^{-N(1+\varepsilon)} \, dr < \infty.
\]

Thus \(B_\varepsilon \in \bar{U}_R \).

Suppose there exists a \(u \in H^2 \). Then \(|(\Delta u, \varphi)| = |(u, \Delta \varphi)| \leq K(1, |\Delta \varphi|) \), with \(K = \sup_{B_\varepsilon} |u| \), for every \(C_0^\infty \)-function \(\varphi \). Again we have \(\Delta u = \sum_{n=0}^\infty f_n(r) S_n(\theta) \). Suppose \(f_n \equiv 0 \) for some \(n \geq 0 \). Choose testing functions \(\varphi_t = \xi_t(r) S_n(\theta), \ 0 < t \leq 1 \), as in Section 5. For \(t \) sufficiently small, we have

\[
|(\Delta u, \varphi_t)| > \text{const} t^{-N(1+\varepsilon)} \int_{1-r^t}^{1-r^2} \xi_t(r) \, dr > \text{const} t^{-N(1+\varepsilon)+1}.
\]

On the other hand,

\[
\Delta \varphi_t = -(1-r^2)^{2(1+\varepsilon)} \left[\xi_t'' + \left(\frac{N-1}{r} + \frac{2(N-2)(1+\varepsilon)r}{1-r^2} \right) \xi_t'
\]
\[- n(n+N-2)r^{-2} \xi_t \right] S_n.
\]
It follows that, for t sufficiently small,
\[
(1, |\Delta \varphi|) < t^{-(N-2)(1+\delta)} \int_1^{t^{-\bar{\gamma}}} (c_1 \partial_t'' + c_2 t^{-1} \partial_t' + c_3 \partial_t) \, dr < \text{const} t^{-(N-2)(1+\delta) - 1}.
\]

Therefore, $|(\Delta u, \varphi)|/(1, |\Delta \varphi|) > \text{const} t^{-2\delta}$, which is unbounded. This contradiction shows that every $f_n \equiv 0$, hence $\Delta u = 0$, and $B_\varepsilon \in O_{H^2B}^N$.

7. To show that $O_{r}^N \cap O_{H^2B}^N \cap O_{H^2D}^N = \emptyset$, consider the N-space

\[E = \{0 < r < \infty, r = |x|, x = (x^1, \ldots, x^N)\}
\]

with the metric

\[ds = r^{-1} |dx|, \]

where $|dx|$ is the Euclidean metric. A harmonic function of r, is of the form $a \log r + b$ for some constants a, b. In particular, the harmonic measure on the region bounded by $r = 1$ and $r = r_0 > 1$, is

\[\omega_{r_0} = 1 - (\log r_0)^{-1} \log r. \]

As $r_0 \to \infty$ or $r_0 \to 0$, $\omega_{r_0} \to 1$, and therefore $E \in O_r^N$.

8. For each harmonic function h on E, we have the expansion of h

\[h(r, \theta) = \sum_{n=0}^\infty f_n(r) S_n(\theta), \]

where $(r, \theta) = (r, \theta^1, \ldots, \theta^{N-1})$, and $f_n S_n \in H$ for every n. By a straightforward computation of $\Delta (f_n S_n) = 0$, we find that $f_0(r) = a \log r + b$ and, for $n > 0$,

\[f_n(r) = a_n r^{p_n} + b_n r^{q_n}, \quad p_n, q_n = \pm \sqrt{n(n+N-2)}, \]

with a, b, a_n, b_n constants. Thus h has the expansion

\[h(r, \theta) = \sum_{n=1}^\infty (a_n r^{p_n} + b_n r^{q_n}) S_n(\theta) + a \log r + b. \]

9. Next we expand a biharmonic function u on E. First we observe that $s(r) = -\frac{1}{2} (\log r)^2$ and $\tau(r) = -\frac{4}{3} (\log r)^3$ are solutions of $\Delta s(r) = 1$ and $\Delta \tau(r) = \log r$. We also note that

\[u_n = -(2p_n)^{-1} r^{p_n} \log r \cdot S_n, \quad v_n = (2p_n)^{-1} r^{q_n} \log r \cdot S_n\]

satisfy the equations $\Delta u_n = r^{p_n} S_n$ and $\Delta v_n = r^{q_n} S_n$. Since $\Delta u \in H$,

\[\Delta u = \sum_{n=1}^\infty (a_n r^{p_n} + b_n r^{q_n}) S_n + a \log r + b. \]
Set
\[u_0 = \sum_{n=1}^{\infty} (a_n u_n + b_n v_n) + a \tau(r) + b s(r). \]
Clearly \(\Delta(u - u_0) = 0 \). Thus \(u - u_0 \in H \) and
\[u = u_0 + \sum_{n=1}^{\infty} (c_n r^{p_n} + d_n r^{q_n})S_n + c \log r + d \]
for some constants \(c_n, d_n, c, d \).

10. To show that \(E \in O_{H^2B}^N \), suppose there exists a \(u \in H^2B \). We make use of the inequality \(|(u, \varphi)| \leq \sup |u|(1, |\varphi|)\) for all \(\varphi \in L^1 \). In the expansion of \(u \), if \(a_n \neq 0 \) for some \(n \), let \(\varphi_1 = \varphi_1(r)S_n \), where \(\varphi_1 \) is a fixed continuous function, \(\varphi_1 \geq 0 \), \(\text{supp} \varphi_1 \subset (1, 2) \), and \(\varphi_t(r) = \varphi_1(r + 1 - t) \) for \(t \geq 1 \). By the orthogonality of \(\{S_n\} \), and \(\int_1^t \varphi_t(r) dr = \text{const} \) as \(t \to \infty \), we have
\[(u, \varphi_t) \sim C \int_t^{t+1} r^{p_n-1} \log r \cdot \varphi_t(r) dr \sim C t^{p_n-1} \log t \]
and
\[(1, |\varphi_t|) \sim C t^{-1}. \]
Therefore \(a_n = 0 \) for \(p_n - 1 \geq -1 \), that is, for all \(n \). That \(c_n = 0 \) for all \(n \) is concluded in the same manner.

If \(b_n \neq 0 \) for some \(n \), then we choose \(\varphi_t(r) = \varphi_1(r/t) \), with \(\varphi_1 \) and \(\varphi_t \) as above, and have
\[(u, \varphi_t) \sim C t^{q_n} \log t, \quad (1, |\varphi_t|) \sim C, \]
as \(t \to 0 \). Clearly all \(n \) with \(q_n \leq 0 \) are ruled out, and we have \(b_n = 0 \) for all \(n \). Similarly all \(d_n = 0 \).

Thus the function \(u \) reduces to \(a \tau(r) + b s(r) + c \log r + d \). Since \(\tau, s, \log r \) are linearly independent and unbounded, we have \(a = b = c = 0 \), and \(u \) is a constant.

11. To show that \(E \in O_{H^2D}^N \), suppose there exists a \(u \in H^2D \). In its expansion, let \(u_n \) now signify the sum of the terms involving an \(S_n \), and denote by \(u_0 \) the radial part of the expansion of \(u \). Then
\[u = \sum_{n=0}^{\infty} u_n. \]
By the Dirichlet orthogonality of the \(S_n \), we have \(D(u) \geq D(u_n) \) for every \(n \). A direct computation shows that \(D(u_n) = \infty \) for every nonconstant \(u_n \). Thus \(E \in O_{H^2D}^N \).

The proof of our theorem in Section 2 is herewith complete.
BIBLIOGRAPHY

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA, U.S.A.